Free Space Management for Cut-Based Placement

Charles J. Alpert, Gi-Joon Nam and Paul G. Villarrubia
IBM Corporation, 11501 Burnet Road, Austin, TX 78758

Abstract Analytic placers typically solve a relaxed placement for-
IP blocks and large macro cells are increasingly prevalentmulation optimally, allowing cells to temporarily overlap
in physical design, actually causing an increase in the avail{2]. Legalization can be achieved in several ways. The clas-
able free space for the dust logic. We observe that top-downic analytical placers [12][11] both use cut-based bipartition-
placement based on recursive bisection with multilevel partiing techniques to remove overlaps. Vygen's placer [14] uses
tioning performs poorly on these porous designs. Howevera minimum movement based guadrisection algorithm. Eisen-

tion of cells in the layout. Consequently, we propose an, gensity regions and iteratively solve the formulation
enhancement to cut-based placement called Analytic Cor]J

straint Generation (ACG). ACG utilizes an analytic engine JNtil Célls are evenly distributed. The Mongrel placement
to set constraints for the multi-level partitioner. We show!°! [9] starts with a legal placement and iteratively moves

that for real industry designs, ACG significantly improves Cells to their ideal relaxed location, invoking a legalization
the performance of cut-based placement, as implementeerocedure when an overlap occurs. The FMM placer [5] uses
within a state-of-the-art industrial placer. a “Fast Multipole Method” to resolve overlap constraints.
. The question of whether analytic engines are even neces-
1. IntrOdUCt'on .) . o sary given the advances in multilevel partitioning was posed
As design complexity continues to increase while time-to-j5 1997 [3]. The argument is that analytic methods only
market decreases, IP reuse and semi-hierarchical design aggrye to “seed” the partitioner since partitioning is typically
becoming increasingly pervasive. A few years ago, purg;sed as a legalization step. Since then, several innovative
standard cell de5|gn_s could b_e considered the norm, bqéganzaﬁon schemes [5][8][9][14] have been proposed that
today’s “chunky” designs contain large blocks for memory make this argument specious. Nevertheless, analytic placers
arrays, IP blocks, etc. Consequently, today’s placementan perform poorly when the data is naturally degenerate
instances now resemble the problem of arranging “dust” logsijnce it becomes difficult to legalize a placement where
ics around the large blocks. Since the large blocks tend tghoysands of cells have virtually the same location. Also,
dictate the design footprint, one can no longer assume thafna|ytic methods have difficulties with dense designs where
the total dust logic area matches the available free space iggajization must significantly alter the analytic solution.
the design (minus the large blocks); one must recognize the “;yen that designs are becoming sparser, we wish to uti-
trend of increasing percentage of “free space” available ofy, ¢ the strength of analytic placers on sparse designs to
the chip. One might think increased free space, or “desigiiy,roye the poor performance of cut-based placers on these
sparsity”, might make placement easier. However, there cajgiances. We propose the Analytic Constraint Generation
still be millions of dust logic cells that have profound effects (ACG) technique that uses the solution of a quadratic ana-
on timing and routability. _ _ . lytic solver to set appropriate balance constraints for the
As noted in [16], packing cells densely can yield the mini- ytilevel partitioner. ACG serves tguidethe partitioner
mum wirelength solution, but create enough congestion tgnto finding the natural distribution of cells (or free space)
make the design unroutable. Uniformly spreading the desigihto sub-partitions. We present experiments on 1-dimen-
[8] may work well for dense design, but can unnecessarilysional and 2-dimensional instances that validate our claims
hurt timing for sparse designs. We will show that one canys performance on sparse design and also show improved

control free space management to achieve better timing thagming of ACG placements when used with a physical syn-
via a uniform spreading strategy without hurting routability. thesjs optimization engine.

