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Abstract also useful to implement general 4 input functions. We

The paper describes the folding method of logic func—ShOW that more than half of general 4 input functions can

tions to reduce the size of memories for keeping the fund€ Implemented with two 3-1 LUTs. We compare the area

tions. The folding is based on the relation of fractions offONSUMPtion on the case using our 3-1 LUTs and that using

logic functions. We show that the fractions of the full addef*1 LUTs. By using our 3-1 LUTS, the area can be reduced

function have the bit-wise NOT relation and the bit-wiseUP t0 56 % on several benchmark circuits.

OR relation, and that the memory size bec_omes half (8-bit)2 Basic Architecture of Look Up Table

We propose a new 3-1 LUT with the folding mechanisms

whcih can implement a full adder with one LUT. A fast A 3-1 Look Up Table (LUT) has 3 input poris b, c,
carry propagation line is introduced for a multi-bit addi-and one output porg. The outputs of memories are con-
tion. The folding and fast carry propagation mechanism8gected tay via a multiplexer, the control lines of which are
are shown to be useful to implement other multi-bit operaconnected to the inputs b andc. The 8-1 multiplexer is
tions and general 4 input functions without extra hardwar&sually implemented with a pass-transistor circuit.
resources. The paper shows the reduction of the area con- A 3-1 LUT can implement any 3 input logic function
sumption when using our LUTs compared to the case using(@. b: ¢) by storing the logic function values ¢{0, 0, 0),

4-1 LUTSs on several benchmark circuits. f(0,0,9, f(0,1,0, f(0,1, 9, f(1,0,0, ..., f(1, 1, )
) to the memories with this order. The sequence is usually
1 Introduction called as the vector representationfat, b, ¢). Note that

Field Programmable Gate Arrays (FPGAs) are very usdt. (@ b ¢) = (0, 0, 0 then f(0, 0, 0 is selected by the
ful device to implement application specific circuits ([1], MUltiPlexer andy becomes the correct value.
[2]). Recent FPGAs are usually constructed from Look-Up_ AN FPGA is a 2-dimensional array of such LUTs. FP-

Tables (LUTSs), which include memories to keep truth ta—_GAS are used to implement logic functions, many of which

bles of logic functions and multiplexers to select the valudclude adders and comparators as key elements. So com-

of memories ([3], [4], [5]). Such LUT is very useful, but mercial FPGAs introduce mechanisms to implement such

needs huge circuit resources and much delay time compar{fictions: one is a clustering of two 3-1 LUTS to imple-
ment a full adder and another is the introduction of a fast

to simple logic gates. So LUT-based FPGAs usually suffe _ )
from the low area utilization and the low speed. carry chain and a fast AND/OR cascade chain to pass spe-

In the paper, we propose the folding method of logiccia! Signals between LUTSs [6].
functions to red_uc_e the memory s'ize for storing logic fur_103 Folding of Logic Functions
tions. The basic idea of the folding is to use the relation
of fractions of logic functions. If a representation (such as [N this section, we introduce the folding of logic func-
a truth table) of a logic function includes 2 same parts, wdons. To show the idea of the folding method, we consider
can omit one of them and the size can be reduced. We shdWo logic functionsf(a, b, ¢) andg(a, b, c) whose vector
that a full adder (two functions with 3 inputs) can be repJepresentations are 00011110 and 10001001.
resented with only 8 bit memories using the bit-wise NOT ~ The vector representation 0001111(fafan be divided
relation and the bit-wise OR relation. The number of bitdnto two parts 0001 and 1110 depending on the valug, of
is half compared to that of the usual 16 bit representatiornd we can see that there exists the bit-wise NOT relation
Note that the size is equal to the memory size of LUTs. between these parts. That is

We devise a new 3-1 LUT architecture including the f(a,b,c)=a- f(0,b,¢) +a- f(0,b,c)
NOT and OR folding mechanisms, _Whlch can implement Where ~. *~ and + denote logical NOT, AND and OR,
full adder with only one 3-1 LUT. With the fast carry prop- respectively.
agation line, we can implement additions, AND/OR oper-
ations, the equality, and the arithmetic comparisens<(,
>, >) on multiple-bit inputs.

