
r-

s-
n-
es
n-
to
n
nt
s
n
es

es-
ed
ly
y
tive
at
ers
te

re
o,
re

ti-
to

ese
on
a-

he

)
n-

ms
ed

n-

a-
ce-
on
ta-

n-
6
e
le,
the
e
in

ne

Free Space Management for Cut-Based Placement
Charles J. Alpert, Gi-Joon Nam and Paul G. Villarrubia

IBM Corporation, 11501 Burnet Road, Austin, TX 78758

Abstract
IP blocks and large macro cells are increasingly prevalent
in physical design, actually causing an increase in the avail-
able free space for the dust logic. We observe that top-down
placement based on recursive bisection with multilevel parti-
tioning performs poorly on these porous designs. However,
analytic solvers have the ability to find the natural distribu-
tion of cells in the layout. Consequently, we propose an
enhancement to cut-based placement called Analytic Con-
straint Generation (ACG). ACG utilizes an analytic engine
to set constraints for the multi-level partitioner. We show
that for real industry designs, ACG significantly improves
the performance of cut-based placement, as implemented
within a state-of-the-art industrial placer.

1. Introduction
As design complexity continues to increase while time-to-
market decreases, IP reuse and semi-hierarchical design are
becoming increasingly pervasive. A few years ago, pure
standard cell designs could be considered the norm, but
today’s “chunky” designs contain large blocks for memory
arrays, IP blocks, etc. Consequently, today’s placement
instances now resemble the problem of arranging “dust” log-
ics around the large blocks. Since the large blocks tend to
dictate the design footprint, one can no longer assume that
the total dust logic area matches the available free space in
the design (minus the large blocks); one must recognize the
trend of increasing percentage of “free space” available on
the chip. One might think increased free space, or “design
sparsity”, might make placement easier. However, there can
still be millions of dust logic cells that have profound effects
on timing and routability.

As noted in [16], packing cells densely can yield the mini-
mum wirelength solution, but create enough congestion to
make the design unroutable. Uniformly spreading the design
[8] may work well for dense design, but can unnecessarily
hurt timing for sparse designs. We will show that one can
control free space management to achieve better timing than
via a uniform spreading strategy without hurting routability.

Placement algorithms are typically based on either a sim-
ulated annealing, top-down cut-based partitioning, or analyt-
ical [12] paradigm (or some combination thereof). Recent
years have seen the emergence of several new academic
placement tools, especially in the top-down partitioning and
analytical domains.

The advent of multilevel partitioning [3][10] has helped
spawn a new generation of top-down cut-based placers, e.g.,
[4][17][15]. A placer in this class partitions the cells into
either two (bisection) or four (quadrisection) regions of the
chip, then recursively partitions each region until a global
coarse placement is achieved. As we will show, recursive
cut-based placement can perform quite well when designs
are dense but poorly when they are sparse. Sparse designs
tend to fool the partitioner since it does not know how to
allocate the large amount of free space to each sub-partition.

Analytic placers typically solve a relaxed placement fo
mulation optimally, allowing cells to temporarily overlap
[2]. Legalization can be achieved in several ways. The cla
sic analytical placers [12][11] both use cut-based bipartitio
ing techniques to remove overlaps. Vygen’s placer [14] us
a minimum movement based quadrisection algorithm. Eise
mann and Johannes [8] add forces that pull cells from high
low density regions and iteratively solve the formulatio
until cells are evenly distributed. The Mongrel placeme
tool [9] starts with a legal placement and iteratively move
cells to their ideal relaxed location, invoking a legalizatio
procedure when an overlap occurs. The FMM placer [5] us
a “Fast Multipole Method” to resolve overlap constraints.

The question of whether analytic engines are even nec
sary given the advances in multilevel partitioning was pos
in 1997 [3]. The argument is that analytic methods on
serve to “seed” the partitioner since partitioning is typicall
used as a legalization step. Since then, several innova
legalization schemes [5][8][9][14] have been proposed th
make this argument specious. Nevertheless, analytic plac
can perform poorly when the data is naturally degenera
since it becomes difficult to legalize a placement whe
thousands of cells have virtually the same location. Als
analytic methods have difficulties with dense designs whe
legalization must significantly alter the analytic solution.