Placement algorithms are typically based on either a sim- o
ulated annealing, top-down cut-based partitioning, or analyt2. Preliminaries
ical [12] paradigm (or some combination thereof). RecentWe first briefly overview the cut-based partitioning and ana-
years have seen the emergence of several new acadentjtic placement methods, assuming a 1-dimensional place-
placement tools, especially in the top-down partitioning andment instance. One dimension allows us to focus more on
analytical domains. the underlying technique and less on the actual implementa-
The advent of multilevel partitioning [3][10] has helped tion choices, especially for analytic legalization.
spawn a new generation of top-down cut-based placers, e.g., In 1-dimensional placement, we are given a row of poten-
[4][17][15]. A placer in this class partitions the cells into tial cell locations, e.g., Fig 1. (a) shows an image with 16
either two (bisection) or four (quadrisection) regions of thepossible cell locations with uniform cell sizes. Cells are to be
chip, then recursively partitions each region until a globalassigned to one of the possible locations. In this example,
coarse placement is achieved. As we will show, recursiveassume that eight cells must be placed, which means the
cut-based placement can perform quite well when designdesign densitys 50%. The design density is defined as the
are dense but poorly when they are sparse. Sparse desigigal moveable cell area divided by the total available area in
tend to fool the partitioner since it does not know how tothe placement region.
allocate the large amount of free space to each sub-partition. Recursive bisection iteratively assigns the cells into one

0-7803-7607-2/02/$17.00 ©2002 |EEE

ogonooogonogognan
Jo0pEonGhooenoon
J00000EE0EnO0000
000EEEO0EnO00o0n
)]]]]]]

Fig 1. Recursive bisection on a linear placement problem wiit
eight cells and 50% design density.

C

~—

e

JMAioo0moooo

Fig 2. Example result of quadratic optimization on the Fig 1.
example.

tition to the total cell area. For example, if no more than
40% and no less than 20% of the cell area is allowed to be
assigned to the left partition theh = 0.2 . If the balance
paramete is chosen to 28 | th&p,,er = 0.08 and
Aypper = 0.12. In general, the more free space is available
in the design, the bigger balance tolerance is permissible.
In top-down cut-based placement, one first divides the
existing region into two (or possibly four) parts and com-
monly the relative sizes of these regions determines the
value of A . However, the relative sizes of the partitioning

of two equal sized regions, though the cell area in the left "€9ions do not necessarily correspond to the desired parti-
region does not have to match the cell area in the right tioning ratio. Next, one examines how much free space
region. For example, in Fig 1. (b), six cells are assigned to there is for the cells to fit in these two regions. If all the total
the left region and two to the right. In Fig 1. (c)-(e), each cell area equals the area of the region, then no free space is

smaller region is subsequently partitioned until there is only @vailable andd must be set to zero (though a small value

one cell or no cells in each region.

In analytical placement with a quadratic wirelength
objective, one first solves the optimization problem

9 = 3 W (X —x)° (1)
i=]

wherex = [Xg, Xy, ..., X;] are the coordinates of the cells
V1, Vo, ..., V,, SOMe subset of the cell locations are fixed
(e.g., pads), anwij is the weight of the net connecting
to vj . This problem can be optimally solved with tech-
nigues such as successive-over relaxation or conjugate gr
dient methods. For the eight cell example in Fig 1., one
typically finds the analytical optimization result looking
something like Fig 2.. The cells may overlap significantly

and form natural clusters that can be subdivided into the two

regions left and right of the cut-line, as shown in Fig 1. (b).

can be useful so that large cells are not prevented from
changing partitions). Otherwiséy s typically set to the
largest value that still yields a feasible solution.

In Fig 1. (a), the first cut could possibly have assigned all
eight cells to either the left or right partition, which means
A could be set to one for the first cut. However, in the sec-
ond cut of the left partition (Fig 1. (b)), six cells need to be
partitioned into two regions, each with four available cell
locations, andA has a maximum value 3 . If one
chooses to give the bipartitioning algorithm the maximum

apossible flexibility, thenA equals the ratio of available free

space to total cell area. The partitioner is constrained to
assign cells to regions such that ratio of the area of the left
partition to total cell area must lie betwedn-A,,,er and
At Dypper-

The choice forA can significantly affect solution quality.