The folding and the carry propagation mechanisms ar

Because of the relation, we have only to kegp, b,

¢). f(1,b, ¢) is generated fronf (0, b, c) and an extra NOT

ate. The method is called as the folding with NOT.
Second, we consider (= 1000 1001). 1000 and 1001
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of g have no simple relation such as the bit-wise NOT, but _ ) )
we can find the bit-wise OR relation by considering 00017'9ure 1: A 3-1 Look Up Table with NOT and OR Folding

of £. Thatis the OR of 1000 and 0001 becomes 1001 Table 2: Truth Tables of Equality and Comparisons

g(a,b,¢) =a - g(0,b,¢) +a- {g(0,b,¢) + f(0,b,¢)} (e [P =[<<][>=]
The method is called as the folding with OR. Note that the 0 |0]0} O 0 0
OR-folding uses the relation of two logic functions. 0 joj1jo0 1 0
We can consider the folding methods with AND, EXOR, 0 |1/0jJ0] O 1
etc. The estimation of the usefulness and the area consump- 0 j1/1]0 0 0
tion of such foldingd is one of our future works. 1 ]0j01] 1 1
We can apply these folding methods to the representa- 1/0]1)0 1 0
. . . 1 |1]0}0 0 1
tion of a full adder in Table 1. A full-adder has 3 inputs T 111 1 1

Cin, a, b, and 2 outputs andc,,;, wherec;, (c..:) denotes
the carry input (output), angddenotes the sum. Usually we

need 16 bit memories to represent betndc,,:. of the upper LUT is connected g, of the lower LUT.

The vector representations oaindc,,; are 0110 1001 I\!ote that .we place the multiplexers witf, aF th? qutput
and 0001 0111, respectively. Gnthere exists the bit-wise side, that is because the fast carry propagation is important.

NOT relation between 0110 and 1001. ©f,;, we can Each L_UT cgn implgment a full-adder With_ oply one
find the bit-wise OR relation between 0001 and 0111 by} LUT (including 8 bit memories) and that is just the

considering 0110 of. With the extra NOT and OR gates, alf compa_lred to the usua} 4-1LUT (when_ used as two 3-1
we can representandc,,; with only 8 bit memories. LUTS). k bit adder can be implemented usih@-1 LUTSs.

4 LUT Compaction Based on Folding > Mapping Capability of 3-1 LUTSs with

In this section, we show a new LUT architecture with FOIdIngS and Carry Propagatlon

NOT and OR folding mechanisms described in the formeb.1 Mapping of Equality, Comparison, AND/OR

section. The folding mechanism can reduce the memory The carry propagation mechanism with the OR folding
size for representing a full adder to 8 bits. can be applied to mapping several circuits, such as equality,

The proposed new LUT architecture is shown in Fig. 1grithmetic comparisons, and multi-bit AND and OR.

The LUT is constructed from 8 bit memories, an 8-1 multi-  The relation of two binary numbers can be reduced to
plexer, two 2-1 multiplexers for the carry propagation),  the relation of each bit with a signal passing through these
one mode bit and control gates. Dotted circles in the figurgits. When mapping to our LUTSs, the result of the operation
show the extra hardware compared to a simple 3-1 LUT. gn each bit Withe;,, is passed t@,y;.

If the mode bit is O, then the LUT works as ausual 3-1  Tryth tables of the equality and the comparisons are
LUT depending on inputs, b andc. Note thatc;, should  shown in Table 2.¢;, is passed from the least significant
be O for the correct operation angl,; becomes O it;, is 0. pijt to the greatest significant bit, andcif, is 0, then the re-

Ifthe mode bit s 1, then the LUT works in an arithmetic ation is violated at some preceding position. For example,
mode, and we can usg,; andy depending o, c andc;,.  at = function, if ¢;,, is O then two inputs are not equal at

y implements the NOT-folding mechanism, where the lowegome preceding position and we should pass 0 to the upper
4 bit memories themselves or the bit-wise NOT of them argjde. So truth table becomes 0000 wignis O.

selected bye;,. On the other hand;,., implements the The reason why we can map these function to our 3-1
OR:-folding, where the upper 4 bit memories or the OR 0L UT is that the OR of upper 4 bits and lower 4 bits becomes
the upper and lower memories are selected;py lower 4 bits. That is iff (1, a, b) = f(0,a, b) + f(1,a, b)