Given that designs are becoming sparser, we wish to u
lize the strength of analytic placers on sparse designs
improve the poor performance of cut-based placers on th
instances. We propose the Analytic Constraint Generati
(ACG) technique that uses the solution of a quadratic an
lytic solver to set appropriate balance constraints for t
multilevel partitioner. ACG serves toguidethe partitioner
into finding the natural distribution of cells (or free space
into sub-partitions. We present experiments on 1-dime
sional and 2-dimensional instances that validate our clai
of performance on sparse design and also show improv
timing of ACG placements when used with a physical sy
thesis optimization engine.

2. Preliminaries
We first briefly overview the cut-based partitioning and an
lytic placement methods, assuming a 1-dimensional pla
ment instance. One dimension allows us to focus more
the underlying technique and less on the actual implemen
tion choices, especially for analytic legalization.

In 1-dimensional placement, we are given a row of pote
tial cell locations, e.g., Fig 1. (a) shows an image with 1
possible cell locations with uniform cell sizes. Cells are to b
assigned to one of the possible locations. In this examp
assume that eight cells must be placed, which means
design densityis 50%. The design density is defined as th
total moveable cell area divided by the total available area
the placement region.

Recursive bisection iteratively assigns the cells into o

0-7803-7607-2/02/$17.00 ©2002 IEEE

n
be
e
d
le
.
e
-
he
g
rti-
ce
l
e is
ue
m

e

ll
s
c-
e
ll
e
m
e
to
eft
d

.
l-
n

t
to
of two equal sized regions, though the cell area in the left
region does not have to match the cell area in the right
region. For example, in Fig 1. (b), six cells are assigned to
the left region and two to the right. In Fig 1. (c)-(e), each
smaller region is subsequently partitioned until there is only
one cell or no cells in each region.

In analytical placement with a quadratic wirelength
objective, one first solves the optimization problem

(1)

where are the coordinates of the cells
, some subset of the cell locations are fixed

(e.g., pads), and is the weight of the net connecting
to . This problem can be optimally solved with tech-
niques such as successive-over relaxation or conjugate gra-
dient methods. For the eight cell example in Fig 1., one
typically finds the analytical optimization result looking
something like Fig 2.. The cells may overlap significantly
and form natural clusters that can be subdivided into the two
regions left and right of the cut-line, as shown in Fig 1. (b).
In subsequent recursive partitions, new constraints are
added to the quadratic optimization, the system is solved
again, and further partitioning is performed until all over-
laps are removed.

Cut-based partitioning divides the cells into two parti-
tions while trying to minimize the number of nets crossing
partitions. The balance constraints determine how much
flexibility the partitioner has to make cell assignments.

Let thebalance parameter () be the desired
ratio of the cell area of the left partition to the total cell area.
If we want to divide the cells into two equal-sized parts,
then . However, if one side contains fixed cells or
an odd number of rows need to be split, then could cer-
tainly take alternative values.

Thebalance tolerance () is a parameter that
specifies the amount of deviation that the partitioner is
allowed to have. The balance tolerance is the sum of the
upper and lower balance tolerances, and
once a balance parameter is given. The maximum permis-
sible value of is the ratio of the difference between the
maximum and minimum allowable cell areas of the left par-

tition to the total cell area. For example, if no more tha
40% and no less than 20% of the cell area is allowed to
assigned to the left partition then . If the balanc
parameter is chosen to be , then an

. In general, the more free space is availab
in the design, the bigger balance tolerance is permissible

In top-down cut-based placement, one first divides th
existing region into two (or possibly four) parts and com
monly the relative sizes of these regions determines t
value of . However, the relative sizes of the partitionin
regions do not necessarily correspond to the desired pa
tioning ratio. Next, one examines how much free spa
there is for the cells to fit in these two regions. If all the tota
cell area equals the area of the region, then no free spac
available and must be set to zero (though a small val
can be useful so that large cells are not prevented fro
changing partitions). Otherwise, is typically set to th
largest value that still yields a feasible solution.

