
An Accelerated Datapath Width Optimization Scheme
for Area Reduction of Embedded Systems

Mohammad Mesbah Uddin Yun Cao Hiroto Yasuura
Department of Computer Science and Communication Engineering
Graduate School of Information Science and Electrical Engineering

Kyushu University
6–1 Kasuga-koen, Kasuga, 816-8580 Japan

ABSTRACT
Datapath width optimization is very effective for reducing
the area of a custom-made embedded system. The triv-
ial way of optimization is to iteratively customize, evalu-
ate, and redesign a system to reach near an optimal value.
The resulting effect is a long design time. In this paper,
we introduce an effective scheme that accelerates design. A
system-level pruning of design exploration space speeds up
the optimization process. Through a single-pass simulation
for a reference customization and a model for estimating
and evaluating the system’s performance, pruning of design
space is achieved. Experimental results show that a sub-
stantial reduction in design time is possible.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles;
B.7.2 [Integrated Circuits]: Design Aids; C.3 [Special-
purpose and Application-based Systems]; C.5.4 [Inte-
grated Circuits]: Computer System Implementation—VLSI
systems; D.3.2 [Programming Languages]: Language Clas-
sifications—specialized application languages; D.3.4 [Pro-
gramming Languages]: Processors—code generation, com-
pilers, optimization, retargetable compiler ; J.6 [Computer
Applications]: Computer-aided Engineering—computer-
aided design (CAD)

General Terms
Design, Measurement, Performance

Keywords
design of custom embedded systems, pruning of design ex-
ploration space

1. INTRODUCTION
An embedded system is a digital system which is tailored

to realize a specific function. Such a system is generally
constructed of several LSI-s (large scale integrated circuits)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

such as a processor core, memory cores and ASIC-s (appli-
cation specific integrated circuits). Embedded systems are
used extensively in everyday use. Reducing the area of these
systems is a major design issue. Moreover, time-to-market
design is very important for these systems.

In this study, we focus on the datapath width of the core
processor. The datapath width has a strong effect on the
area of the system. Datapath width optimization, proposed
by Shackleford et al [2], explores an optimal embedded sys-
tem by varying the datapath width 1-bit at a time. The
key idea to obtain an optimized system is to fix the compu-
tational precision first, and then tune the underlying hard-
ware, while preserving the computational precision as much
as possible. Using datapath width optimization, a substan-
tial reduction of system area (including memories) is re-
ported in [3] [4] [5]. Thus, considering the datapath width
is of paramount importance.

However, in order to optimize a system by synthesizing the
datapath width, it requires – (1) a processor supporting this
type of modification, (2) a high-level language to specify the
computational precision of the application program, and, (3)
a compiler for the system. As an example, to support the
above requirements, a customizable processor (Bung-DLX)
[4], and a high level language, called Valen-C along with the
retargetable Valen-C compiler [5] is developed.

Nevertheless, the concept of datapath width optimiza-
tion is quite new and little emphasis is given to the design
methodology. The trivial approach to find an optimal dat-
apath width for cost reduction is an exhaustive synthesis
for all possible customizations. [2] [3], for instance, adopts
the naive method. An exhaustive synthesis necessitates a
number of iterative simulations for the family of custom-
made systems obtained by modifying the datapath width.
Each simulation requires processor customization, compiler
generation, and compilation along with an evaluation for
area and performance (in number of execution cycles). The
repetitive and slow simulations result in a long turn-around-
time. In order to reduce design time, we propose a scheme
that accelerates design by a system-level pruning of the de-
sign exploration space.

The task of synthesizing hardware requires the solution of
complex optimization problem. Problems arise when oper-
ations of varying width are assigned to a heterogeneous set
of system components such as processor or memories. A key
goal for our work is to provide a hardware solution where
processors are synthesized so as to be adequately powerful
to process data at a given computation rate yet minimum
in area. Low-performance solutions should have less area

32

while high performance solutions having more. Therefore,
it is worthwhile to consider performance as well as area to
achieve our solution. In order to estimate performance, we
customize a reference system and collect bitwidth related
information from it. Performance for the other candidates
are derived from the profile data and a model for estimation.
Pruning of design exploration space is achieved by a high-
level evaluation of system performance to check whether the
constraints on performance are met.

