

WTA – Waveform-Based Timing Analysis for Deep Submicron Circuits

Larry McMurchie and Carl Sechen
Department of Electrical Engineering

University of Washington
Seattle, WA

larry@ee.washington.edu, sechen@ee.washington.edu

ABSTRACT
Existing static timing analyzers make several assumptions
about circuits, implicitly trading off accuracy for speed. In
this paper we examine the validity of these assumptions,
notably the slope approximation to waveforms, single-input
transitions, and the choice of a propagating signal based on
a single voltage-time point. We provide data on static
CMOS gates that show delays obtained in this way can be
optimistic by more than 30%. We propose a new approach,
Waveform-based Timing Analysis that employs a state-of-
the-art circuit simulator as the underlying delay modeler.
We show that such an approach can achieve more accurate
delays than slope-based timing analyzers at a computation
cost that still allows iterations between design modification
and delay analysis.

1. Introduction
Developed during the mid-1980’s, timing analyzers such as
Crystal[1] and TV[2] were written to quickly produce
estimates of critical path delays. Designers wanted such
quick feedback in order to shorten the cycle time of design
modification, delay measurement, design modification, etc.
Previously, designers relied on circuit-level simulation that
was too slow for several reasons. One was the problem of
determining input vectors that exercised the critical paths.
The other was the slowness of the circuit simulator itself.
Hence timing analyzers were developed, achieving a
speedup by using variants of the PERT algorithm to find
critical paths, as well as a simplified circuit model for delay
calculation.
Because such static timing analyzers use a simplified delay
model and make approximations about the functioning of a
circuit, the designer of a high-performance ASIC usually
doesn’t completely trust the results. Normally the designer
will take some number of the most critical paths (ranging
from 100’s to 1000’s) found by the timing analyzer and
simulate them with a circuit simulator to determine more
accurate delay estimations [7]. Often a path that that was
not near the top of the list of critical paths becomes the
most critical after circuit simulation.

The nature of full-custom design has also changed since the
first static timing analyzers were written. With the ever-
continuing pressure to increase clock frequency, the amount
of computation that is performed during a single clock cycle
has been reduced. Commensurately, the number of logic
levels between latches has been reduced. Designs are also
more highly structured than in the 1980’s. Timing analyzer
development during the mid-1980’s was largely directed
towards finding critical paths through large numbers of
channel-connected devices. Today, the timing requirements
of designs effectively prevent the use of such circuits. The
emphasis, instead, is to construct highly-optimized netlists
of fast gates.
The continuing adoption of dynamic circuit techniques is an
additional change occurring during the last decade. Some
timing analyzers (e.g. Pathmill from Synopsys) have been
modified to accommodate domino circuits. There has been
work to address other types of dynamic circuit techniques,
e.g. self-resetting domino [5]. Such work has typically only
dealt with setup/hold times and not employed circuit or
device-level descriptions of the operation of the circuit.
Typically, designers exhaustively simulate small pieces of
the design and employ verification tools to ensure that
setup/hold times are met when the small pieces are
assembled.
Traditional approaches to static timing analysis have
employed several delay model approximations:
The slope approximation. Worst-case falling and rising
waveforms are approximated as a slope. Delay is calculated
at a single time-voltage point, usually when the waveform
crosses 50% of VDD. Such an approximation neglects
changes in slope at the beginning and at the end of the real
waveform calculated by a circuit simulator. Crystal [1] and
TV [2] employed this method and it is still used by
commercial tools such as Pathmill from Synopsys.
Single versus multiple-input transitions. Typically, static
timing analyzers propagate the latest arriving input – the
LPA (Latest Propagation Algorithm). This approximation
neglects the effects of other inputs on the same channel-
connected path.