In Fig 1. (a), the first cut could possibly have assigned a
eight cells to either the left or right partition, which mean

could be set to one for the first cut. However, in the se
ond cut of the left partition (Fig 1. (b)), six cells need to b
partitioned into two regions, each with four available ce
locations, and has a maximum value of . If on
chooses to give the bipartitioning algorithm the maximu
possible flexibility, then equals the ratio of available fre
space to total cell area. The partitioner is constrained
assign cells to regions such that ratio of the area of the l
partition to total cell area must lie between an

.
The choice for can significantly affect solution quality

Consider the four cell example in Fig 3. (a) with no avai
able free space; hence, we must have . Whe

, the partitioner has the ability to find the min-cu
solution which assigns A and B to one side and C and D

a)

b)

c)

d)

e)

Fig 1. Recursive bisection on a linear placement problem with
eight cells and 50% design density.

φ x() wij xi xj–()2

i j>
∑=

x x1 x2 … xn, , ,[]=
v1 v2 … vn, , ,

wij vi
vj

λ 0 λ 1≤ ≤

λ 0.5=
λ

∆ 0 ∆ 1≤ ≤

∆upper ∆lower
λ

∆

Fig 2. Example result of quadratic optimization on the Fig 1.
example.

∆ 0.2=
λ 0.28 ∆lower 0.08=

∆upper 0.12=

λ

∆

∆

∆

∆ 1 3⁄

∆

λ ∆lower–
λ ∆upper+

 A: 30 B: 30

C: 20 D: 20

 A: 30 B: 30
C: 20 D: 20

 A: 30 B: 30
C: 20 D: 20

(a)

(b)

(c)

wirelength = 12

wirelength = 18

Fig 3. For the (a) 4-node circuit, using (b) yields the
optimal placement but (c) yields a worse result.

λ 0.6=
λ 0.5=

λ

∆ 0=
λ 0.6=

ce

e
st
ig

ity
i-

)
n

e-
er.
n
f

ll
ct-
,
,

ve

ea
is

on

to

n-
,
et
e
is

om-

d

e
e

the other, eventually yielding the minimum wirelength solu-
tion of 12 as shown in Fig 3. (b) (assuming cell width one
and wiring to the center of each cell). A value of ,
however, causes the minimum cut to jump from two to
eight, resulting in the inferior result with wirelength 18
shown in Fig 3. (c).

This example suggests that one should allow the parti-
tioner to try a range of possible values to find the min-cut
solution. This could be accomplished by using a large value
for , allowing region area constraints to be violated by the
partitioner. The region sizes themselves could then be
adjusted so that they meet the area constraints of the parti-
tioning solution, which in effect yields a new value.

However, allowing large variations in early cuts could
overly constrain the partitioner, which leads to poor solu-
tions for subsequent iterations. This is the classic weakness
of greedy algorithms. In Fig 1., if the internal connectivity
of the cells dominates connectivity to the pads, then the
optimal greedy solution for the first cut assigns all eight
cells either entirely to the left or the right partition. All sub-
sequent iterations would then have no available free space
which can yield sub-optimal solutions.

Finally, cut-based partitioners can suffer from their
inability to see the global picture. Fig 4. shows an example
with three cells and one potential cell of free space. The first
partitioning must assign one cell to one side and two cells to
the other. The min-cut solution in (a) results in a placement
with more total wirelength than (b) the solution with a
slightly higher net cut. Note that an analytic solver would
place all three cells to the left of the cut-line, as shown in
(c). Just about any legalization scheme for this solution
would also obtain the result in (b).

3. Analytic Constraint Generation (ACG)
We have seen that an analytic solver can have a better glo-
bal view than a cut-based placer, especially for sparse
designs. Rather than discard the entire top-down cut-based
placement methodology, we propose to utilize the strength
of analytical solvers within a cut-based placer. We call our
algorithm to do this Analytic Constraint Generation (ACG)

since we use an analytic solver to compute the balan
parameter that constrains the multilevel partitioner.