The organization of this paper is as follows. Section 2
describes datapath width optimization and also defines the
problem. Section 3 presents the proposed approach. Section
4 shows experimental results. Section 5 briefly describes
some of the related work, and section 6 summarizes this
paper.

2. DATAPATH WIDTH OPTIMIZATION

2.1 System Requirements
For this study, we assume a cache-less, non-pipelined sys-

tem integrating a core processor, instruction memory and
data memory. ROM and RAM are used as instruction mem-
ory and data memory, respectively. In addition, we assume
that:

• computational precision of the application program
can be determined,

• parameters of the core processor is customizable,
• performance constraints are given,
• the clock frequency of the core processor is fixed, and,
• cycle penalty ratios are known.

Cycle Penalty Ratio: Cycle penalty occurs when an oper-
ation instance becomes multiple precision because the oper-
ation needs more execution cycles than the single precision
case. For an operation instance with execsp instruction(s)
for single precision and execpr instructions for precision pr,
we define the cycle penalty ratio as,

cprpr = �execpr

execsp
�

If, for example, an operation executes 4 machine instructions
for its single precision instance, and its cpr2 is 2, then a
double precision instance of the operation would require 2×4
= 8 machine instructions.

2.2 Effect of Datapath Width Reduction
2.2.1 Effect on CPU Area

The area of the processor almost linearly decreases with
the reduction of the datapath width. Generally, the reduc-
tion of the datapath width makes processor size small, but
causes loss of performance. This is because the number
of execution cycles increase since some of the single pre-
cision operations become double or triple precision one. By
a single precision operation, we mean an operation whose
required maximum width is not larger than the datapath
width. A multiple precision operation requires a maximum
width larger than the datapath width. For example, an ad-
dition of two 28-bit data is a single precision operation on
a 32-bit processor, but is a double precision operation on a
processor whose datapath width is 20 bits.

2.2.2 Effect on RAM Area
Changing the datapath width affects the size of the data

memory (RAM) as well as processor. Let us consider a pro-
gram including two variables in Figure 1(a), and assume
that two variables x and y require at most 18 bits and 26

bits, respectively. When the datapath width is 32 bits, two
words are necessary to store those two variables. Therefore
the amount of the data memory is 32 × 2 = 64 bits (Fig-
ure 1(b)). Since the minimum size required to store them is
only 18 + 26 = 44 bits, 20 bits of them are unused (about
30%). When the datapath width is 9 bits, two words and
three words are necessary for x and y, respectively, and the
unused area is only 1 bit (Figure 1(b)). However, the RAM
size does not decrease monotonically with the reduction of
the datapath width. Quite many unused bits can be elimi-
nated by determining the datapath width appropriately.

2.2.3 Effect on ROM Area
The ROM size, which is calculated (in bits) by multiply-

ing the instruction word length by the number of instruc-
tions stored in the ROM, is also affected by the reduction
of datapath width. When the datapath width is reduced,
the number of instructions in the ROM increases. For ex-
ample, an addition of the data whose maximum width is 26
bits (Figure 1(a)), is executed by only one instruction on a
26-bit processor (Figure 1(c)). When the datapath width is
16 bits, two instructions, namely, additions of lower 16 bits
and upper 10 bits (2 bits for x) are required as shown in
Figure 1(c). Furthermore load and store instructions may
be required because of the storage of registers.

(b) Changing of the RAM size(a) Sample program

main()
{
 int18 x;
 int26 y,z;

 z = x+y;

}

32 bits X 2 words = 64 bits

26 bits X 2 words = 52 bits

9
bi

ts
 X

 5
 w

or
ds

 =
 4

5
bi

ts

(c) Changing of the number of required instructions

datapath width = 26bits datapath width = 16 bits

add z, x, y; add z_low, x_low, y_low;

add _with_carry z_up, x_up, y_up;

Figure 1: Effect of width reduction – (a) sample
program, (b) effect on data memory, (c) effect on
instruction memory.

2.2.4 Effect on Total System Area
The total system area depends on the individual area of

the processor, RAM and ROM. Since any change in the
datapath width imposes different behavior in the individual
area changes, the total system area does not monotonically
change for the datapath width.

