
System-Level Design of IEEE1394
Bus Segment Bridge

Hirofumi Yamamoto, Keishi Chikamura, Atsuhito Shigiya, Kosuke Tsujino,
Tomonori Izumi, Takao Onoye, Yukihiro Nakamura

Dept. Communications and Computer Eng., Kyoto University
Kyoto, 606-8501 Japan

Phone: +81.75.753.4804, Fax: +81.75.753.4804
E-mail : {hiro, keishi, ashigiya, tsujino}@easter.kuee.kyoto-u.ac.jp

{izumi, onoye, nakamura}@kuee.kyoto-u.ac.jp

ABSTRACT
A system simulation environment is constructed dedicat-
edly for IEEE1394 high-speed digital communication. In
this environment, various network transactions inherent in
communication systems are taken into account for system
simulation, which is indispensable to enable IP (Intellectual
Property)-based design of the systems. By using the pro-
posed environment, system-level design of IEEE1394 link
layer controller and bus segment bridge is achieved with
great ability of network transactions as well as connectivi-
ties with physical layer chips. Functionalities of the designed
bus segment bridge has been verified according to its FPGA
implementation.

Categories and Subject Descriptors
B.6.3 [LOGIC DESIGN]: Design Aids; C.2.3 [COMPUT-
ER-COMMUNICATION NETWORKS]: Network Op-
erations

General Terms
Design

Keywords
HW/SW Co-simulation, C/C++, Verilog-HDL, PLI,
IEEE1394, Bus Bridge

1. INTRODUCTION
With the recent advances in semiconductor technology,

the number of logic gates in a single chip is growing rapidly
where functionalities implemented in the chip are becom-
ing complicated. In this situation, reuse of IP (Intellectual
Property) is necessary to provide such system-on-a-chip LSIs
timely to the market.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

On the other hand, with the advent of information tech-
nology, network interface is included in SoC designs as a
key IP module. Moreover, there are various kinds of network
protocols in terms of transfer speeds and functionalities, and
hence IP-based network interface design is indispensable for
practical applications.
Network devices are demanded to provide many functions

dealing with various protocols, and such functions are im-
plemented as hardware or software. To reduce design com-
plexity, these devices are designed through such a layered
model that all functions are partitioned into layers, each
of which is implemented independently. For example in
IEEE1394[1], five protocol layers (physical layer, link layer,
transaction layer, serial bus management layer, and appli-
cation layer) are defined to simplify the implementation of
devices. Among these layers, the physical layer and the link
layer are generally realized in hardware, while other layers
are realized in software.
Based on the harmonization of these layers, network de-

vices can communicate each other, and thus hardware and
software co-simulation environment must be necessarily em-
ployed so as to check whether working correctly. A number
of approaches has been attempted to facilitate hardware and
software co-simulation[2][3][4][5], which mainly aims at ver-
ification of interoperability among layers in a single device.
However, there are few established ways of hardware and
software co-simulation to cope with various kinds of trans-
actions, which are inherent in network interfaces such as
dynamic insertion and deletion of devices during they are
working.
In this paper, a system simulation environment is con-

structed dedicatedly for IEEE1394 high-speed digital com-
munication based on discrete event simulator and Verilog-
PLI (Programming Language Interface), which is the inter-
face between Verilog simulator and C/C++ function. By us-
ing the proposed environment, system-level design of IEEE-
1394 link layer controller and bus segment bridge is achieved
with great ability of network transactions as well as con-
nectivities with physical layer chips. Functionalities of the
designed bus segment bridge has been verified according to
its FPGA implementation.

74

2. IEEE1394 NETWORK

2.1 Overview
IEEE1394 aims at the fields of PC peripherals and elec-

tric household appliances, which handles broadband data
streams such as moving pictures and a set of audio streams.
The primary features of IEEE1394 are summarized as fol-
lows:

1. Scalable performance Transfer speeds of 100, 200,
and 400 Mbps are supported.

2. Hot insertion and removalDevices can be attached
or removed from the bus dynamically without power-
ing the system down.

3. Plug and Play Each time a device is attached or
detached the bus is reenumerated. Nodes on the bus
are to a large degree self-configuring, and configuration
does not require intervention from a host system.