In subsequent recursive partitions, new constraints areconsider the four cell example in Fig 3. (a) with no avail-

added to the quadratic optimization, the system is solved 2P!€ free space; hence, we must have= 0

again, and further partitioning is performed until all over-
laps are removed.

Cut-based partitioning divides the cells into two parti-
tions while trying to minimize the number of nets crossing

partitions. The balance constraints determine how much

flexibility the partitioner has to make cell assignments.

Let thebalance parameteh (0<A <1) be the desired
ratio of the cell area of the left partition to the total cell area.
If we want to divide the cells into two equal-sized parts,
thenA = 0.5 . However, if one side contains fixed cells or
an odd number of rows need to be split, then
tainly take alternative values.

Thebalance toleranceéd (0<A<1)is a parameter that

specifies the amount of deviation that the partitioner is
allowed to have. The balance tolerance is the sum of the

fmgwer

upper and lower balance tolerance§,,,er
once a balance parameter is given.
sible value ofA s the ratio of the difference between the
maximum and minimum allowable cell areas of the left par-

could cer-

. When
A = 0.6, the partitioner has the ability to find the min-cut
solution which assigns A and B to one side and C and D to

A: 30 B: 30
@
C: 20 D: 20
(b) | A:30| B:30) . 50| D:2d wirelength = 12
()| C:20 A: 30| B: 30 D: 20 wirelength =18

he maximum permis-

Fig 3. For the (a) 4-node circuit, using (b\ = 0.6 yields the
optimal placement but (c)A = 0.5 yields a worse result.

(@) == c 00 MOOmo0 0 0 00 O

[Fig 5. Example unbalanced analytic optimization.

since we use an analytic solver to compute the balance
- parameter that constrains the multilevel partitioner.
(b) A B : C Instead of trying to adjusf to give the partitioner more
. freedom of choice, we s&& to zero and try to find the best
' value a priori of the balance paramefer . For example, Fig
5. shows a possible analytic optimization where a majority
X of cells are to the left of the partition. A 50/50 cut is possi-
! ble, but a more unbalanced cut such as 80/20=(0.8)
() A B C | might exploit the unconstrained wirelength optimization
|

better.
The idea of ACG is to use the result of the squared wire-
Fig 4. An example with three cells and one unit of free space. length optimization to choose the balance parameter.
The (a) min-cut solution results in a placement with more Assume the analytic optimization yields the solution
wirelength than (b) the optimal solution. X = [X, Xp, .., X,] , Where these horizontal coordinates of
the other, eventually yielding the minimum wirelength solu- the n cells are all free to move (A vertical optimization
tion of 12 as shown in Fig 3. (b) (assuming cell width one should be performed for a horizontal cut-line). Let
and wiring to the center of each cell). A value®f= 0.5 n
however, causes the minimum cut to jump from two to -1
eight, resulting in the inferior result wijth wr?relength 18 = HZ a(vi) B 2)
shown in Fig 3. (c). _ _

This example suggests that one should allow the parti- b€ thecenter-of-massf the solution, wherea(v;) is the
tioner to try a range of possible values to find the min-cut areaof celly; . Letw = % a(v;) be the total moveable cell
solution. This could be accomplished by using a large value area, and assume we wish to partition the cells into two rect-
for A, allowing region area constraints to be violated by the angular regionsA an@ . For any rectandgte , &R
partitioner. The region sizes themselves could then be W(R) andh(R) denote the area, width, and heightof
adjusted so that they meet the area constraints of the partifespectively. For the cells to fit in the regions, we must have
tioning solution, which in effect yields anew value. as<a(A)+a(B). _ o o