For implementing multi-bit adders, the proposed LUTsthen we can may to the carry mechanism with OR folding.
are connected in series from lower to upper, wherecthe |t is easy to see that 0000 and 100t-o§atisfy the relation.
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E—J‘L Table 3: Constraints on Mapping 4 Input Logic Functions
- MUX r
e | ]+ 9(0,0)=0 [9(0,1)=0 [¢(1,0)=0 [¢(1,1)=0
—_|mode =t L f(0,0,¢,d) | f(0,1,¢,d) | f(1,0,¢,d) | f(1,1,¢,d)
carry e — 10, e d) | = h(l,e,d) | = h(0,¢,d) | = A1, ¢, d)
"R
k| e 21 g(0,0)=1 [g(0,1)=1 [g(1,0)=1 [g(1,1)=1
—|Mode ot W h7H | f(0,0,¢,d) | f(0,1,¢,d) | f(1,0,¢,d) | f(1,1,¢,d)
T Q_§— v =h(1l,¢,d) | =h(1,¢,d) | =h(1,¢,d) | =h(1,¢,d)
95|
o L— f(a,b,¢,d), g(a,b) andh(b, ¢, d) are assumed.
0 {MUX
E—H If a 4 input functionf can be represented usiggandh,
Ll g then f can be mapped to two 3-1 LUTSs.

. _ _ The number of inputs of andh is 5{p, ¢, r, s, t}, and
Figure 2: A Basic Structure to Implement 4 Input Functionsye can duplicate one dfa, b, ¢, d}. At first, we consider a
case wheré is duplicated under an orderb, ¢, d: checked
paris are<g(a, b), h(b, ¢, d)> and<g(a, b), h(c, b, d)>.

For each variable order, we should check the relation of

< (<) and> (>) also satisfy the relation. Equality and
comparisons ok bit numbers can be decided with_UTs.

As an example, we show a mapping methoe-of f andh depending on the value of If ¢(0, 0) is 0,f(0, 0,c,

T e ot e e =0, 150,05 110,000 (L .. The
of ¢, to the LUT, and we set 1001 0000 to the LUT relations are shown in Table 3. We can check the mapping

ilit testing the 16 2* f fi
for ignoring the effect of;, capability by testing the 16 2*) cases ofy(a, b) for a

: : | )
e Atthe intermediate bit, we set 0000 1001 to the LUT.Varlable orden, b, c, d. By checking all 24.€ 4!) variable

Atth test sianificant bit. LUT | dinth orders, we can cover all cases.
* € greatest signicant bit IS usedinne Nor-yye have implemented the checking algorithm in C and
mal mode to pass the result to We set 0 to the

. checked all 4 input logic functions. The algorithm does
mEUta' and 1";’)%15? Otcr)looN(ng (f) tlg.the LEJ T I\_Ioie thatthe exhaustive search, and needs 166.9 seconds to check all
ybecomes ythe oldiNg WheR = % 65536 functions on a PC with 733 MHz Pentium-111-M with

We can map the multi-bit AND (OR) function with al- 384 MB of memory. 31848 functions can be implemented
most the same manner. The vector representation of AN{Jith two 3-1 LUTs. On NPN (input Negation, input Permu-
of each 2 bits is 0000 0001 depending@n Since 0001 = tation, output Negation) equivalent classes of 4 input logic

0000 + 0001 is satisfied, we can use the carry propagatiqnnctions’ we can map 109 classes in 222 classes.
mechanism of,,;. The multi-bit OR function can be repre-

sented as 0111 1111, and has the same property.kThitis
AND (OR) function can be implemented witfy2 LUTSs.