4. Support for two types of transactions Isochronous
and asynchronous transfers are supported.

5. Peer-to-Peer transfer support Serial bus devices
have an ability to perform transactions between them-
selves, without the intervention of a host CPU.

6. Cable power Power available from the bus can be
either sourced or sinked by a given node.

Layered model of IEEE1394 is illustrated in Fig. 1, where
the link layer and the physical layer (hereafter “the link”
and “the PHY”, respectively) are generally implemented in
hardware and other layers are done by software. Data com-
munication is executed through the transaction layer with
the link and the PHY, and bus management, such as bus
cycle and bus resource assignment, is done by the serial bus
management layer.

Figure 1: Layered hardware and software model of
IEEE1394.

2.2 Functions of link layer
The link is placed between the transaction layer and the

PHY, which receives data packets and status information
from the PHY via the “PHY-to-link” interface. IEEE1394-
1995[6] and P1394a[7] specify the PHY-to-link interface in
full detail as is shown in Fig. 2.

Figure 2: IEEE1394 PHY-to-link interface.

The interface is used bidirectionally by both the link and
the PHY; i.e. the link initiates transactions by sending re-
quests to the PHY, or the PHY forwards packets received
from 1394 buses to the link.
A packet data is delivered via the data lines(D[7:0]), where

the number of data lines used depends on the transfer speed
such that D[1:0], D[3:0], and D[7:0], are for 100, 200, and
400Mbps, respectively. Control lines(Ctl[1:0]) notify the
state of a layer when being driven by the link or the PHY.
LReq line is used by the link to initiate a request for send-
ing packets and to request to read local PHY registers. SClk
line is used by the PHY to supply 49.152MHz clock for the
link.
On the other hand, the interface between the link and the

transaction layer is not fully specified, since it depends on
the implementation.

2.3 IEEE1394.1 Bus Bridge

Figure 3: Bridge model of IEEE1394.1

As shown in Fig. 3, a bus bridge is composed of two
bridge portals which are connected to two different IEEE-
1394 buses. Two bridge portals communicate with each
other through the internal fabric, and each with its own
address space as well as the node ID of connected bus. The
cycle clock provides both portals with the same clock in or-
der to synchronize both buses.
In this manner, an IEEE1394 network can be constructed

by a set of buses. Specifically, there may be several bus
portals on a bus, among these portals one portal is selected
as the alpha portal, and among alpha portals on the network
one portal is selected as the prime portal.
The main facilities of a bus bridge are;

• Assigning virtual IDs which are used for a remote trans-
action.

• Routing asynchronous and isochronous packets.

75

• Executing net update process when a network topol-
ogy is changed.

• Adjusting their own bus cycle to net cycle master,
which is the cycle master belonging to the same bus
as prime portal, for routing isochronous packets.

3. HARDWARE AND SOFTWARE
CO-SIMULATION ENVIRONMENT

3.1 Overview
In the design of the link, the interoperability in the layered

network model must be considered and be verified efficiently.
For this purpose, hardware and software co-simulation envi-
ronment is required since the link and the PHY are imple-
mented by hardware while other layers are generally imple-
mented as software. Moreover, since dynamic insertion or
removal of nodes occurs without powering the system down,
the number of conditions on which the verification should
be carried out is so large that the simulation environment
should also be capable of handling these conditions success-
fully.
However, conventional hardware and software co-simula-

tion schemes can hardly treat these layered network models
with dynamic operations sophisticatedly. Thus we have de-
veloped a novel hardware and software co-simulation envi-
ronment, in which each layer of the network model can be
described whether in hardware or in software.
This nature contributes simplification of the functional

verification. For example, let us consider the case of de-
signing the link LSI by using hardware model of the PHY
through the conventional design scheme. The network trans-
action of the PHY is so complicated that HDL description
with limited ability to express transactions is not suitable
for. On the contrary, our simulation environment allows
C++ description of the PHY, instead of its HDL descrip-
tion, with the use of discrete event simulator, which has
great ability to express complicated network transactions.
An outline of our system simulation environment is shown
in Fig. 3. The discrete event simulator uses so-called Verilog-
PLI (Programmable Language Interface)[8] between C and
Verilog simulator, which enables verification of all layers
based on the IEEE1394 layered model.