However, allowing large variations in early cuts could ~ The width of the entire partitioning region is given by
overly constrain the partitioner, which leads to poor solu- W(A) + W(B) . We construct a new rectangR with the
tions for subsequent iterations. This is the classic weaknesss@me aspect ratio as the partitioning region, but with area
of greedy a|gorithms_ In F|g :I__7 if the internal Connectivity a, the total moveable cell area. The hEIght and width of this

of the cells dominates connectivity to the pads, then the New rectangle are given by

i=1

optimal greedy solution for the first cut assigns all eight h(R) = a and

cells either entirely to the left or the right partition. All sub- N Wi A% + W% Bi

sequent iterations would then have no available free space w(R) = [@ (W(AY + W(B)) 3)
which can yield sub-optimal solutions. A

Finally, cut-based partitioners can suffer from their respectively. The rectangl® s placed so that its center on
inability to see the global picture. Fig 4. shows an example the horizontal axis iszll
with three cells and one potential cell of free space. The first Fig 6. shows an example where the ratio of cell amea to
partitioning must assign one cell to one side and two cells to region areaa(A) + a(B) i€0.5 . In (a), the solution to the
the other. The min-cut solution in (a) results in a placement quadratic wirelength optimization is shown, where the cen-
with more total wirelength than (b) the solution with a ter-of-mass is significantly to the left of the cut-line. In (b),
slightly higher net cut. Note that an analytic solver would the new rectangle with arem is shown centeregat . Let
place all three cells to the left of the cut-line, as shown in x_ be the coordinate of the cut-line. Note that the cut-line
(c). Just about any legalization scheme for this solution divides the new rectangle into two unbalanced regions. It is
would also obtain the result in (b). the relative areas of these new regions that are used to com-

3. Analytic Constraint Generation (ACG) pufl?h)(\a v?ist‘jiﬁgoc\;]\‘/?ﬁese new left and right rectangleés and
We have seen that an analytic solver can have a better glo-D are given by g 9

bal view than a cut-based placer, especially for sparse

designs. Rather than discard the entire top-down cut-based w(C) = V—V-(ZB) +X_—x, andw(D) = V—V%B)—XC+ Xy (4)
placement methodology, we propose to utilize the strength) ° .

of analytical solvers within a cut-based placer. We call our T€Spectively. The ratio of the area 6f B is equal to the
algorithm to do this Analytic Constraint Generation (ACG) ratio of their widths, since botle anR have the same

AT B
|_—‘ 'Xu |:|:
e
) X
C
ou h(R)
\\
(b) \,Qﬁ)

Fig 6. Example of the ACG algorithm for computingA .

height. Thus, ACG uses the following valueXof

= W) -1, X=X,
w(R) 2 w(R

()

There are two special cases that have to be considered.

First, if x,, is extremely far to the left or the right, then
Equation (5) could produce a value far outside of its
acceptable range. K <0 , we use a value of zeroXor
i.e., all cells are assigned to the right partition. Similarly, if
A>1, we use a value of one.

Second, the condition might arise that either
a(C)>a(A) or a(D) >a(B), in which case the chosen
value of A will cause an overflow of eithek d . In this
case, we slide the rectangie horizontally towards the cut-
line until botha(C) <a(A) anda(B)<a(D) hold. Then,

X, 1s modified to be the new horizontal center &f and
Equation (5) is reapplied.

4. Experiments

We perform two sets of experiments. The first examines
multilevel cut-based placement, analytical quadratic optimi-
zation, and ACG for 1-dimensional instances. The purpose
is to illustrate the behavior of these different approaches for
the same designs with variodsgrees of sparsitylhe sec-

ond set analyzes cut-based placement with and without

ACG for a set of real industry circuits.

4.1 Linear Placement

Our first experiment utilizes the ISPD98 benchmark suite
[1] that were transformed into standard cell placement
instances by the authors of [15]. For each benchmark, we
create a single circuit row such that the area of the row is
equal to 20 times that of the total cell area, giving the design
a density (total cell area divided by total placeable area) of

40 T T T T

w
o

Scored wirelength
N
o

“—+ > * o+ +

10 1 1 1 1
0 20 40 60 80

Density

100

Fig 7. Total wirelength score as a function of density.