0-7803-7607-2/02/$17.00 ©2002 IEEE

There have been several efforts to describe waveforms in
more detail. One of the earliest efforts was the ELogic
technique – a relaxation-based, multi-level, multi-strength
approach to modeling circuits [3]. Although better at
describing waveforms than the slope model, ELogic was
not extended to multiple-input transitions.
Waveform approximation was addressed in [4], as well as
the multiple-input transition issue. Using a circuit
simulation technique similar to SPICE and a dynamic path
selection technique, the worst-case rising/falling waveforms
for each gate are determined. At each step in a simulation
the least conductive path is selected based upon the currents
through devices during the previous timestep. This process
leads to a worst-case waveform that is at least as pessimistic
as the waveform for any single path. Not handled were the
effects of complimentary driving paths and side paths.
In [8] the effect of slope upon path delay was analyzed as
well as multiple-input transitions. An algorithm was
developed using a piecewise linear waveform that is shown
to obtain path delays within 1% of Hspice. Although effects
of multiple-input transitions are analyzed, they were not
included in the algorithm.
A data dependent delay model for determining bounds on
multiple-input transitions was developed in [9]. In
combination with a modified topological sort, this model
obtains delays that are more accurate than those obtained
with the single-input transition model, but similar in
computational effort. The slope approximation to
waveforms is not addressed in this work.
In [6] the effects of using a single time-voltage point
(usually VDD/2) to determine a worst-case rising/falling
signal was examined. Significant improvements in
accuracy were found by propagating multiple slope-
approximated waveforms.
Our new approach to static timing analysis, called
Waveform-based Timing Analysis (WTA), addresses the
drawbacks (inaccuracies) of current static timing analyzers
and has the following properties:
• It is based upon an accurate device-level model that

analyzes real waveforms, not slope-based
approximations to waveforms.

• It provides an upper bound to delay (within the
accuracy of the underlying device-level model).

• It uses a device-level model that is the same as the
model used for circuit-level simulation of a design.

• It provides an acceptable design modification, timing
analysis, design modification, etc., cycle.

• WTA can accommodate dynamic circuit design styles,
which involve different constraints than static CMOS
circuits, although this is beyond the scope of this paper.

In the following section we describe the delay model
employed by WTA. Section 3 describes WTA’s breadth-

first method of waveform propagation through circuits.
Section 4 describes results on a set of ISCAS benchmarks,
and Section 5 gives our conclusions.

i0 i1

i0

i1

i2

i3

i3 i2

o u t

a b

m

n 0

n 1

n 2

n 3

p 0 p 1

p 3 p 2

Figure 1. Labeling of AOI22

2. Delay Modeling
Conventional static timing analyzers model the worst-case
delay of a gate by considering only single-input transitions.
Consider the AOI22 gate shown in Figure 1. Without loss
of generality, we focus our attention on modeling the delay
for a falling output with respect to a single-input transition
on input i1. Figure 2 shows the worst-case configuration
imposed by this single-input transition on i1. i1 is therefore
the controlling input for the path to the output through n0
and n1. (The arrows indicate the flow of positive charge.)
The discharging path in the pulldown network is through n0
and n1, where input i0 is set to VDD. A charge-sharing path
exists between node b and out through n2. In the pullup
network, the partially conducting path through p1 and p3
resists the discharge of out at the beginning of the gate’s
transition.

V D D

G N D V D D

V D D V D D

G N D

p 0 p 1

p 3 p 2

n 0

n 1

n 2

n 3

Figure 2. Single-input transition on i1

Figure 3. Worst-case configurations for multiple-input transitions.

Multiple-input transitions can lead to considerably longer
output transition times. Figure 3a shows a delay model for
multiple-input transitions on controlling inputs i0 and i1.
Relative to the single-input transition on i1, the current
drawing capability of this path is reduced due to the fact
that i0 is only partly turned on. The degree to which the

delay is increased depends upon the shape and offset of the
waveforms for i0 and i1. Just as with the single-input
transition, there is a charge sharing path between node b
and out through n2. In the pullup network a partially
conducting path through both p0 and p1 resists the
discharge of out at the beginning of the gate’s transition.
Relative to a single-input transition on i1, the ability of the
pullup network to resist the discharge of out is increased,
thereby increasing the delay.
Although one might expect that Figure 3a is the worst-case
scenario, Figure 3b shows another possibility. Here, i2 is
set to GND, eliminating the charge-sharing path through n2,
but allowing the pullup network to better resist the
discharge of the output by turning on an additional path to
out through p2. Depending upon the waveform of i2 and its
arrival time relative to i0 and i1, either Figure 3a or Figure
3b or some combination of both will yield the worst-case
delay. Since resistance to discharge dominates near the
beginning of the transition and charge sharing dominates
towards the end of the transition, a steeply rising waveform
for i2 that is near the middle of the gate’s transition will
tend to give the latest overall waveform for out. In order to
obtain a worst-case bound on the waveform for the output
of the gate, we adopt the scenario shown in Figure 3c,
where n2’s gate is set to VDD and p2’s gate is set to GND.
This incorporates the worst-case features of both Figures 3a
and 3b. In other words, consistency of gate input values
(e.g. n2/p2 in this case) is relaxed to independently
maximize the amount of charge that must be discharged to
the output node from the pull-up and pull-down networks.

