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Abstract
The paper describes the folding method of logic func-

tions to reduce the size of memories for keeping the func-
tions. The folding is based on the relation of fractions of
logic functions. We show that the fractions of the full adder
function have the bit-wise NOT relation and the bit-wise
OR relation, and that the memory size becomes half (8-bit).
We propose a new 3-1 LUT with the folding mechanisms
whcih can implement a full adder with one LUT. A fast
carry propagation line is introduced for a multi-bit addi-
tion. The folding and fast carry propagation mechanisms
are shown to be useful to implement other multi-bit opera-
tions and general 4 input functions without extra hardware
resources. The paper shows the reduction of the area con-
sumption when using our LUTs compared to the case using
4-1 LUTs on several benchmark circuits.

1 Introduction
Field Programmable Gate Arrays (FPGAs) are very use-

ful device to implement application specific circuits ([1],
[2]). Recent FPGAs are usually constructed from Look-Up
Tables (LUTs), which include memories to keep truth ta-
bles of logic functions and multiplexers to select the value
of memories ([3], [4], [5]). Such LUT is very useful, but
needs huge circuit resources and much delay time compared
to simple logic gates. So LUT-based FPGAs usually suffer
from the low area utilization and the low speed.

In the paper, we propose the folding method of logic
functions to reduce the memory size for storing logic func-
tions. The basic idea of the folding is to use the relation
of fractions of logic functions. If a representation (such as
a truth table) of a logic function includes 2 same parts, we
can omit one of them and the size can be reduced. We show
that a full adder (two functions with 3 inputs) can be rep-
resented with only 8 bit memories using the bit-wise NOT
relation and the bit-wise OR relation. The number of bits
is half compared to that of the usual 16 bit representation.
Note that the size is equal to the memory size of LUTs.

We devise a new 3-1 LUT architecture including the
NOT and OR folding mechanisms, which can implement a
full adder with only one 3-1 LUT. With the fast carry prop-
agation line, we can implement additions, AND/OR oper-
ations, the equality, and the arithmetic comparisons (<, ≤,
>,≥) on multiple-bit inputs.

The folding and the carry propagation mechanisms are

also useful to implement general 4 input functions. We
show that more than half of general 4 input functions can
be implemented with two 3-1 LUTs. We compare the area
consumption on the case using our 3-1 LUTs and that using
4-1 LUTs. By using our 3-1 LUTs, the area can be reduced
up to 56 % on several benchmark circuits.

2 Basic Architecture of Look Up Table
A 3-1 Look Up Table (LUT) has 3 input portsa, b, c,

and one output porty. The outputs of memories are con-
nected toy via a multiplexer, the control lines of which are
connected to the inputsa, b andc. The 8-1 multiplexer is
usually implemented with a pass-transistor circuit.

A 3-1 LUT can implement any 3 input logic function
f(a, b, c) by storing the logic function values off (0, 0, 0),
f(0, 0, 1), f(0, 1, 0), f(0, 1, 1), f(1, 0, 0), ..., f(1, 1, 1)
to the memories with this order. The sequence is usually
called as the vector representation off(a, b, c). Note that
if (a, b, c) = (0, 0, 0) thenf(0, 0, 0) is selected by the
multiplexer andy becomes the correct value.

An FPGA is a 2-dimensional array of such LUTs. FP-
GAs are used to implement logic functions, many of which
include adders and comparators as key elements. So com-
mercial FPGAs introduce mechanisms to implement such
functions: one is a clustering of two 3-1 LUTs to imple-
ment a full adder and another is the introduction of a fast
carry chain and a fast AND/OR cascade chain to pass spe-
cial signals between LUTs [6].

3 Folding of Logic Functions
In this section, we introduce the folding of logic func-

tions. To show the idea of the folding method, we consider
two logic functionsf(a, b, c) andg(a, b, c) whose vector
representations are 00011110 and 10001001.

The vector representation 00011110 off can be divided
into two parts 0001 and 1110 depending on the value ofa,
and we can see that there exists the bit-wise NOT relation
between these parts. That is

f(a, b, c) = a · f(0, b, c) + a · f(0, b, c)

where ‘ ’, ‘ ·’ and ‘+’ denote logical NOT, AND and OR,
respectively.

Because of the relation, we have only to keepf(0, b,
c). f(1, b, c) is generated fromf(0, b, c) and an extra NOT
gate. The method is called as the folding with NOT.