Figure 3: IEEE1394 system simulation environment.

3.2 Discrete event simulation and its interface
The discrete event simulator treats events of the function

model of a layer in function unit basis, e.g. bus reset detec-
tion, data transmission, data decoding, and state control of

the PHY. Each function unit corresponds to an “object” of
C++. In other words, the function model consists of a set
of function units. Mechanism how our discrete event simu-
lator cooperates with Verilog simulator is depicted in Fig. 4.
Each object passes events with time stamps to the event
server. The event server sorts these events in order of time
stamps, and registers the event to the Verilog simulator via
Verilog-PLI.

Figure 4: Event server and objects.

If the time to execute the event comes during the Verilog
simulation, the Verilog simulator returns the signal to the
event server via Verilog-PLI. Then the event server indicates
execution of the event to the object.
As a result, very flexible system simulation is enabled. In

this system, each component part of a network device, no
matter which is written in HDL or C, is exchangeable freely.
Hence, we can use the function model by C++ instead of
the HDL description if the behavior of a component is too
complicated to be expressed by the HDL.

4. SYSTEM LEVEL DESIGN OF IEEE1394
DEVICES

4.1 Link Layer Controller Design

4.1.1 Architecture
For the co-simulation of the link described in Verilog, we

described the function model of the PHY by C++ and the
function of the transaction layer by C.
The function model of the PHY is based on lots of state

machines as described in IEEE1394-1995. In C++ descrip-
tion of the function model, each function unit is mapped to
an object. It is also required that a mechanism of trans-
forming actions of the PHY function model to the signals of
register transfer level (RTL). The “PHY wrapper” in C++
serves this role, which can pass/receive RTL signals to/from
Verilog simulator through PLI.
On the other hand, the transaction layer relays any trans-

actions except for the isochronous transactions. This func-
tion is implemented in C and communicates to the link via a
socket, as is often employed in a software simulation of net-
work model. While in the conventional design methodolo-
gies, software and hardware parts communicate each other

76

through device driver which is included in an operating sys-
tem. By using the socket interface, the co-simulation be-
tween the transaction layer and the hardware layers can be
successfully executed.
As depicted in Fig. 5, the link layer controller consists of

a set of blocks. It employs six data buffers (shadowed in
the figure), each of which can be distinguished in its role,
receive or send, asynchronous or isochronous, and so on.
In addition, the “State control” block have a state ma-

chine which send signals to other modules, and according to
these signals, for example, the “Link request” module send
a request message to the PHY through the LReq line in
proper timing. The “Transmit data control” block decides
which packet to give priority, for example, an acknowledge
packet is the most prior and a cycle start packet is second.
When a packet data is received via the data lines, it is

forwarded to the “Data decode” block and the “CRC error
check” block. The data decode block scans received packet
and checks data type. The CRC error check block checks
any errors of the packet, and if the CRC error at the header
section or the data section of the packet is detected, the
link layer controller initiates an acknowledge packet such as
“ACK HEADER ERROR” or “ACK DATA ERROR.”

Figure 5: Block diagram of link layer controller chip.

4.1.2 Implementation Results
With the proposed system simulation environment, the

link layer controller is designed in Verilog HDL. As sum-
marized in Fig. 6 , a number of dynamic/static network
transactions of the PHY are tested to confirm the interop-
erability of the designed module. For example, simulation
of dynamic node insertion is executed in the following way:
When a node is inserted to an active IEEE1394 network
while other nodes in the network communicate some pack-
ets, a bus reset occurs and all nodes send self-ID packets
to each other for updating their own configuration. Then,
finally, all nodes resume general network transactions. In
addition to this, simulations of such a dynamic node dele-
tion or static topologies can be easily done in the same way.
Furthermore, the function model of the PHY is effectively
described in C++ by 2500 lines, while in the case of HDL
description more than 13000 lines are needed.
Fig. 7 demonstrates the execution of the co-simulation,

in which the PHY model reports dynamic operation of the

Figure 6: Example of dynamic/static network trans-
actions of PHY.

network and Verilog simulation waveforms of the link at the
time of the operation are depicted.