A general method for constructing a set of possible worst-
case configurations for any static gate requires first
enumerating all paths to GND for the falling output case, or
all paths to VDD for the rising output case. In the case of a
falling output, WTA constructs a worst-case configuration
for each path to GND as shown in Figure 4. (Worst-case
rising configurations are obtained analogously.) For falling
outputs, the gates of all controlling devices on a path are set
to their worst-case waveforms obtained either from a gate
or a primary input. All other (non-controlling) paths are
blocked by setting the gate of the lowest nMOS device in
those paths to GND. Additionally, the gates of all other

GND V D D

V D D

GND

p0 p1

p2p3

n0

n1

n2

n3

(a)

GND

GND

GND

GND

p0 p1

p2p3

n0

n1

n2

n3

(b)

GND

GND

GND

VDD

p0 p1

p2p3

n0

n1

n2

n3

 (c)

For each nMOS device
If (controlling) set device gate to

worst-case rising waveform
Else if (device source node == GND)

set device gate to GND
Else set device gate to VDD

End for
For each pMOS device

If (controlling) set device gate
to worst-case rising waveform

Else set device gate to GND
End for

Figure 4. WTA Algorithm for constructing a worst-case
falling configuration with multiple inputs transitioning.

devices are set so as to maximize the total capacitance that
must be discharged.
Table 1 shows the delays obtained for chains of two static
CMOS gates (one rising and the other falling) using the
Pathmill slope model, the single-input and multiple-input
transition models (using Hspice) and the WTA model. For
the simple circuits used in the table, the single-input
transition results are equivalent to an Hspice simulation of
the device-level path outputted by Pathmill.
The gates were specified in a 0.18-micron (featuring a
drawn channel length of 0.20 microns), 1.8V TSMC CMOS
process. In this process the fanout-of-four delay for an
inverter is 87 ps. The values in the table are for a chain of
two gates, one rising and the other falling. Both gates in the
chain have a fanout of 4 identical gates. Additional gates
provide the input stimulus for the first gate and load on the
second gate. In order to see the effect of multiple-input
transitions, the waveforms for each input to a given gate are
identical. Both inputs to a falling NAND2, for example,
were constructed from the same rising NAND2. Pathmill
results were obtained using technology files computed from
typical-typical BSIM3 parameters for the process. The
Hspice and WTA-Hspice results were obtained using the
same typical-typical BSIM3 parameters
Table 1 shows that the slope model of Pathmill is typically
optimistic relative to the single-input transition model.
Using Hspice the single-input transition results average 8%
greater than the Pathmill computed results. This result must
necessarily be due to the slope approximation to the
waveform for the single controlling input. The Hspice
multiple-input transition results show significantly larger
delays, averaging 22% over the Pathmill results. The
results obtained using the WTA method in combination
with the Hspice simulator are shown to be very close to the
multiple-input Hspice results. Thus the WTA delay model

described in this section provides a realistic and not overly-
pessimistic delay.

Figure 5. Example of ambiguous worst case waveforms

3. Propagation of Waveforms
Traditional timing analyzers determine the latest arriving
input by measuring the delay at a single time-voltage point,
usually the crossing of VDD/2. This may be an incorrect
assumption in many cases. An example is shown in Fig. 5,
where a waveform with a short rise/fall time is chosen
because it crosses VDD/2 slightly after a waveform with a
long rise/fall time. In this ambiguous case, the choice of the
worst-case configuration and waveform depends upon what
happens in subsequent gate levels. Blaauw, et al. looked at
this issue in [6] using the slope approximation and allowed
propagation of multiple events if ambiguity existed between
the slopes resulting from two different paths in a gate. In
the remainder of this section a similar approach to
propagation will be described, the primary difference being
that a waveform will be propagated instead of a slope.