Instead of trying to adjust to give the partitioner mor
freedom of choice, we set to zero and try to find the be
value a priori of the balance parameter . For example, F
5. shows a possible analytic optimization where a major
of cells are to the left of the partition. A 50/50 cut is poss
ble, but a more unbalanced cut such as 80/20 (
might exploit the unconstrained wirelength optimizatio
better.

The idea of ACG is to use the result of the squared wir
length optimization to choose the balance paramet
Assume the analytic optimization yields the solutio

, where these horizontal coordinates o
the cells are all free to move (A vertical optimization
should be performed for a horizontal cut-line). Let

(2)

be thecenter-of-massof the solution, where is the
area of cell . Let be the total moveable ce
area, and assume we wish to partition the cells into two re
angular regions and . For any rectangle , let

and denote the area, width, and height of
respectively. For the cells to fit in the regions, we must ha

.
The width of the entire partitioning region is given by

. We construct a new rectangle with the
same aspect ratio as the partitioning region, but with ar

, the total moveable cell area. The height and width of th
new rectangle are given by

 and

(3)

respectively. The rectangle is placed so that its center
the horizontal axis is .

Fig 6. shows an example where the ratio of cell area
region area is . In (a), the solution to the
quadratic wirelength optimization is shown, where the ce
ter-of-mass is significantly to the left of the cut-line. In (b)
the new rectangle with area is shown centered at . L

be the coordinate of the cut-line. Note that the cut-lin
divides the new rectangle into two unbalanced regions. It
the relative areas of these new regions that are used to c
pute as follows.

The widths of these new left and right rectangles an
 are given by

 and (4)

respectively. The ratio of the area of to is equal to th
ratio of their widths, since both and have the sam

λ 0.5=

λ

∆

λ

 A B(a) C

 A B C(b)

(c) A B C

Fig 4. An example with three cells and one unit of free space.
The (a) min-cut solution results in a placement with more

wirelength than (b) the optimal solution.

∆
∆

λ

λ 0.8=

x x1 x2 … xn, , ,[]=
n

xµ
1
n--- a vi() x⋅ i

i 1=

n

∑=

a vi()
vi α a vi()∑=

A B R a R()
w R() h R() R

α a A() a B()+≤

Fig 5. Example unbalanced analytic optimization.

w A() w B()+ R

α

h R() α h A()⋅
w A() w B()+--------------------------------=

w R() α w A() w B()+()
h A()---=

R
xµ

α
a A() a B()+ 0.5

α xµ
xc

λ
C

D

w C() w R()
2------------ x+

c
xµ–= w D() w R()

2------------ x– c xµ+=

C R
C R

fi-
te
ch
s

he
o-

s-

-
n
f
re

a

he
r a
e
ith

.
s
1.

ces

ei-

s
-

lts

i
for
height. Thus, ACG uses the following value of :

(5)

There are two special cases that have to be considered.
First, if is extremely far to the left or the right, then
Equation (5) could produce a value for outside of its
acceptable range. If , we use a value of zero for ,
i.e., all cells are assigned to the right partition. Similarly, if

, we use a value of one.
Second, the cond i t ion might ar ise that e i ther

or , in which case the chosen
value of will cause an overflow of either or . In this
case, we slide the rectangle horizontally towards the cut-
line until both and hold. Then,

is modified to be the new horizontal center of and
Equation (5) is reapplied.

4. Experiments
We perform two sets of experiments. The first examines
multilevel cut-based placement, analytical quadratic optimi-
zation, and ACG for 1-dimensional instances. The purpose
is to illustrate the behavior of these different approaches for
the same designs with variousdegrees of sparsity. The sec-
ond set analyzes cut-based placement with and without
ACG for a set of real industry circuits.

4.1 Linear Placement
Our first experiment utilizes the ISPD98 benchmark suite

[1] that were transformed into standard cell placement
instances by the authors of [15]. For each benchmark, we
create a single circuit row such that the area of the row is
equal to 20 times that of the total cell area, giving the design
a density (total cell area divided by total placeable area) of

5%. The density of each design could be altered by arti
cially inflating the cell size; in this manner, we can genera
instances for densities ranging from 5% to 100% for ea
design. The horizontal coordinates for the fixed I/O pad
were spread out proportionally to span the entire row. T
vertical coordinates were not altered. We ran three alg
rithms:
• Multi : recursive bisection for multilevel partitioning.