2.3 Datapath Width Optimization
When designing processor systems, it is sufficient to set

the datapath width equal to the largest bit-width required
by the application software. Having the datapath wider only
results in extra size, but no increased performance. Shackle-
ford et al. indicates that there is an area reduction opportu-
nity where the datapath width is smaller than the maximum
size of variables in the application program [2].

Criteria for optimality varies with design. Some appli-
cations may require small system area while some other re-
quiring high performance circuitry. Processor and memories
show different system/area characteristics on narrowing the
datapath width or modifying other parameters. Moreover,
it might be impossible to sacrifice performance over an ac-
ceptance level. Therefore a trade-off policy considering the
performance or the area consumed by the processor, mem-
ories and the whole system becomes necessary.

33

2.4 Evaluate-and-Redesign Approach for Op-
timization

Although, there are efforts on how to gain advantage of
the knowledge of bitwidth, design methodologies adopt a
trivial evaluate-and redesign approach (Figure 2). Initially
the design begins with a customizable processor and the
target application source program written in a high-level
language such as “C”.

Source program with
computational precision

Compiler generation
for the target processor

Satisfactory/optimal

O
pt

 f
or

 m
or

e;
di

ss
at

is
fa

ct
or

y

Optimal datapath width

Source program Input data

Bitwidth analysis

Custom processor

Customizable processorDatapath Width

Customization

Assembly Code

Evaluation
(performance,area)

Simulator Synthesis

Modify
Datapath Width

Recompile

Figure 2: Design flow of a trivial approach.

The design flow consists of four phases:

• Phase 1: The original source program of the target
application is rewritten in a language that can specify
computational precision. Bitwidth analysis technique
(e.g. [6]) is used in this phase.

• Phase 2: The processor is customized for a datapath
width.

• Phase 3: A compiler is generated and the rewritten
program is compiled for the customized processor.

• Phase 4: A low-level evaluation (based on logic-synthesis
and simulation) checks whether the generated system
satisfies design constraints.

After phase 4, if the design constraints are not met, or, in
order to opt for a better suit, phase 2 through phase 4 are
repeated by changing the datapath width 1-bit at a time.
However, where a family of customized systems should be
synthesized for optimization, the repetition becomes a bot-
tleneck in design time. To address this, we define the prob-
lem as:
”How the area of an embedded system can be minimized
speedily by datapath width optimization?”
We show that using a one-pass simulation, it is possible to
develop an estimator function to generate performances for
a set of systems with different datapath width. Then prun-
ing of the design exploration space is done by a system-level
evaluation of system performance to check whether the con-
straints on performance are met.

3. AN ACCELERATED SCHEME FOR
DATAPATH WIDTH OPTIMIZATION

In order to solve our optimization problem, it is necessary
to estimate the performance of the system as a function of
datapath width at an early stage of system design. Given
a target processor along with a set of compiler specifica-
tions, the number of execution cycles is directly related to

the code sequence of the application software. With an in-
sight into the software and the way of its implementation on
the hardware, it is possible to estimate the performance of
the system through a system-level simulation.

As an illustration, let us consider the following program 1

that will be executed on two different processors with data-
path width of 32 bits and 21 bits, respectively.

main()
{

int16 x; /* x requires a maximum of 16 bits */

int26 y; /* y requires a maximum of 26 bits */

int30 z; /* z requires a maximum of 30 bits */

z = x + y;
}

When the target processor has a datapath width of 32 bits,
the compiler should convert the above program into the ma-
chine code sequence as shown in Table 1. Table 1, however,
also presents the machine code sequence for a processor hav-
ing a datapath width of 21 bits.

32-bit processor 21-bit processor
Instruction Description Instruction Description
load x,R1 ← x15 ∼ x0 load x,R1 R1 ← x15 ∼ x0
load y,R2 R2 ← x25 ∼ y0 load ylow ,R2 R2 ← y20 ∼ y0
add R2,R1 R1 ← R1 + R2 load yup,R3 R3 ← y25 ∼ y21
store R1,z z29 ∼ z0 ← R1 add R1,R2 R2 ← R1 + R2

addc #0,R3 R3 ← R3 + carry
store R2,zlow z20 ∼ z0← R2
store R3,zup z29 ∼ z21← R3

Table 1: Instruction sequence of the sample program
for two processors with datapath width of 32-bits,
21-bits.

