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ABSTRACT 
Existing static timing analyzers make several assumptions 
about circuits, implicitly trading off accuracy for speed. In 
this paper we examine the validity of these assumptions, 
notably the slope approximation to waveforms, single-input 
transitions, and the choice of a propagating signal based on 
a single voltage-time point. We provide data on static 
CMOS gates that show delays obtained in this way can be 
optimistic by more than 30%. We propose a new approach, 
Waveform-based Timing Analysis that employs a state-of-
the-art circuit simulator as the underlying delay modeler. 
We show that such an approach can achieve more accurate 
delays than slope-based timing analyzers at a computation 
cost that still allows iterations between design modification 
and delay analysis. 

 

1. Introduction 
Developed during the mid-1980’s, timing analyzers such as 
Crystal[1] and TV[2] were written to quickly produce 
estimates of critical path delays. Designers wanted such 
quick feedback in order to shorten the cycle time of design 
modification, delay measurement, design modification, etc. 
Previously, designers relied on circuit-level simulation that 
was too slow for several reasons. One was the problem of 
determining input vectors that exercised the critical paths. 
The other was the slowness of the circuit simulator itself. 
Hence timing analyzers were developed, achieving a 
speedup by using variants of the PERT algorithm to find 
critical paths, as well as a simplified circuit model for delay 
calculation. 
Because such static timing analyzers use a simplified delay 
model and make approximations about the functioning of a 
circuit, the designer of a high-performance ASIC usually 
doesn’t completely trust the results. Normally the designer 
will take some number of the most critical paths (ranging 
from 100’s to 1000’s) found by the timing analyzer and 
simulate them with a circuit simulator to determine more 
accurate delay estimations [7]. Often a path that that was 
not near the top of the list of critical paths becomes the 
most critical after circuit simulation. 

The nature of full-custom design has also changed since the 
first static timing analyzers were written. With the ever-
continuing pressure to increase clock frequency, the amount 
of computation that is performed during a single clock cycle 
has been reduced. Commensurately, the number of logic 
levels between latches has been reduced. Designs are also 
more highly structured than in the 1980’s. Timing analyzer 
development during the mid-1980’s was largely directed 
towards finding critical paths through large numbers of 
channel-connected devices. Today, the timing requirements 
of designs effectively prevent the use of such circuits. The 
emphasis, instead, is to construct highly-optimized netlists 
of fast gates.  
The continuing adoption of dynamic circuit techniques is an 
additional change occurring during the last decade. Some 
timing analyzers (e.g. Pathmill from Synopsys) have been 
modified to accommodate domino circuits. There has been 
work to address other types of dynamic circuit techniques, 
e.g. self-resetting domino [5]. Such work has typically only 
dealt with setup/hold times and not employed circuit or 
device-level descriptions of the operation of the circuit. 
Typically, designers exhaustively simulate small pieces of 
the design and employ verification tools to ensure that 
setup/hold times are met when the small pieces are 
assembled.  
Traditional approaches to static timing analysis have 
employed several delay model approximations: 
The slope approximation. Worst-case falling and rising 
waveforms are approximated as a slope. Delay is calculated 
at a single time-voltage point, usually when the waveform 
crosses 50% of VDD. Such an approximation neglects 
changes in slope at the beginning and at the end of the real 
waveform calculated by a circuit simulator. Crystal [1] and 
TV [2] employed this method and it is still used by 
commercial tools such as Pathmill from Synopsys.   
Single versus multiple-input transitions. Typically, static 
timing analyzers propagate the latest arriving input – the 
LPA (Latest Propagation Algorithm). This approximation 
neglects the effects of other inputs on the same channel-
connected path. 
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There have been several efforts to describe waveforms in 
more detail. One of the earliest efforts was the ELogic 
technique – a relaxation-based, multi-level, multi-strength 
approach to modeling circuits [3].  Although better at 
describing waveforms than the slope model,  ELogic was 
not extended to multiple-input transitions. 
Waveform approximation was addressed in [4], as well as 
the multiple-input transition issue. Using a circuit 
simulation technique similar to SPICE and a dynamic path 
selection technique, the worst-case rising/falling waveforms 
for each gate are determined.  At each step in a simulation 
the least conductive path is selected based upon the currents 
through devices during the previous timestep.  This process 
leads to a worst-case waveform that is at least as pessimistic 
as the waveform for any single path.  Not handled were the 
effects of complimentary driving paths and side paths. 
In [8] the effect of slope upon path delay was analyzed as 
well as multiple-input transitions.  An algorithm was 
developed using a piecewise linear waveform that is shown 
to obtain path delays within 1% of Hspice. Although effects 
of multiple-input transitions are analyzed, they were not 
included in the algorithm. 
A data dependent delay model for determining bounds on 
multiple-input transitions was developed in [9].  In 
combination with a modified topological sort, this model 
obtains delays that are more accurate than those obtained 
with the single-input transition model, but similar in 
computational effort.  The slope approximation to 
waveforms is not addressed in this work. 
In [6] the effects of using a single time-voltage point 
(usually VDD/2) to determine a worst-case rising/falling 
signal was examined.  Significant improvements in 
accuracy were found by propagating multiple slope-
approximated waveforms.   
Our new approach to static timing analysis, called 
Waveform-based Timing Analysis (WTA), addresses the 
drawbacks (inaccuracies) of current static timing analyzers 
and has the following properties: 
• It is based upon an accurate device-level model that 