Second, we considerg (= 1000 1001). 1000 and 1001
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Table 1: Truth Table of A Full Adder
cin a b s cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1

1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

of g have no simple relation such as the bit-wise NOT, but
we can find the bit-wise OR relation by considering 0001
of f . That is the OR of 1000 and 0001 becomes 1001:

g(a, b, c) = a · g(0, b, c) + a · {g(0, b, c) + f(0, b, c)}
The method is called as the folding with OR. Note that the
OR-folding uses the relation of two logic functions.

We can consider the folding methods with AND, EXOR,
etc. The estimation of the usefulness and the area consump-
tion of such foldingd is one of our future works.

We can apply these folding methods to the representa-
tion of a full adder in Table 1. A full-adder has 3 inputs
cin, a, b, and 2 outputss andcout, wherecin (cout) denotes
the carry input (output), ands denotes the sum. Usually we
need 16 bit memories to represent boths andcout.

The vector representations ofs andcout are 0110 1001
and 0001 0111, respectively. Ons, there exists the bit-wise
NOT relation between 0110 and 1001. Oncout, we can
find the bit-wise OR relation between 0001 and 0111 by
considering 0110 ofs. With the extra NOT and OR gates,
we can represents andcout with only 8 bit memories.

4 LUT Compaction Based on Folding
In this section, we show a new LUT architecture with

NOT and OR folding mechanisms described in the former
section. The folding mechanism can reduce the memory
size for representing a full adder to 8 bits.

The proposed new LUT architecture is shown in Fig. 1.
The LUT is constructed from 8 bit memories, an 8-1 multi-
plexer, two 2-1 multiplexers for the carry propagation (cin),
one mode bit and control gates. Dotted circles in the figure
show the extra hardware compared to a simple 3-1 LUT.

If the mode bit is 0, then the LUT works as a usual 3-1
LUT depending on inputsa, b andc. Note thatcin should
be 0 for the correct operation andcout becomes 0 ifcin is 0.

If the mode bit is 1, then the LUT works in an arithmetic
mode, and we can usecout andy depending onb, c andcin.
y implements the NOT-folding mechanism, where the lower
4 bit memories themselves or the bit-wise NOT of them are
selected bycin. On the other hand,cout implements the
OR-folding, where the upper 4 bit memories or the OR of
the upper and lower memories are selected bycin.

For implementing multi-bit adders, the proposed LUTs
are connected in series from lower to upper, where thecin
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Figure 1: A 3-1 Look Up Table with NOT and OR Folding

Table 2: Truth Tables of Equality and Comparisons
cin a b = <,≤ >,≥
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0

1 0 0 1 1 1
1 0 1 0 1 0
1 1 0 0 0 1
1 1 1 1 1 1

of the upper LUT is connected tocout of the lower LUT.
Note that we place the multiplexers withcin at the output
side, that is because the fast carry propagation is important.

Each LUT can implement a full-adder with only one
3-1 LUT (including 8 bit memories) and that is just the
half compared to the usual 4-1 LUT (when used as two 3-1
LUTs). k bit adder can be implemented usingk 3-1 LUTs.

5 Mapping Capability of 3-1 LUTs with
Foldings and Carry Propagation

5.1 Mapping of Equality, Comparison, AND/OR
The carry propagation mechanism with the OR folding

can be applied to mapping several circuits, such as equality,
arithmetic comparisons, and multi-bit AND and OR.

The relation of two binary numbers can be reduced to
the relation of each bit with a signal passing through these
bits. When mapping to our LUTs, the result of the operation
on each bit withcin is passed tocout.

Truth tables of the equality and the comparisons are
shown in Table 2.cin is passed from the least significant
bit to the greatest significant bit, and ifcin is 0, then the re-
lation is violated at some preceding position. For example,
at = function, if cin is 0 then two inputs are not equal at
some preceding position and we should pass 0 to the upper
side. So truth table becomes 0000 whencin is 0.

The reason why we can map these function to our 3-1
LUT is that the OR of upper 4 bits and lower 4 bits becomes
lower 4 bits. That is iff(1, a, b) = f(0, a, b) + f(1, a, b)
then we can mapf to the carry mechanism with OR folding.
It is easy to see that 0000 and 1001 of= satisfy the relation.
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Figure 2: A Basic Structure to Implement 4 Input Functions

< (≤) and> (≥) also satisfy the relation. Equality and
comparisons ofk bit numbers can be decided withk LUTs.