5%. The density of each design could be altered by artifi-
cially inflating the cell size; in this manner, we can generate
instances for densities ranging from 5% to 100% for each
design. The horizontal coordinates for the fixed 1/0 pads
were spread out proportionally to span the entire row. The
vertical coordinates were not altered. We ran three algo-
rithms:

Multi : recursive bisection for multilevel partitioning.
For each partition, we usexl = 0.5 and the largest pos-
sible value forA .

Quad: quadratic wirelength optimization. At each itera-
tion, Equation (1) is solved and each partitioning region
is divided into two equal parts by a vertical cut-line. If
either partition overflows its area constraint, cells are
moved to the non-overflowing partition, prioritized from
distance to the cut-line, until both partitions satisfy area
constraints.

ACG: just like Multi, except using the algorithm from
Section 3to computd andd value of zero.

For each design and density, the total wire lengths of the
three algorithms were compared. Then, the wirelength for a
given algorithm is divided by the smallest wirelength of the
three algorithms to yield the score. For example, ibmQ3 with
5% density yielded wirelength of.16x 10 1.75x 1 ,
and 2.10x 10 for ACG, Quad, and Multi, respectively.
Since1.16x 10 is the smallest wirelength, ACG receives
a score of 1, Quad a score of 1.51, and Multi a score of 1.81.
Summing these scores over 12 benchmark circuits produces
the graph in Fig 7..

One can clearly observe the following trends.

For sparse designs, Quad outperforms Multi, though nei-
ther approach is as strong as ACG.

Multi performance improves relative to ACG as designs
become denser until the two algorithms virtually con-
verge on design densities of 80% and up.

For design densities of 50% and above, Quad results
start to degrade considerably.

Overall, for lower densities ACG dominates both Multi
and Quad. The reason that Quad performs relatively well for

small densities is that it excels at finding the general region
where the cells belong. For example, in a design with 5% «
density, Quad typically compacts all the cells into the same

narrow range of the circuit row, while Multi tends to

spreads out the design. However, once Quad finds the right.
5% of the design in which to pack the cells, it does a poor

job of ordering the cells within that space (which also

explains its poor performance for dense designs). Mean-,
while, ACG succeeds at finding the same 5% region of the
chip to place the cells as Quad but does a much better job at

ordering them within that region. In that sense, ACG

behaves like Quad during partitioning when free space is

abundant, but like Multi when free space is in short supply.

4.2 Placement on Complete Designs

Our second experiment seeks to compare Multi and ACG
on a set of seven real industry designs. We do not compare

to an analytical method because (i) different legalization
schemes behave very differently for 2-dimensional

instances, and (ii) our purpose is to see how ACG enhances
cut-based placement, not to attempt to demonstrate superi-

ority over purely analytic placement methods.
We implemented both ACG and Multi within the CPlace

[13] placement tool. CPlace has been used in the design and
production of hundreds of ASIC parts and several micropro- ¢
cessors. For experiment, we ran the following flow on each

test case:

« CPlace with multilevel partitioning with (labeled ACG)
and without (labeled Multi) the ACG algorithm

« The PDS [6] physical synthesis tool which attempts to
improve timing via buffer insertion, gate sizing, pin
swapping, local logic changes, etc.

e The HDP global router which is typically used for con-
gestion estimation by industry designers
Cplace was run usinga@ensity targebf 70%, which pro-

hibits the CPlace partitioner from packing any local region

with more than 70% of the celfsThe density target serves

to force cells to be spread out enough to avoid locally con-

gested unroutable regions. The timing optimization is for

Neg. Pathsthe number of paths with negative slack;
Congestion Metrican average congestion of the worst
(most congested) 20% of nets. A value lower than 80
indicates the design is likely routable;

andCPU s the total placement runtime (only Cplace) on
an IBM RS/6000 260 machine with 2Gb of RAM.