Figure 7: Screenshot of co-simulation.

The link layer controller has been synthesized to XC4000-
XLA high performance FPGA by using Verilog-XL and Xil-
inx Foundation. Table 1 summarizes main features of the
link layer controller FPGA.

4.2 Bus Segment Bridge Design

4.2.1 Architecture
Utilizing the proposed environment as a different aspect

to construct a new subsystem by IEEE1394, the design of
“IEEE1394 bus segment bridge” has been attempted. Apart

77

Table 1: FPGA implementation results.
Critical path 19.245ns
Clock period 20.345ns(f = 49.152MHz)

Gates 19220
Technology 0.35 µm CMOS

Source Voltage 3.3V
Device XILINX XC4000XLA

from IEEE1394.1 bus bridges, our newly proposed IEEE1394
bus segment bridge enables legacy devices to use network re-
sources effectively and avoid bus reset issue by separating a
bus into several segments. Under this environment, a legacy
device can communicate with nodes on remote segments
without any updates. In addition, this bus segment bridge
can be embedded in and works properly in IEEE1394.1 net-
work.
The model of a bus segment bridge resembles bus bridge

model of IEEE1394.1. It is composed of two portals, and
each portal has an own routing table and configuration ROM.
However, as compared with that of IEEE1394.1, the config-
uration ROM is much smaller since the number of nodes
which a bus segment bridge must manage is up to 63, while
up to 65,000 in the case of IEEE1394.1.
The main features of proposed bus segment bridge are;

• Node ID assignment.
Each bus segment bridge assigns virtual IDs of remote
segment nodes at bus configuration process.

• Asynchronous and isochronous packet routing.
The routing of asynchronous packets is processed ac-
cording to the algorithm of the IEEE1394.1 specifica-
tion, except for the remote time-out.

The key issues of this architecture are how to enable above
mentioned features in an ordinary IEEE1394 network, which
are summarized in the following.

4.2.2 Node ID assignment
Node IDs can be assigned to legacy devices only at bus

configuration, and the devices can not detect a change of a
network topology in other bus states. The process of bus
configuration is performed as is illustrated in Fig. 8, where
the physical IDs of nodes on the segment 1 and virtual IDs
of nodes on the segment 2 are shown in the squares. When
bus reset occurs at the segment 1, then portal 1 will inform
nodes on the segment 1 of existence of segment 2 nodes
by using information from portal 2. In a bus configuration
process of segment 1, p1 generates self ID packets to pretend
that nodes on the segment 2 is connected to p1 directly.
Therefore, the nodes on the segment 1 recognize the nodes
on the segment 2 as connected to the same bus, while they
are separated into different segments by the bus segment
bridge.
When a node is removed from or is connected to a seg-

ment, bus reset occurs and the nodes on the segment can
detect a change of the bus topology. However, nodes on
other segments can not detect it until bus reset occurs at
their own segment. In the case of a node removal, a por-
tal which receives packets to the removed node returns an
error packet. Then, in the case of a node addition, portals

Figure 8: Bus reset process in IEEE1394 bus seg-
ment bridge environment

on other segments transmit bus reset signals to their own
segments at the appropriate time to inform the change of
the network topology. The time when a portal transmits
bus reset signal is determined by referring to the influence
on application over IEEE1394 bus. For example, a time
when there are no isochronous transitions can be consid-
ered. According to this, the time until a change of topology
is detected becomes longer, however, practically it is not a
serious since the nodes that communicate infrequently with
each other are tend to be connected to different segments.

4.2.3 Response time-out issue
As a legacy device can not set remote time-out for remote

transaction, remote and local transaction must be finished
in the same time-out period. The default time-out value of
a legacy device is 100ms, however its value can be set up
to 8s. The time required for our implementation to route
asynchronous packets is verified in the next section.