analyzes real waveforms, not slope-based 
approximations to waveforms. 

• It provides an upper bound to delay (within the 
accuracy of the underlying device-level model). 

• It uses a device-level model that is the same as the 
model used for circuit-level simulation of a design. 

• It provides an acceptable design modification, timing 
analysis, design modification, etc., cycle. 

• WTA can accommodate dynamic circuit design styles, 
which involve different constraints than static CMOS 
circuits, although this is beyond the scope of this paper. 

 
In the following section we describe the delay model 
employed by WTA. Section 3 describes WTA’s breadth-

first method of waveform propagation through circuits. 
Section 4 describes results on a set of ISCAS benchmarks, 
and Section 5 gives our conclusions.  
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Figure 1. Labeling of AOI22 
 

 
2. Delay Modeling 
Conventional static timing analyzers model the worst-case 
delay of a gate by considering only single-input transitions. 
Consider the AOI22 gate shown in Figure 1. Without loss 
of generality, we focus our attention on modeling the delay 
for a falling output with respect to a single-input transition 
on input i1. Figure 2 shows the worst-case configuration 
imposed by this single-input transition on i1. i1 is therefore 
the controlling input for the path to the output through n0
and n1. (The arrows indicate the flow of positive charge.) 
The discharging path in the pulldown network is through n0 
and n1, where input i0 is set to VDD.  A charge-sharing path 
exists between node b and out through n2. In the pullup 
network, the partially conducting path through p1 and p3 
resists the discharge of out at the beginning of the gate’s 
transition.  
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Figure 2. Single-input transition on i1 



 
 

 

 

 
Figure 3. Worst-case configurations for multiple-input transitions. 
 

Multiple-input transitions can lead to considerably longer 
output transition times. Figure 3a shows a delay model for 
multiple-input transitions on controlling inputs i0 and i1. 
Relative to the single-input transition on i1, the current 
drawing capability of this path is reduced due to the fact 
that i0 is only partly turned on. The degree to which the 

delay is increased depends upon the shape and offset of the 
waveforms for i0 and i1. Just as with the single-input 
transition, there is a charge sharing path between node b 
and out through n2. In the pullup network a partially 
conducting path through both p0 and p1 resists the 
discharge of out at the beginning of the gate’s transition. 
Relative to a single-input transition on i1, the ability of the 
pullup network to resist the discharge of out is increased, 
thereby increasing the delay.  
Although one might expect that Figure 3a is the worst-case 
scenario, Figure 3b shows another possibility. Here, i2 is 
set to GND, eliminating the charge-sharing path through n2, 
but allowing the pullup network to better resist the 
discharge of the output by turning on an additional path to 
out through p2. Depending upon the waveform of i2 and its 
arrival time relative to i0 and i1, either Figure 3a or Figure 
3b or some combination of both will yield the worst-case 
delay. Since resistance to discharge dominates near the 
beginning of the transition and charge sharing dominates 
towards the end of the transition, a steeply rising waveform 
for i2 that is near the middle of the gate’s transition will 
tend to give the latest overall waveform for out.  In order to 
obtain a worst-case bound on the waveform for the output 
of the gate, we adopt the scenario shown in Figure 3c, 
where n2’s gate is set to VDD and p2’s gate is set to GND. 
This incorporates the worst-case features of both Figures 3a 
and 3b. In other words, consistency of gate input values 
(e.g. n2/p2 in this case) is relaxed to independently 
maximize the amount of charge that must be discharged to 
the output node from the  pull-up and pull-down networks.  