Now, let us focus on the original program. For the as-
signment operation, we can easily determine the required
bitwidth for each of its operators, operands and results:

Operator Width Operand Width Operand Width
+ 26 x 16 z 30
= 30 y 26

Table 2: Analysis of an operation instance.

For a 32-bit processor, all of the necessary operations are of
single precision (Table 3). However, for the 21-bit processor
case, the number of multiple precision operations increases
(Table 3).

operation 32-bit processor 21-bit processor
load(x) 1 sp load (cpr = 1) 1 sp load (cpr = 1)
load(y) 1 sp load (cpr = 1) 1 dp load (cpr = 2)
add(+) 1 sp add (cpr = 1) 1 dp add (cpr = 2)
store(=) 1 sp store (cpr = 1) 1 dp store (cpr = 2)

Table 3: Precision instances of operations on two
processors with datapath width 32-bits and 21-bits,
respectively. sp indicates single precision operation,
dp indicates double precision operation. cpr stands
for cycle penalty ratio.

Assuming that each single precision operation requires a sin-
gle instruction, we get

∑
(cpr) · (number of instructions) = 4,

which is exactly equal to the total machine instructions gen-
erated by the compiler for a 32-bit processor. For a 21-bit

1In Valen-C, the C programming language is augmented to
support this kind of declarations [5].

34

processor,
∑

(cpr) · (number of instructions) = 7.

This also exactly matches the compiler generated code for a
21-bit processor. The use of cycle penalty ratio is important
because an nth-precision instance of an operation may not
be simply n-times of the single precision instance.

Thus, it is possible to predict the total number of exe-
cution cycles for any operation. Consequently, if we count
the number and necessary width of all the referenced opera-
tions, we can estimate the total number of execution cycles
for any application. Hence, it is possible to estimate the per-
formance (in number of execution cycles) at an early stage
of design.

3.1 Design Flow of the Proposed Approach
The design flow of the proposed approach is shown in

Figure 3. The flow consists of the following phases:

• Phase 1: The original source program of the target
application is rewritten in a language that can specify
computational precision. Bitwidth analysis technique,
(e.g. [6]), is used in this phase.

• Phase 2: The system performance is estimated for
an initial value of datapath width. This process con-
sists of customizing the processor, generating compiler
and compiling the application program for that proces-
sor, simulation, synthesis and so forth. Next, analysis
for access-count of variables, and precision and access
count of functions is done. The system performance is
then estimated for a number of datapath widths with
an estimator function.

• Phase 3: Datapath widths that fail to satisfy the per-
formance constraints are excluded. Thus, we get a set
of candidate solutions (accepted datapath widths).

• Phase 4: The processor is customized for a candidate
datapath solution.

• Phase 5: The rewritten source program is compiled for
the customized processor.

• Phase 6: A low-level evaluation checks whether the
generated system satisfies the constraints for area. If
the constraints are not met or in order to find a better
system, phase 4 to phase 6 are repeated for the re-
maining candidates. However, with a reduced number
of design parameters obtained at phase 3, the number
of repetitive simulations is reduced.

In this section, we cover the main features of our proposed
approach.

3.2 The Reference System
The reference system is assumed to have a datapath width

equal to the largest variable in the program. However if the
width exceeds the capability of the existing technology, the
widest possible supported-configuration is used instead. Ini-
tially, the performance of the reference system is estimated
(Phase 2). Estimation process includes customizing the core
processor for the reference datapath width, compiling the
application program for the customized processor, simula-
tion and synthesis.

3.3 Analysis and Performance Estimation
The purpose of analysis phase is to take profile data for

variable and operation instances. Analysis is done by ex-
ecuting the application program with a set of input data
and with the reference system being the target. Profile data
includes the number each variable is accessed throughout
the program run. It also includes the precision and the

Source program with
computational precision

Compiler generation for
the target processor

Satisfactory/optimal

O
pt

 f
or

 m
or

e;
di

ss
at

is
fa

ct
or

y

Optimal datapath width

Source program Input data

Bitwidth analysis

Custom processor

Customizable processor Datapath width
(candidates for optimization)

Customization

Assembly code

Evaluation
(area)

Simulator Synthesis

Modify
Datapath Width

Estimated performance

Evaluation
(performance)

ok

Recompile

Analysis &
performance estimation

Figure 3: Design flow of the proposed approach
which accelerates design time through a system-level
pruning of design exploration space. The shaded
portion outlines the pruning phase.

number of accesses to each operation (function) instances.
Variables are divided into groups according to their effec-
tive bitwidth. Each function contains a subgroup, divided
according to their precision on different instances.