We make the following observations:

ACG returns a better wire length before PDS than Multi,
for all but the two densest designs, ckt 2 and ckt7. Given
that these densities are close to the target density, we
would not expect ACG to perform particularly well in
these cases (as seen in our 1-dimensional experiments).

« After PDS, the timing characteristics for ACG are signif-
icantly better than Multi. The worst slack is better for
every case except ckt7, and the FOM for ACG, the
broadest measure design quality in terms of timing, is
better than for Multi for all test cases. Thus, total wire
length does not necessarily give a fair indication of the
quality of the design in terms of satisfying timing con-

straints.

» The wire congestion results for ACG are higher than for
Multi, but all the designs are below the 80 threshold of
routability
ACG uses about 28% more CPU time than Multi. Note
that both our implementations of ACG and Multi suc-
cessfully place fairly large designs in just a few hours.

Fig 9. and Fig 8. illustrate the placements of both Multi
and ACG on ckt4. One can see that ACG is able to reduce

the total wire length from 11.42 to 10.38 by packing the
cells more tightly together than Multi. The design can be

packed even further; if one uses a target density of 100%,

then Multi and ACG obtain wire lengths of 10.78 and 9.60,
respectively. Thus, an entirely different challenge becomes

trying to determine the appropriate target density so that the

design is still routable. We generally observe that higher tar-
get densities lead to smaller wire lengths and even larger
gaps between the performance of Multi and ACG. This

behavior is expected as the sparsity of the design effectively

reducing the worst slack value and the number of negative increases with the target density.
timing slack paths. Table 1 summarize the results. The 5. Conclusion

reported statistics are:

» Cells the number of moveable objects of design;

« Design densitythe ratio of placeable cell area to total
available space in the placement region;

* TWL, the total half-perimeter wire length in centimeters;

* Worst slackthe slack of the slowest path in the design in
nano seconds;

e FOM (Figure of Merit) a measure of the cumulative
slack of all negative slack cells in the design (It can also
be interpreted as the amount of work left for the

We have shown the amount of free space and the meth-
odology to distribute it has a significant impact on place-
ment. Cut-based approaches perform poorly compared to
analytical placement on sparse designs. To remedy this
shortcoming, we proposed ACG, a technique to generate
partitioning constraints for a cut-based placer. Experimental
results show that ACG significantly improves the perfor-
mance of an industrial multilevel cut-based placement tool,
especially in terms of timing. We believe that there are
ample opportunities to further improve existing placement

designer. The closer the value is to zero, the better thetechnology for the domain of sparse, chunky designs.

overall timing characteristics of the design are);

1 This constraint can be implemented by artificially inflating cells,

e.g., fora 70% target density, cells are inflated by a factor or 1.43.
Of course, one must take care not to overflow the design if the de-

sign density is greater than the target density.

References

[1] C. J. Alpert, “The ISPD98 Circuit Benchmark Suitdhtl. Sympo-
sium on Physical Desigt998, pp. 80-85.

[2] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov, and K.Yan, “Qua-
dratic Placement RevisitedEEE/ACM DAC 1997, pp. 752-757.

[3] C.J.Alpert, J.-H. Huang, and A. B. Kahng, “Multilevel Circuit Parti-

(4]

(5]

(6]

(7]

(8]
&l
(20]