As an example, we show a mapping method of=.
• At the least significant bit, the LUT is used in the

arithmetic mode. In general, we cannot fix the value
of cin to the LUT, and we set 1001 0000 to the LUT
for ignoring the effect ofcin.

• At the intermediate bit, we set 0000 1001 to the LUT.
• At the greatest significant bit, LUT is used in the nor-

mal mode to pass the result toy. We set 0 to the
input a, and we set 0000 0110 to the LUT. Note that
y becomes 1001 by the NOT folding whencin = 1.

We can map the multi-bit AND (OR) function with al-
most the same manner. The vector representation of AND
of each 2 bits is 0000 0001 depending oncin. Since 0001 =
0000 + 0001 is satisfied, we can use the carry propagation
mechanism ofcout. The multi-bit OR function can be repre-
sented as 0111 1111, and has the same property. Thusk bit
AND (OR) function can be implemented withk/2 LUTs.

5.2 Mapping Capability of 4 Input Functions
In the section, we show a mapping method of 4 input

logic functions with the carry propagation mechanism. If
we can map a 4 input function to two 3-1 LUTs, then the
resource usage is almost the same as a 4-1 LUT.

It is easy to see that any 4 input function can be mapped
to three 3-1 LUTs with outer wireing resources. It can be
shown that any 4 input function can be mapped to three 3-1
LUTs with only carry line by extending the method below.

A basic structure for implementing 4 input logic func-
tions is the one in Fig. 2, where the upper LUT is used in
the normal mode, and the lower LUT is used in the arith-
metic mode. In general, we cannot fixcin of the lower LUT,
so we use the lower LUT for implementing only two input
functions by setting 0000 to the lower 4 bit memories.

Since the output of the upper LUT depends oncin, the
function is represented as follows, wherew is the carry gen-
erated by the lower LUT, andy is the final output.

w = g(p, q)

y = w · h(r, s, t) + w · h(1, s, t)

Table 3: Constraints on Mapping 4 Input Logic Functions

g(0, 0) = 0 g(0, 1) = 0 g(1, 0) = 0 g(1, 1) = 0
f(0, 0, c, d)
= h(0, c, d)

f(0, 1, c, d)
= h(1, c, d)

f(1, 0, c, d)
= h(0, c, d)

f(1, 1, c, d)
= h(1, c, d)

g(0, 0) = 1 g(0, 1) = 1 g(1, 0) = 1 g(1, 1) = 1
f(0, 0, c, d)
= h(1, c, d)

f(0, 1, c, d)
= h(1, c, d)

f(1, 0, c, d)
= h(1, c, d)

f(1, 1, c, d)
= h(1, c, d)

f(a, b, c, d), g(a, b) andh(b, c, d) are assumed.

If a 4 input functionf can be represented usingg andh,
thenf can be mapped to two 3-1 LUTs.

The number of inputs ofg andh is 5{p, q, r, s, t}, and
we can duplicate one of{a, b, c, d}. At first, we consider a
case whereb is duplicated under an ordera, b, c, d: checked
paris are<g(a, b), h(b, c, d)> and<g(a, b), h(c, b, d)>.

For each variable order, we should check the relation of
f andh depending on the value ofg. If g(0, 0) is 0,f (0, 0,c,
d) = h(0, c, d). If g(0, 0) is 1,f (0, 0,c, d) = h(1, c, d). The
relations are shown in Table 3. We can check the mapping
capability by testing the 16 (= 24) cases ofg(a, b) for a
variable ordera, b, c, d. By checking all 24 (= 4!) variable
orders, we can cover all cases.

We have implemented the checking algorithm in C and
checked all 4 input logic functions. The algorithm does
the exhaustive search, and needs 166.9 seconds to check all
65536 functions on a PC with 733 MHz Pentium-III-M with
384 MB of memory. 31848 functions can be implemented
with two 3-1 LUTs. On NPN (input Negation, input Permu-
tation, output Negation) equivalent classes of 4 input logic
functions, we can map 109 classes in 222 classes.

5.3 Evaluation on Benchmark Circuits
We have applied the mapping algorithm of 4 input func-

tions to benchmark circuits. We use circuits designed in
our laboratories such as a 16 bit combinational multiplier, a
speech recognition circuit for monosyllables, a circuit to de-
tect face area using the color information, a circuit to track
an eye movement, a Java processor, and a 16 bit pipeline
processor (pcpu). We also use fir, iir, cordic and DFT cir-
cuits in a textbook of FPGA[2].