3.3.1 Assumptions
The estimation model of our proposed approach utilizes

the following assumptions:

• there is no register crowding, and,
• store operation is necessary for each assignment oper-

ation.

3.3.2 Estimation Model
System performance is related to the number of execution

cycles under typical inputs. In this study, the performance
(Pfunc) for a given datapath width ω, is estimated by

Pfunc(ω) =
β

ℵexec cycle(ω)

where β is a constant and ℵexec cycle(ω) is the total number
of execution cycles for the application program necessary
for memory accesses for that datapath width. A measure of
ℵexec cycle(ω) as a function of datapath width is given by

ℵexec cycle(ω) =
∑

opi

Nexec cycle(opi, ω)

where op is operation (suffix i is used to denote instance),
Nexec cycle(opi, ω) is the number of execution cycles for that
operation instance opi on a processor/system with datapath
width ω and is determined by

Nexec cycle(opi, ω) = cprpr(opi, ω) · nexec cycle(opsp, ω)

35

where, pr is the precision of the operation instance, cpr is the
cycle penalty ratio, and nexec cycle(opsp, ω) is the number
of execution cycles for a single precision execution. Note
that, our analysis result is used to determine the sum of
Nexeccycles(opi, ω).

However, an operation described in a high-level language
may need arithmetic/logic instruction(s), load/store instruc-
tion(s), or both. op stands for such an operation and should
be understood from the context. If the operation instance
involves only load/store instruction(s) (i.e., op= load/store),
pr is determined by the size of the variable to be loaded (or,
stored) and the datapath width ω. For any operation in-
stance involving arithmetic/logic instruction(s) (i.e., op =
function), pr is determined by the operation itself, the size
of its operands (variables), and the datapath width ω. Nev-
ertheless, it is likely that an operation would contain both
kind of operations and a combination of the above is neces-
sary.

For a datapath width equal to the size of the application
program’s largest variable, all the operations of that pro-
gram will be single precision. If we narrow the datapath
width, some of the operations would become multiple preci-
sion ones. This will increase the number of execution cycles
for those operations. The net effect is an increase in the
total number of execution cycles.

Now, with all the necessary information described above,
it is possible to determine system performance as a function
of datapath width.

3.3.3 First-Order Compensation
An approximation compensates for the deviations of per-

formance (Pfunc) introduced by our profile-data-based esti-
mator function. The compensated estimated performance,
Pest(ω), for a system with datapath width ω is given by

Pest(ω) =
Psim(refω)

Pfunc(refω)
× Pfunc(ω)

where, Psim(refw) is the performance for the reference sys-
tem with datapath width refw, Pfunc(refω)is the estimated
performance for the reference system, and, Pfunc(ω) is esti-
mated performance for a system with datapath width ω.

3.4 Performance Evaluation and Pruning
of Design Exploration Space

At this stage of design, (1) the performance constraints,
and, (2) system performance as a function of datapath width
are known. It is, therefore, easy to determine which of
the systems satisfy the performance constraints. Datapath
widths satisfying the performance constraints are accepted
as candidates for further evaluation.

3.5 Detailed Design Phase
Detailed design is done with the Evaluate-and-Redesign

approach for a range of accepted datapath width values.
However, with a candidate datapath width, the core proces-
sor is customized and the application program is compiled
for that processor. A simulation is used to determine the
area of the system. Again, an evaluation checks whether
the customized system satisfies the design goals. In case
the design goals is not met, a repetition is necessary as be-
fore. Since, we evaluate and redesign a reduced number of
of targets, an acceleration is gained.

4. EXPERIMENTAL RESULTS
In this section we will illustrate our experimental results.

We used Bung-DLX as our target processor. Valen-C is used

to describe the computational precision of the application
program. Two applications are chosen for the experiment:

1. Lempel-Ziv data-compression algorithm [7], and,
2. CCITT adpcm g721 encoder.

Both the programs are originally written in C. They are
tested against standard benchmark inputs. The system per-
formance is assumed to lie within 5% of the reference case
(32-bits for Lempel-Ziv, 19-bits for adpcm). However, the
range of possible datapath widths is 32-bits ∼ 8-bits (8, be-
cause of a restriction of the Valen-C compiler).