Table 1. Delays for chains of static gates using various delay models (%Diff are relative to Pathmill).

Hspice
Single-Input Transition Multiple-Input Transition

WTA-Hspice Gate Pathmill
Delay(ns) Delay(ns) %Diff Delay(ns) %Diff Delay(ns) %Diff

INV 0.166 0.174 4.8 0.174 4.8 0.173 4.2
NOR2 0.273 0.301 10.3 0.320 17.2 0.318 16.5
NOR3 0.401 0.474 18.2 0.501 25.9 0.494 23.2

NAND2 0.224 0.225 0.4 0.258 15.2 0.259 15.6
NAND3 0.281 0.282 0.4 0.331 17.8 0.336 19.6
AOI22 0.400 0.427 6.8 0.503 25.8 0.505 26.3

AOI222 0.614 0.717 16.8 0.840 36.8 0.848 38.1
AOI33 0.554 0.592 6.9 0.727 31.2 0.722 30.3

Average 8.1 21.9 21.7

tim e

Voltage

WTA employs a breadth-first search similar to that used in
[2] and [4]. Given a levelized circuit, all the gates in a level
are evaluated for worst case rising and falling output
waveforms. These waveforms are then used to evaluate
worst case behavior in subsequent levels.
Figure 6 shows an example of the determination of worst
case rising waveforms of a NAND2. A NAND2 has two
potential worst case rising configurations corresponding to
falling waveforms on different inputs. During the analysis
of the previous level, instances producing worst case falling
waveforms WCFI (and worst case rising waveforms WCRI)
for each of these inputs were determined. A simulation of
both rising configurations of the NAND2 is performed and
an analysis of the resulting output waveforms yields a worst
case rising waveform for the NAND2.
Details of the simulation are as follows. For each gate in
levels less than the current level, only the WCRI and WCFI
are instantiated and simulated. The load for each gate is
represented by the actual fanout gates in the netlist, each of
which is configured to transition. The load for each of
these fanout gates is additionally modeled as a single
capacitor. This approach insures that the kickback effect of
a transitioning fanout gate upon the gate of interest is taken
into account. The waveform thus obtained for the gate of
interest is stored as a voltage-controlled voltage source and
used as an input waveform for subsequent gates.
Figure 7 shows the complete algorithm used by WTA to
construct and propagate worst case waveforms from one
level to another. For each gate in the current level, all
instances contained in FI and RI are simulated in the same
way as are instances in lower levels. Once simulation has

For each level from 1 to Num_levels
For each gate in level
Initialize list of falling gate instances
FI to NULL
For each falling config in FC
Add to FI all instances formed from
WCRI for each controlling input in config

End For
Initialize list of rising gate instances
RI to NULL
For each rising config in RC
Add to RI all instances formed from
WCFI for each controlling input in config

End For
End for
Simulate all gate instances in WCRI and WCFI
at levels less then current level and all gate
instances in FI and RI for current level
For each gate in level
Initialize WCFI to (dominant) instance in FI
with latest waveform transition at VDD/2
For each instance in FI
If (instance output waveform is later
than dominant waveform at some voltage)
add instance to WCFI

End For
Initialize WCRI to (dominant) instance in RI

with latest waveform transition at VDD/2
For each instance in RI
If (instance output waveform is later
than dominant waveform at SOME voltage)
add instance to WCRI

End For
End For

End For

Figure 7. Algorithm for propagation of waveforms

V D D

V D D

R is i n g C o n f i g u r a t i o n s R C

S i m u l a t e R i s i n g In s t a n c e s (R I)

l e v e l i - 1 l e v e l i l e v e l i + 1

F r o m A n a ly s i s o f le v e l i - 1

W C F I

W C R I

W C R I

W C F I

X

Y

Z

W C F I

V D D

W C F I

V D D

W C F I

V D D

W C R I

A n a l y s i s f o r W o r s t C a s e Y i e l d s

Figure 6. Example of worst case rising output analysis for a NAND2.