4.2.4 Isochronous packet routing
A proposed bus segment bridge can not route isochronous

packets by its destination ID since they do not include des-
tination IDs but channel numbers. In an IEEE1394.1 en-
vironment, a node which transmits isochronous packets to
remote bus builds path by a command packet defined in
IEEE1394.1. Since the bus segment bridge intends that a
legacy device can communicate without any changes, the
same method can not be used in this case.
There are two methods for routing isochronous packets in

proposed environment. One method is that, a bus segment
bridge routes all isochronous packets that is not registered
beforehand, and a node that transmits isochronous pack-
ets can register the path not to route own packets by the
command packet. By this rule, a legacy device can trans-
mit isochronous packets to remote segments, and also it
is possible to use the network resource effectively. In the

78

other method, a bus segment bridge decides which chan-
nels are to be routed automatically. This method can be
achieved by applying a special asynchronous packet which
is utilized by applications for isochronous transactions, like
AV/C command packets[9]. By this method, applications
which can utilize isochronous transactions are restricted,
however, none of updates is required for legacy devices.

4.2.5 Implementation Results
In order to verify functions of bus segment bridge, an eval-

uation board is implemented, which is composed of com-
mercial physical layer LSI[10], a CPLD[11] for link layer
controller, and a PCI interface. Overall organization of
the board is illustrated in Fig. 9. In order to constitute
an IEEE1394 bus segment bridge, two evaluation boards
are equipped with PC. The transaction layer, serial bus
manager, and portal controller are implemented as a de-
vice driver based on an open source 1394-OHCI for Linux
operating system. DMA controller of the board reduces the
host CPU load, and enables the host CPU to process por-
tal’s operations in real-time. The logic synthesis results of
the link layer controller, DMA controller, and PCI inter-
face are shown in Table 2, and Fig. 10 depicts the designed
evaluation board.
Processing overhead from a physical layer to the other

one through the implemented bus segment bridge can be
estimated less than 100µs, and thus the bus segment bridge
conforms to the default time-out value of a legacy device,
i.e. 100ms.

Figure 9: Organization of evaluation board

Table 2: Synthesis re-
sults
CPLD APEX20K
Cells 13239(79%)
Memory 13KB
Clock 49.94MHz

Figure 10: Evaluation
board

5. CONCOLUSION
This paper has described a novel concept of IEEE1394

hardware and software co-simulation, which is compliant to
the layered network model, and the implementation of the
link layer controller chip.
The proposed co-simulation scheme can contribute reduc-

tion of functional verification period, especially in the case
of various static/dynamic operation are incurred in the ver-
ification condition such as networking devices.
To demonstrate the practicability of the proposed design

system, system level design of link layer controller and bus
segmenet bridge for IEEE1394 is attempted and experimen-
tally implemented by using FPGA.
Development is continuing on much more sophisticated

system simulation environment for networking devices such
as precise simulation of transmission lines, etc.

6. REFERENCES
[1] Don Anderson, Fire Wire System Architecture, 2nd ed.,

Addison Wesley Publishing Company, 1998.

[2] Gajski, D. D., Zhu, J. and Domer, R.
Hardware/Software Co-Design, Kluwer Academic
Publishers, 1997.

[3] Kurt Keutzer, Hardware-Software Co-Design and
ESDA, In Proc. of the 31st DAC, 1994.

[4] J. Van Praet, D. Lanneer, W. Geurts, G. Goossens and
H. De Man, Modeling Hardware-specific Data-types for
Simulation and Compilation in HW/SW Co-design, In
Proc. of SASIMI’96, 1996.

[5] M. Yasuda, K. Seo, H. Koizumi, B.Shackleford, F.
Suzuki, A top down Hardware/Software Co-Simulation
Method for Embedded Systems Based Upon a
Component Logical Bus Architecture, In Proc. of
ASP-DAC’98, 1998.

[6] IEEE “1394-1995 IEEE standard for a high
performance serial bus,” IEEE, 1995.

[7] IEEE “P1394a draft standard for a high performance
serial bus,” IEEE, 2000.

[8] Stuart Sutherland The Verilog PLI Handbook, Kluwer
Academic Publishers, 1999.

[9] IEEE “AV/C digital interface command set general
speicification version 4.0,” IEEE, 2000.

[10] Texas Instruments “IEEE1394a-2000 three-port cable
transceiver/arbiter Data sheet” Texas Instruments,
2000.

[11] Altera “APEX20K programmable logic device family
Data sheet” Altera, 2001.

79

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