Test Desi Before PDS After PDS c i
es esign . ongestion
Case | €S density Metho Twi | Worstl o | Worst) o |7 Negativg eqtimation CPU
Slack Slack Paths
Multi 68.88| -6.3Q 68.3f -3.02 -6009 61p2 70|52 5p05
cktl 207K 65% -
ACG 67.4 -6.7 67.28 -2.37 -4671 7440 77.04 gp22
Multi 13.42| -2.44 1359 -0.31 -1713 1416 73)85 1314
ckt2 71K 73% . |
ACG 13.81 -2.1 13.99 -0.24 -T1 glL1 76132 189
Multi | 136.54] -190.49 138.80 -3.25 -26870 25739 63.16 3118
ckt3 | 120K | 53% !
ACG | 133.33 -29.4p 133.68 -2.837 -7321 1387 70.43 4091
Multi 11.42| -2.84 116p -0.82 -106 253 73]74 30
ckt4 73K 31%
ACG 10.38 -2.6 10.e4 -0.57 -69 2p4 77|89 2|)96
Multi 92.87| -7.13 9240 -2.31 -9905 19519 63|36 3p80
ckt5 270K 45%
ACG 84.271 -5.390 8408 -1.93 -867 11489 69.10 dp08
Multi | 222.01] -5.1q 232.8b -0.16 2 8 69.87 11906
ckt6 426K 57%
ACG | 220.82 -5.2p 230.88 0.00 0 0 73|64 13§74
Multi | 214.21| -8.39 214.20 -2.23 -10169 15433 69.15 H#79
ckt7 276K 69% -]
ACG | 214.29 -8.5|3 224.28 -4.51 -6582 8184 73.49 4921

Table 1: Comparison of Multi to ACG for real industry circuits.

Fig 8. ACG placement of ckt4 with 70% target density.
tioning”, IEEE/ACM DAGC 1997, pp. 530-533.

A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can Recursive

Bisection Alone Produce Routable Placement&EE/ACM DAG

2000, pp. 477-482.

[11]

T. F. Chan, J. Cong, T. Kong, and J. R. Shinner, “Multilevel Optimiza- (12]
tion for Large-Scale Circuit PlacementfEEEE/ACM Intl. Conf. on
Computer-Aided Desigr2000, pp. 171-176.
W. Donath, P. Kuvda, L. Stok, P. Villarrubia, L. Reddy, A. Sullivan,

and K. Chakraborty, “Transformational Placement and Synthesis”, [14]
Design Automation & Test in Europ2000, pp., 194-201.
S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-removal (15
Using lterative Improvement Technique$EEE/ACM Intl. Conf on
Computer-Aided Desigri996, pp. 194-200 € . .)
H. Eisenmann and F. M. Johannes, “Generic Global Placement and [16] X. Yang, B.-K. Choi, and M. Sarrafzadeh, “Routability Driven White
Floorplanning”,IEEE/ACM DAG 1998, pp. 269-274.
S.-W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard
Cell Placement’|EEE/ACM ICCAD 2000, pp. 165-170.
G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
Hypergraph Partitioning: Application in VLSI DomainlEEE/ACM

[13]

]

Fig 9. Multi placement of ckt4 with 70% target density.

DAC, 1997, pp. 526-529.

J. Kleinhaus, G. Sigl, F. Johannes and K. Antreich, “GORDIAN:
VLSI Placement by Quadratic Programming and Slicing Optimiza-
tion”, IEEE Trans. on CADP10(3),1991, pp. 356-365.

R.-S. Tsay, E. S. Kuh, and C.-P. Hsu, “PROUD: A Fast Sea-of-Gates
Placement Algorithm”|EEE/ACM DAGC 1988, pp. 318-323.

P. Villarrubia, G. Nusbaum, R. Masleid, and P. T. Patel, “IBM RISC
Chip Design Methodology'lCCD, 1989, pp. 143-147.

J. Vygen, “Algorithms for Large-Scale Flat Placemer®tpc. 34th
|IEEE/ACM Design Automation Conferend®97, pp. 746-751.

M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: Standard-Cell
Placement Tool for Large Industry CircuitSEEE/ACM Intl. Conf on
Computer-Aided Desigr2001, pp. 260-263.

Space Allocation for Fixed-Die Standard-Cell Placemenhtiterna-

tional Symposium on Physical Desi@002, pp. 42-47.
[17] M. C. Yildiz and P. H. Madden, “Improved Cut Sequences for Parti-
tioning Based PlacementEEE/ACM DAGC 2001, pp. 776-779.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