In Figure 4, we show the estimated performance for the
Lempel-Ziv program. Estimated performance is shown for
both the naive approach and the proposed approach for dat-
apath widths between 8-bits ∼ 32-bits.

4e-10

4.5e-10

5e-10

5.5e-10

6e-10

6.5e-10

7e-10

7.5e-10

8e-10

10 15 20 25 30
Datapath width [bit]

Pe
rf

or
m

an
ce

 [
1/

ex
ec

ut
io

n
cy

cl
e]

Previous approach

Proposed approach

M
in

im
um

ac

ce
pt

an
ce

 le
ve

l

Figure 4: Estimated performance for the Lempel-
Ziv program.

From Figure 4 it is easily verified that the acceptable range
of datapath width is 32-bits ∼ 15-bits. That is, the reduction
of design space is approximately 28%. We now continue with
these values and opt for the optimal datapath width that
minimizes area. The optimal datapath width that yields a
minimum system area is determined to be 15-bits. Below, we
show the required time for the naive and proposed approach
(Table 4).

Necessary time
Design Previous Proposed
phase approach approach

Analysis α α′

Processor customization,
Compiler generation, 25β 1β

& compilation

Table 4: Required design time for pruning of design
exploration space (Lempel-Ziv).

At present, we do not have an automatic tool to use for
our analysis. Assuming that our analysis scheme is included
in the compiler specifications along with the bitwidth ana-
lyzer, α′ will assume a very close value to α. For perfor-
mance estimation, we have successfully reduced the number
of simulations to 1. However, evaluation for area requires
an area estimation model. Through processor synthesis, we
estimated CPU area. Compiler generation and compilation
is used to derive area for memories. Hence, at this stage we
carried out another 17 simulations for the (Lempel-Ziv pro-
gram) in order to estimates the system area for a set of can-
didates. Nevertheless, repetition introduced here can still
be reduced by using a better model for evaluation. Time re-
quired for each of the simulations (β) is usually much greater
than that of the analysis phase (α, α′). Neglecting the effect
of α, and, α′, design time reduction is approximately 28%.

36

For the adpcm encoder, The range of possible datapath
widths is 19-bits ∼ 8-bits. Estimated performance for this
case is shown in Figure 5. Estimations are shown for both
the naive and the proposed approaches.

8.0e-12

1.0e-12

12e-12

14e-12

16e-12

18e-12

20e-12

22e-12

24e-12

8 10 12 14 16 18 20

Datapath width [bit]

Pe
rf

or
m

an
ce

 [
1/

ex
ec

ut
io

n
cy

cl
e]

Previous approach

Proposed approach

M
in

im
um

ac

ce
pt

an
ce

 le
ve

l

Figure 5: Estimated performance for the CCITT
adpcm encoder program.

The range acceptable values of datapath width is 16-bits
∼ 19-bits. Thus, the reduction of design space is about
66%. The optimal datapath width that yields the minimum
system area is determined to be 16-bits. The required time
for the naive and proposed approach is shown in Table 5.
Design time reduction is approximately 66%.

Necessary time
Design Previous Proposed
phase approach approach

Analysis α α′

Processor customization
Compiler generation 12β 1β

& compilation

Table 5: Required design time for pruning of design
exploration space (CCITT adpcm encoder).

4.1 Discussion
In order to achieve our goal, the performance estimated

with our approach must be reliable – if the estimated perfor-
mance is too much erroneous, we might exclude the space
that contain the actual solution. To verify our approach,
we correlate the estimated performance obtained by our ap-
proach and the other one (Figure 4, 5).

For the Lempel-Ziv program, estimations with our pro-
posed approach is deviated 20% at the most. The minimum
deviation is 0.03%. For datapath width equal to 15-bits or
above, the error is below 0.06%, which is very substantial.
However, for the adpcm encoder, the deviation rise up to
34%, at the narrower datapath widths. Deviation lies below
7% for datapth width 19-bits ∼ 14-bits.