completed, the waveforms for the FI and RI are analyzed to
determine what subset must be included in WCRI and
WCFI for that gate. Several methods of determining this
subset are possible. Our method is to first include the
leading waveform at VDD/2 (the one having the latest
crossing), then add any other instances which cross the
waveform of this dominant instance at other voltages. In
our experience the effects of ambiguous worst case
waveforms, where two or more instances need to be
included in the WCFI or WCRI, are resolved in one and at
most two subsequent levels and do not result in an
explosion of instances in WCFI and WCRI.
The computational effort required by WTA is dependent
upon the number of gates and the number of paths from
output to ground (falling delay) and output to VDD (rising
delay) for each gate. Each rising/falling path in a gate
requires the construction and simulation of a single worst-
case gate instance (unless there is ambiguity in the choice of
worst case input waveforms) For most standard cell
libraries, the complexity of cells is limited as is the list of
possible paths. The 25-cell library known as lib2 has for
example a maximum of 9 paths for any rising or falling cell
output.

4. Experiments
Results of performing WTA calculations upon a set of
ISCAS benchmarks are shown in Table 2. All benchmarks
were synthesized and mapped using Synopsys. The target
static CMOS library contained 25 cells. The cells are the
same as in the lib2 library from SIS. They are 2-4 input
NAND and NOR gates, XOR, XNOR, eight AOIs and eight
OAIs, and an inverter. Gates were implemented in the
TSMC 0.18-micron process described earlier.
Table 2 shows results for WTA using Hspice and Hsim as
the underlying simulation engines in combination with
typical-typical BSIM3 parameters for the TSMC process.
Hsim is a circuit simulator from Nassda Corp. with controls
that allow tradeoffs between running times and accuracy.

The results in Table 2 were obtained with the default
settings for these controls. As is apparent from the 4
circuits for which WTA-Hspice results were obtained, there
is little sacrifice in accuracy from the use of Hsim as the
underlying circuit simulator. Running times for WTA-
Hsim were about a factor of 100 less than for WTA-Hspice.
The WTA-Hsim delays are as much as 18% above the
Pathmill delays, with the average being 10%. These
differences are less than what was observed for the chains
of gates where the inputs for each gate were set up to arrive
at exactly the same time. In these random logic circuits
there is considerable variation in arrival times, resulting in
fewer cases where simultaneous input changes have as large
an effect as with the chains of gates.
Perhaps the most surprising observation is that the
difference between the Pathmill and WTA-Hsim delays
varies considerably – from less than 1% to more than 18%.
Clearly, the idea of allowing a fixed percentage of total
delay (as determined by a conventional timing analyzer
such as Pathmill) as a margin does not make sense. Circuits
vary considerably in the accuracy of the slope model for
critical path calculations.

Table 3. ISCAS benchmark characteristics and running times on a
Sun Blade 1000.

Table 3 shows the number of gates and levels for each of
the benchmarks, as well as the CPU seconds required for
Pathmill and WTA-Hsim. WTA-Hsim is approximately
100 times slower than Pathmill, averaging 0.53 sec/gate on
a Sun Blade 1000. Clearly, WTA-Hsim is more compute-
intensive than Pathmill, however the computation times are
still within reason for a design modification – analysis
cycle. It is noteworthy that the WTA method is highly
parallelizable since the evaluation of each gate
configuration on a given level can be performed
independently. Analysis of worst-case waveforms is
minimal compared to the simulation times. This suggests
considerable speedups are possible on parallel processors
where circuit instances on the same level may be simulated
on different processors.