For each partition, we used and the largest po
sible value for .

• Quad: quadratic wirelength optimization. At each itera
tion, Equation (1) is solved and each partitioning regio
is divided into two equal parts by a vertical cut-line. I
either partition overflows its area constraint, cells a
moved to the non-overflowing partition, prioritized from
distance to the cut-line, until both partitions satisfy are
constraints.

• ACG: just like Multi, except using the algorithm from
Section 3 to compute and a value of zero.

For each design and density, the total wire lengths of t
three algorithms were compared. Then, the wirelength fo
given algorithm is divided by the smallest wirelength of th
three algorithms to yield the score. For example, ibm03 w
5% density yielded wirelength of , ,
and for ACG, Quad, and Multi, respectively
Since is the smallest wirelength, ACG receive
a score of 1, Quad a score of 1.51, and Multi a score of 1.8
Summing these scores over 12 benchmark circuits produ
the graph in Fig 7..

One can clearly observe the following trends.
• For sparse designs, Quad outperforms Multi, though n

ther approach is as strong as ACG.
• Multi performance improves relative to ACG as design

become denser until the two algorithms virtually con
verge on design densities of 80% and up.

• For design densities of 50% and above, Quad resu
start to degrade considerably.

Overall, for lower densities ACG dominates both Mult
and Quad. The reason that Quad performs relatively well

λ

λ w C()
w R()
------------- 1

2---
xc xµ–
w R()

-----------------+= =

xµ
λ

λ 0< λ

λ 1>

a C() a A()> a D() a B()>
λ A B

R
a C() a A()≤ a B() a D()≤

xµ R

A B

xµ

xµ

(a)

(b)

h(R)

xc

C D

w(R)

Fig 6. Example of the ACG algorithm for computing .λ

λ 0.5=
∆

λ ∆

1.16 109× 1.75 109×
2.10 109×

1.16 109×

0 20 40 60 80 100
Density

10

20

30

40

S
co

re
d

w
ire

le
ng

th

Multi
Quad
ACG

Fig 7. Total wirelength score as a function of density.

t
0

n

ti,
en
we

ts).
-
r
e
is
e
e
-

or
f

e
-

ti
ce
e
e
%,
,
es

the
r-
er

is
ely

th-
-
to

his
ate
tal
r-
ol,
re
nt

-

small densities is that it excels at finding the general region
where the cells belong. For example, in a design with 5%
density, Quad typically compacts all the cells into the same
narrow range of the circuit row, while Multi tends to
spreads out the design. However, once Quad finds the right
5% of the design in which to pack the cells, it does a poor
job of ordering the cells within that space (which also
explains its poor performance for dense designs). Mean-
while, ACG succeeds at finding the same 5% region of the
chip to place the cells as Quad but does a much better job at
ordering them within that region. In that sense, ACG
behaves like Quad during partitioning when free space is
abundant, but like Multi when free space is in short supply.

4.2 Placement on Complete Designs
Our second experiment seeks to compare Multi and ACG

on a set of seven real industry designs. We do not compare
to an analytical method because (i) different legalization
schemes behave very differently for 2-dimensional
instances, and (ii) our purpose is to see how ACG enhances
cut-based placement, not to attempt to demonstrate superi-
ority over purely analytic placement methods.

We implemented both ACG and Multi within the CPlace
[13] placement tool. CPlace has been used in the design and
production of hundreds of ASIC parts and several micropro-
cessors. For experiment, we ran the following flow on each
test case:
• CPlace with multilevel partitioning with (labeled ACG)

and without (labeled Multi) the ACG algorithm
• The PDS [6] physical synthesis tool which attempts to

improve timing via buffer insertion, gate sizing, pin
swapping, local logic changes, etc.