Circuits are compiled for Altera APEX FPGA EP20K
series using Quartus II version 1.1, with area optimization
option and with speed optimization option. The compiled
circuits are represented as a set of 4 input functions (4-1
LUTs). We apply the mapping algorithm to these functions,
and sum-up the number of 3-1 LUTs.

To evaluate the area of mapped circuits, the areas of our
3-1 LUT and a usual 4-1 LUT are needed. So we have de-
signed and implemented our 3-1 and usual 4-1 LUTs using
VDEC EXD libraries. From the layout results, we can see
that the area of our 3-1 LUT is about 0.56 times smaller than
that of 4-1 LUT. The ratio is used to normalize the number
of our 3-1 LUTs when comparing with that of 4-1 LUTs.

We have found that the memory area for storing logic



Table 4: Mapping Capability Results on Benchmark Circuits

Name Num. of 4-1 LUTs Num. of 3-1 LUTs Normalized Num. Area Ratio
all (4-in) all (2x3-1) of 3-1 LUTs

A B C = 0.56×B C/A

Mult16x16 381 ( 127) 508 (127) 284 0.747
SpchRecogarea 13527 (7151) 21595 (7073) 12093 0.894
SpchRecogspeed 17151 (7891) 25238 (7769) 14133 0.824
face recognitionarea 11368 (5463) 17043 (5413) 9544 0.840
face recognitionspeed 15374 (6022) 21627 (5871) 12111 0.788
imousetop area 11184 (3004) 14644 (2835) 8200 0.733
imousetop speed 12276 (3748) 16352 (3478) 9157 0.746
javachiparea 7708 (5836) 13877 (5809) 7771 1.008
javachipspeed 11145 (7342) 18579 (7311) 10404 0.934
pcpuarea 1213 ( 773) 2096 (758) 1173 0.968
pcpuspeed 1593 ( 956) 2552 (955) 1429 0.897
cordic area† 751 ( 100) 851 (100) 476 0.635
cordic speed† 893 ( 182) 1075 (182) 602 0.674
fir gen† 732 ( 248) 1292 (32) 723 0.988
iir par† 670 ( 0) 670 (0) 375 0.560
DFT area† 312 ( 40) 354 (40) 198 0.635
DFT speed† 299 ( 41) 340 (41) 190 0.637

†: The circuit is in [2]. (4-in): LUTs implementing 4 input functions.
(2x3-1): The number of 4-1 LUTs in (4-in) which can be mapped to two 3-1 LUTs.

functions is the major part of LUTs. The number of bits of
our 3-1 LUT is 9 and that of the 4-1 LUT is 17. Both LUTs
include one extra bit for the mode selection.

The experimental results are shown in Table 4. The ta-
ble shows the number of 4-1 LUTs, the number of real 4 in-
put functions, the number of our 3-1 LUTs computed using
the mapping algorithm, the number of functions mapped to
two 3-1 LUTs, the number of 3-1 LUTs normalized with
0.56, and the ratio of 4-1 LUTs and normalized 3-1 LUTs.

We can see that the area ratio is varying from 0.56 to
1.008. Only one design (javachiparea) needs much area by
using our 3-1 LUTs, and other designs gain better result on
the area consumption. IIR filter gains the best result 0.56
since they include only 3 input functions such as adders.
Processors include complex random controls with 4 input
functions, but the mapping results are not so bad.

6 Conclusions
We have proposed the folding method of logic functions

to reduce the memory size for storing logic functions. In the
folding, the relation of fractions of logic functions is used
and some part is generated from another part using extra
logic gates. By the NOT and OR foldings, a full adder can
be represented with only 8 bit memories.

We have shown a new LUT architecture with the NOT
and OR folding mechanisms and the carry propagation mech-
anism, and a mapping method ofk bit adders, equality,
comparisons andk bit AND/OR to the new 3-1 LUTs.

We have also shown a mapping algorithm of a 4 input
logic function to two 3-1 LUTs, and found that 35192 in

65536 functions can be mapped to two 3-1 LUTs.
We have implemented our 3-1 LUT with usual cell based

design, and found that the area of our 3-1 LUT is 0.56 times
smaller than that of the usual 4-1 LUT. The area consump-
tion of our 3-1 LUTs are measured from the normalized
number of LUTs with 0.56 on several benchmarks, and we
have obtained the reduced area for almost all benchmarks.
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