Circuit

#Gate

Gate
Levels

Pathmill
(sec)

WTA-
hsim (sec)

x3 583 13 3 123
k2 1117 16 5 486
i8 1117 11 5 181
rot 697 15 3 223
des 3236 18 16 1510
dalu 599 12 3 159
C5315 1439 31 7 876
C7552 1887 34 10 2176
too_large 268 11 2 62

Circuit Pathmill WTA- Hsim WTA- Hspice

x3 0.738 0.794 (7.6%) 0.804 (8.9%)
k2 1.121 1.234 (10.0%)
i8 0.953 0.955 (0.1%) 0.966 (1.3%)
rot 0.998 1.069 (7.1%) 1.080 (8,2%)
des 1.182 1.402 (18.6%)
dalu 0.976 1.071 (9.7%)
C5315 2.051 2.393 (16.7%)
C7552 2.035 2.372 (16.6%)
too large 0.741 0.816 (10.1%) 0.830 (12.0%)
Average (10.7%)
Table 2. Delay comparisons on ISCAS benchmarks (ns)

(%’s are relative to Pathmill)

5. Conclusions
Existing static timing analyzers make several assumptions
about circuits, implicitly trading off accuracy for speed. In
this paper we examined the validity of these assumptions,
notably the slope approximation to waveforms, single-input
transitions, and the choice of a propagating signal based on
a single voltage-time point. We provide data on static
CMOS gates that show delays obtained using these
approximations can be optimistic by more than 30%. Some
of this error results from the slope approximation, the
remainder accounted for by assuming single-input
transitions.
We propose a new approach, Waveform-based Timing
Analysis (WTA), that employs a state-of-the-art circuit
simulator as the underlying delay modeler. Using WTA,
multiple-input transitions are handled in a realistic fashion,
taking into account actual waveforms. When multiple
controlling paths produce waveforms that are ambiguous as
to worst case delay, all such waveforms are propagated
forwards. We show that such an approach can achieve more
accurate delay bounds than slope-based timing analyzers at
a computation cost that still allows iterations between
design modification and delay analysis.

6. Acknowledgements
We are grateful for the financial support provided by the
National Science Foundation (NSF), the Semiconductor
Research Corporation, MARCO, the NSF Center for the
Design of Digital and Analog IC’s (CDADIC),
Boeing/DARPA, and the Intel Corporation. We also wish to
thank Miodrag Vujkovic for providing the synthesized
benchmarks, as well as the Pathmill technology files.
Nassda Corp. is also acknowledged for the use of Hsim
during the course of this research.

7. References
[1] J. Ousterhout, “A Switch-Level Timing Verifier for
Digital MOS VLSI,” IEEE Trans. On Computer-Aided
Design, Vol. CAD-4, No. 3, July 1985, pp. 336-349.
[2] N. Jouppi, “Timing Analysis and Performance
Improvement of MOS VLSI Designs,” IEEE Trans. On
Computer Aided Design, Vol. CAD-6, No. 4, July 1987, pp.
650-665.
[3] S. Hwang, Y. Kim and A. Newton, “An Accurate Delay
Modeling Technique for Switch-level Timing Verification,”
Proc. of the 23rd Design Automation Conference, June
1986, pp. 227-233.
[4] M. Dagenais, S. Gaiotti and N. Rumin, “Transistor-
Level Estimation of Worst-Case Delays in MOS VLSI
Circuits,” IEEE Trans. On Computer-Aided Design, Vol
11, No. 3, March 1992, pp. 384-395.

[5] V. Narayanan, B. Chappell, and B. Fleischer, “Static
Timing Analysis for Self-Resetting Circuits,” 1996
IEEE/ACM Intl. Conf. On Computer-Aided Design, 1996
pp. 119-126.
[6] D. Blaauw, V. Zolotov, S. Sundareswaran, C. Oh, and
R. Panda, “Slope Propagation in Static Timing Analysis,”
2000 IEEE/ACM Intl. Conf. On Computer-Aided Design,
2000 pp. 338-343.
[7] M. Desai and Y. Yen, “A Systematic Technique for
Verifying Critical Path Delays in a 300 MHz Alpha CPU
Design Using Circuit Simulation,” Proc. of the 33rd Design
Automation Conference, 1996.
[8] A. Kayssi, K. Sakallah, and T. Mudge, “The Impact of
Signal Transition Time on Path Delay Computation,”
IEEE Trans. on Circuits and Systems –II: Analog and
Digital Signal Processing, Vol. 40, No. 5, May 1993, pp.
302-309.
[9] S. Sun, D. Du and H Chen, “Efficient Timing Analysis
for CMOS Circuits Considering Data Dependent Delays,”
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 17, No. 6, June 1998, pp. 546-
552.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