• The HDP global router which is typically used for con-
gestion estimation by industry designers

Cplace was run using adensity targetof 70%, which pro-
hibits the CPlace partitioner from packing any local region
with more than 70% of the cells.1 The density target serves
to force cells to be spread out enough to avoid locally con-
gested unroutable regions. The timing optimization is for
reducing the worst slack value and the number of negative
timing slack paths. Table 1 summarize the results. The
reported statistics are:
• Cells, the number of moveable objects of design;
• Design density,the ratio of placeable cell area to total

available space in the placement region;
• TWL, the total half-perimeter wire length in centimeters;
• Worst slack, the slack of the slowest path in the design in

nano seconds;
• FOM (Figure of Merit), a measure of the cumulative

slack of all negative slack cells in the design (It can also
be interpreted as the amount of work left for the
designer. The closer the value is to zero, the better the
overall timing characteristics of the design are);

• # Neg. Paths, the number of paths with negative slack;
• Congestion Metric, an average congestion of the wors

(most congested) 20% of nets. A value lower than 8
indicates the design is likely routable;

• andCPU is the total placement runtime (only Cplace) o
an IBM RS/6000 260 machine with 2Gb of RAM.

We make the following observations:
• ACG returns a better wire length before PDS than Mul

for all but the two densest designs, ckt 2 and ckt7. Giv
that these densities are close to the target density,
would not expect ACG to perform particularly well in
these cases (as seen in our 1-dimensional experimen

• After PDS, the timing characteristics for ACG are signif
icantly better than Multi. The worst slack is better fo
every case except ckt7, and the FOM for ACG, th
broadest measure design quality in terms of timing,
better than for Multi for all test cases. Thus, total wir
length does not necessarily give a fair indication of th
quality of the design in terms of satisfying timing con
straints.

• The wire congestion results for ACG are higher than f
Multi, but all the designs are below the 80 threshold o
routability

• ACG uses about 28% more CPU time than Multi. Not
that both our implementations of ACG and Multi suc
cessfully place fairly large designs in just a few hours.

Fig 9. and Fig 8. illustrate the placements of both Mul
and ACG on ckt4. One can see that ACG is able to redu
the total wire length from 11.42 to 10.38 by packing th
cells more tightly together than Multi. The design can b
packed even further; if one uses a target density of 100
then Multi and ACG obtain wire lengths of 10.78 and 9.60
respectively. Thus, an entirely different challenge becom
trying to determine the appropriate target density so that
design is still routable. We generally observe that higher ta
get densities lead to smaller wire lengths and even larg
gaps between the performance of Multi and ACG. Th
behavior is expected as the sparsity of the design effectiv
increases with the target density.

5. Conclusion
We have shown the amount of free space and the me

odology to distribute it has a significant impact on place
ment. Cut-based approaches perform poorly compared
analytical placement on sparse designs. To remedy t
shortcoming, we proposed ACG, a technique to gener
partitioning constraints for a cut-based placer. Experimen
results show that ACG significantly improves the perfo
mance of an industrial multilevel cut-based placement to
especially in terms of timing. We believe that there a
ample opportunities to further improve existing placeme
technology for the domain of sparse, chunky designs.

References
[1] C. J. Alpert, “The ISPD98 Circuit Benchmark Suite”,Intl. Sympo-

sium on Physical Design,1998, pp. 80-85.
[2] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov, and K.Yan, “Qua

dratic Placement Revisited”,IEEE/ACM DAC, 1997, pp. 752-757.
[3] C. J. Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel Circuit Parti-

1 This constraint can be implemented by artificially inflating cells,
e.g., for a 70% target density, cells are inflated by a factor or 1.43.
Of course, one must take care not to overflow the design if the de-
sign density is greater than the target density.

:
a-

tes

ell

i-
tioning”, IEEE/ACM DAC, 1997, pp. 530-533.
[4] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can Recursive

Bisection Alone Produce Routable Placements”,IEEE/ACM DAC,
2000, pp. 477-482.

[5] T. F. Chan, J. Cong, T. Kong, and J. R. Shinner, “Multilevel Optimiza-
tion for Large-Scale Circuit Placement”,IEEE/ACM Intl. Conf. on
Computer-Aided Design, 2000, pp. 171-176.