5.2 Mapping Capability of 4 Input Functions

5.3 Evaluation on Benchmark Circuits

We have applied the mapping algorithm of 4 input func-
tions to benchmark circuits. We use circuits designed in
our laboratories such as a 16 bit combinational multiplier, a

In the section, we show a mapping method of 4 inpukpeech recognition circuit for monosyllables, a circuit to de-
logic functions with the carry propagation mechanism. liect face area using the color information, a circuit to track
we can map a 4 input function to two 3-1 LUTs, then thegn eye movement, a Java processor, and a 16 bit pipeline
resource usage is almost the same as a 4-1 LUT. processor (pcpu). We also use fir, iir, cordic and DFT cir-

It is easy to see that any 4 input function can be mappeg,its in a textbook of FPGA[2].
to three 3-1 LUTs with outer wireing resources. It can be  cjrcuits are compiled for Altera APEX FPGA EP20K
shown that any 4 input function can be mapped to three 3-deries using Quartus Il version 1.1, with area optimization
LUTs with only carry line by extending the method below. option and with speed optimization option. The compiled

A basic structure for implementing 4 input logic func- cjrcuits are represented as a set of 4 input functions (4-1
tions is the one in Fig. 2, where the upper LUT is used irLUTs). We apply the mapping algorithm to these functions,
the normal mode, and the lower LUT is used in the arithyng sum-up the number of 3-1 LUTSs.
metic mode. In general, we cannot éix, of the lower LUT, To evaluate the area of mapped circuits, the areas of our
so we use the lower LUT for implementing only two input3.1 | UT and a usual 4-1 LUT are needed. So we have de-
functions by setting 0000 to the lower 4 bit memories. signed and implemented our 3-1 and usual 4-1 LUTSs using

Since the output of the upper LUT dependscon the  \yDEC EXD libraries. From the layout results, we can see
function is represented as follows, wherés the carry gen- - that the area of our 3-1 LUT is about 0.56 times smaller than
erated by the lower LUT, anglis the final output. that of 4-1 LUT. The ratio is used to normalize the number
9(p, q) of our 3-1 LUTs when comparing with that of 4-1 LUTSs.
W-h(r, s, t) +w-h(l,s,t) We have found that the memory area for storing logic

w =

y =



Table 4: Mapping Capability Results on Benchmark Circuits

Name Num. of 4-1 LUTs| Num. of 3-1 LUTs | Normalized Num.| Area Ratio
all (4-in) all (2x3-1) of 3-1 LUTs
A B C=056xB C/A

Mult16x16 381 (127) 508 (227) 284 0.747
SpchRecogrea 13527 (7151) 21595 (7073) 12093 0.894
SpchRecogpeed 17151 (7891) 25238 (7769) 14133 0.824
facerecognitionarea 11368 (5463) 17043 (5413) 9544 0.840
facerecognitionspeed 15374 (6022) 21627 (5871) 12111 0.788
imousetop_area 11184 (3004) 14644  (2835) 8200 0.733
imousetop_speed 12276 (3748) 16352 (3478) 9157 0.746
javachiparea 7708 (5836) 13877 (5809) 7771 1.008
javachipspeed 11145 (7342) 18579 (7311) 10404 0.934
pcpuarea 1213 (773) 2096 (758) 1173 0.968
pcpuspeed 1593 (956) 2552 (955) 1429 0.897
cordicareat 751 (100) 851 (100) 476 0.635
cordic speedy 893 (182 1075 (182) 602 0.674
fir_gent 732 (248) 1292 (32) 723 0.988
iir_part 670 (0) 670 0) 375 0.560
DFT_areat 312 (40) 354 (40) 198 0.635
DFT_speedf 299 (41) 340 (42) 190 0.637
1: The circuitis in [2]. (4-in): LUTs implementing 4 input functions.

(2x3-1): The number of 4-1 LUTSs in (4-in) which can be mapped to two 3-1 LUTs.

functions is the major part of LUTs. The number of bits 0f65536 functions can be mapped to two 3-1 LUTSs.

our 3-1 LUT is 9 and that of the 4-1 LUT is 17. Both LUTs We have implemented our 3-1 LUT with usual cell based

include one extra bit for the mode selection. design, and found that the area of our 3-1 LUT is 0.56 times
The experimental results are shown in Table 4. The tasmaller than that of the usual 4-1 LUT. The area consump-

ble shows the number of 4-1 LUTs, the number of real 4 intion of our 3-1 LUTs are measured from the normalized

put functions, the number of our 3-1 LUTs computed usingiumber of LUTs with 0.56 on several benchmarks, and we

the mapping algorithm, the number of functions mapped tbave obtained the reduced area for almost all benchmarks.
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