Despite the deviation introduced, the curves for the es-
timated performance are almost alike – the one with our
approach having a little more slope at some points. While
it is clear that our approach correctly prunes the design
space, we could improve reliability by adding a single or two
to customization-targets for detailed design.

Our approach uses a very simple model with several re-
strictions. The effect of constant propagation, spill-instruc-
tions, or, compiler directed optimizations are not reflected
adequately with those restrictions. For a narrower datapath
width, the number of codes are likely to increase and the
compiler specifications assume an important role. There-
fore, consideration of compiler specifications need to be in-
vestigated for a better implementation of our approach.

5. RELATED WORK
Bitwidth has been exploited in a number of previous ef-

forts. [9] emphasizes the careful treatment of possible value
ranges. Their work targets FPGA implementation. [8] em-
phasizes sparse patterns of bits considering detailed infor-
mation about each bit position separately. Considering the
effects of quantization error for fixed point operations, low
order bits are discarded in [10].

Our approach customizes a conventional processor with
respect to bitwidth. As indicated in [2], detailed bitwidth
information on operations is used to explore an optimal sys-
tem from a family of processors obtained by varying the dat-
apath width. Bitwidth information on operations allows the
system to determine the precise number of computational
steps required for each operation.

6. CONCLUSION
In this paper, we proposed an efficient scheme for deter-

mining an optimal datapath width which yields minimum
system area. Our approach was to prune the design space
at system-level and reduce the number of low-level synthesis
and simulation targets. Thus, we could achieve acceleration
in design time.

Although our final goal was area minimization, our ap-
proach can be enhanced for the minimization of power/energy
consumption as well. Again, a combination of area and
power/area consumption can also be our final minimization
objective. Currently, we are working on developing a tool
to support our analysis. Consideration of compiler speci-
fication is also under investigation. Analysis and estima-
tion model for a real world system with cache memories and
pipelines remains as our future work.

7. REFERENCES
[1] Scott Mahlke, et al.,”Bitwidth Cognizant Architecture

Synthesis of Custom Hardware Accelerators,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Synthesis, Vol. 20, no. 11, pp. 1355-1371, November 2001.

[2] B. Shackleford, M. Yasuda, E. Okushi, H. Koizumi, H.
Tomiyama, A. Inoue, and H. Yasuura, “Embedded system
cost optimization via datapath width adjustment,” IEICE
Trans. Inf. & Syst., vol. E80-D, no. 10, pp. 974-981, Oct.
1997.

[3] H. Yasuura, H. Tomiyama, A. Inoue, and F. N. Eko,
“Embedded System Design Using Soft-Core Processor and
Valen-C,” Journal of Information Science and Engineering,
No. 14, pp. 587-603, August 1998.

[4] F. N. Eko, A. Inoue, H. Tomiyama, and H. Yasuura,
“Soft-Core Processor Architecture for Embedded System
Design,” IEICE Trans. on Electronics, Vol. E81-C No. 9, pp.
1416-1423, Sep. 1998.

[5] A.Inoue, H. Tomiyama, T. Okuma, H. Kanbara, and H.
Yasuura, “Language and Compiler for Optimizing Datapath
Width of Embedded Systems,” IEICE Trans. Fundamentals,
Vol. E81-A, No. 12, pp. 2595-2604, Dec. 1998.

[6] H. Yamashita, H. Tomiyama, A. Inoue, F. N. Eko, T.
Okuma, and H. Yasuura, “Variable Size Analysis for
Datapath Width Optimization,” Proc. of Asia Pacific
Conference on Hardware Description Languages (APCHDL
’98), pp. 69-74, July 1998.

[7] http://www.data-compression.com/loosless.html
[8] M. Budiu, S. Goldstein, K. Walker, and M. Sakr, “Bitvalue

inference: Detecting and exploiting narrow bitwidth
computations,” in Euro-Par 2000 Parallel Processing.

[9] M. Stephenson, J. Babb, and S.Amarasinghe, “Bitwidth
analysis with application to silicon compilation,” in Proc.
SIGPLAN’00 Conf. Programming Language Design and
Implementation, June 2000, pp. 108 - 120.

[10] K. I. Kum and W. Sung, “Word-length optimization for
high-level synthesis of digital signal processing systems,” in
Proc. 1998 IEEE Workshop on Signal Processing Systems,
Oct. 1998, pp. 142 - 151.

37

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