[6] W. Donath, P. Kuvda, L. Stok, P. Villarrubia, L. Reddy, A. Sullivan,
and K. Chakraborty, “Transformational Placement and Synthesis”,
Design Automation & Test in Europe, 2000, pp., 194-201.

[7] S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-removal
Using Iterative Improvement Techniques”,IEEE/ACM Intl. Conf on
Computer-Aided Design,1996, pp. 194-200.

[8] H. Eisenmann and F. M. Johannes, “Generic Global Placement and
Floorplanning”,IEEE/ACM DAC, 1998, pp. 269-274.

[9] S.-W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard
Cell Placement”,IEEE/ACM ICCAD, 2000, pp. 165-170.

[10] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
Hypergraph Partitioning: Application in VLSI Domain”,IEEE/ACM

DAC, 1997, pp. 526-529.
[11] J. Kleinhaus, G. Sigl, F. Johannes and K. Antreich, “GORDIAN

VLSI Placement by Quadratic Programming and Slicing Optimiz
tion”, IEEE Trans. on CAD, 10(3),1991, pp. 356-365.

[12] R.-S. Tsay, E. S. Kuh, and C.-P. Hsu, “PROUD: A Fast Sea-of-Ga
Placement Algorithm”,IEEE/ACM DAC, 1988, pp. 318-323.

[13] P. Villarrubia, G. Nusbaum, R. Masleid, and P. T. Patel, “IBM RISC
Chip Design Methodology”,ICCD, 1989, pp. 143-147.

[14] J. Vygen, “Algorithms for Large-Scale Flat Placement”,Proc. 34th
IEEE/ACM Design Automation Conference, 1997, pp. 746-751.

[15] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: Standard-C
Placement Tool for Large Industry Circuits”,IEEE/ACM Intl. Conf on
Computer-Aided Design, 2001, pp. 260-263.

[16] X. Yang, B.-K. Choi, and M. Sarrafzadeh, “Routability Driven White
Space Allocation for Fixed-Die Standard-Cell Placement”,Interna-
tional Symposium on Physical Design, 2002, pp. 42-47.

[17] M. C. Yildiz and P. H. Madden, “Improved Cut Sequences for Part
tioning Based Placement”,IEEE/ACM DAC, 2001, pp. 776-779.

Fig 8. ACG placement of ckt4 with 70% target density.

Test
Case

Cells
Design
density

Method
Before PDS After PDS

Congestion
Estimation

CPU
TWL

Worst
Slack

TWL
Worst
Slack

FOM
Negative

Paths

ckt1 207K 65%
Multi 68.88 -6.30 68.37 -3.02 -6009 6162 70.52 5205

ACG 67.47 -6.77 67.28 -2.57 -4671 7240 77.04 6022

ckt2 71K 73%
Multi 13.42 -2.44 13.59 -0.31 -173 1416 73.85 1414

ACG 13.81 -2.11 13.99 -0.24 -71 811 76.32 1589

ckt3 120K 53%
Multi 136.54 -190.49 138.80 -3.25 -26870 25739 63.16 3118

ACG 133.33 -29.45 133.68 -2.37 -7321 13687 70.43 4091

ckt4 73K 31%
Multi 11.42 -2.82 11.65 -0.82 -106 253 73.74 930

ACG 10.38 -2.69 10.64 -0.57 -69 244 77.89 2096

ckt5 270K 45%
Multi 92.87 -7.12 92.40 -2.31 -9905 19549 63.36 3580

ACG 84.27 -5.30 84.08 -1.93 -8617 11389 69.10 6508

ckt6 426K 57%
Multi 222.01 -5.10 232.85 -0.16 -2 78 69.87 11906

ACG 220.82 -5.28 230.88 0.00 0 0 73.64 13774

ckt7 276K 69%
Multi 214.21 -8.39 214.21 -2.23 -10169 15233 69.15 7479

ACG 214.29 -8.58 224.28 -4.51 -6582 8784 75.49 8921

Table 1: Comparison of Multi to ACG for real industry circuits.

Fig 9. Multi placement of ckt4 with 70% target density.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