 
A general method for constructing a set of possible worst-
case configurations for any static gate requires first 
enumerating all paths to GND for the falling output case, or 
all paths to VDD for the rising output case.  In the case of a 
falling output, WTA constructs a worst-case configuration 
for each path to GND as shown in Figure 4. (Worst-case 
rising configurations are obtained analogously.) For falling 
outputs, the gates of all controlling devices on a path are set 
to their worst-case waveforms obtained either from a gate 
or a primary input. All other (non-controlling) paths are 
blocked by setting the gate of the lowest nMOS device in 
those paths to GND. Additionally, the gates of all other 
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                           (c) 

For each nMOS device
If (controlling) set device gate to

worst-case rising waveform
Else if (device source node == GND)

set device gate to GND
Else set device gate to VDD

End for
For each pMOS device

If (controlling) set device gate
to worst-case rising waveform

Else set device gate to GND
End for

Figure 4. WTA Algorithm for constructing a worst-case 
falling configuration with multiple inputs transitioning.



 
 

devices are set so as to maximize the total capacitance that 
must be discharged. 
Table 1 shows the delays obtained for chains of two static 
CMOS gates (one rising and the other falling) using the 
Pathmill slope model, the single-input and multiple-input 
transition models (using Hspice) and the WTA model. For 
the simple circuits used in the table, the single-input 
transition results are equivalent to an Hspice simulation of 
the device-level path outputted by Pathmill.  
The gates were specified in a 0.18-micron (featuring a 
drawn channel length of 0.20 microns), 1.8V TSMC CMOS 
process. In this process the fanout-of-four delay for an 
inverter is 87 ps. The values in the table are for a chain of 
two gates, one rising and the other falling. Both gates in the 
chain have a fanout of 4 identical gates. Additional gates 
provide the input stimulus for the first gate and load on the 
second gate.  In order to see the effect of multiple-input 
transitions, the waveforms for each input to a given gate are 
identical. Both inputs to a falling NAND2, for example, 
were constructed from the same rising NAND2. Pathmill 
results were obtained using technology files computed from 
typical-typical BSIM3 parameters for the process. The 
Hspice and WTA-Hspice results were obtained using the 
same typical-typical BSIM3 parameters  
Table 1 shows that the slope model of Pathmill is typically 
optimistic relative to the single-input transition model. 
Using Hspice the single-input transition results average 8% 
greater than the Pathmill computed results. This result must 
necessarily be due to the slope approximation to the 
waveform for the single controlling input. The Hspice 
multiple-input transition results show significantly larger 
delays, averaging 22% over the Pathmill results.  The 
results obtained using the WTA method in combination 
with the Hspice simulator are shown to be very close to the 
multiple-input Hspice results.  Thus the WTA delay model 

described in this section provides a realistic and not overly-
pessimistic delay. 

 

Figure 5. Example of ambiguous worst case waveforms 
 
 
3. Propagation of Waveforms 
Traditional timing analyzers determine the latest arriving 
input by measuring the delay at a single time-voltage point, 
usually the crossing of VDD/2. This may be an incorrect 
assumption in many cases. An example is shown in Fig. 5, 
where a waveform with a short rise/fall time is chosen 
because it crosses VDD/2 slightly after a waveform with a 
long rise/fall time. In this ambiguous case, the choice of the 
worst-case configuration and waveform depends upon what 
happens in subsequent gate levels.  Blaauw, et al. looked at 
this issue in [6] using the slope approximation and allowed 
propagation of multiple events if ambiguity existed between 
the slopes resulting from two different paths in a gate.   In 
the remainder of this section a similar approach to 
propagation will be described, the primary difference being 
that a waveform will be propagated instead of a slope. 

Table 1. Delays for chains of static gates using various delay models (%Diff are relative to Pathmill). 

Hspice
Single-Input Transition Multiple-Input Transition

WTA-Hspice Gate Pathmill 
Delay(ns) Delay(ns) %Diff Delay(ns) %Diff Delay(ns) %Diff

INV 0.166 0.174 4.8 0.174 4.8 0.173 4.2
NOR2 0.273 0.301 10.3 0.320 17.2 0.318 16.5 
NOR3 0.401 0.474 18.2 0.501 25.9 0.494 23.2 

NAND2 0.224 0.225 0.4 0.258 15.2 0.259 15.6 
NAND3 0.281 0.282 0.4 0.331 17.8 0.336 19.6 
AOI22 0.400 0.427 6.8 0.503 25.8 0.505 26.3 

AOI222 0.614 0.717 16.8 0.840 36.8 0.848 38.1 
AOI33 0.554 0.592 6.9 0.727 31.2 0.722 30.3 

Average   8.1  21.9  21.7 

tim e

Voltage



 
 

WTA employs a breadth-first search similar to that used in 
[2] and [4].  Given a levelized circuit, all the gates in a level 
are evaluated for worst case rising and falling output 
waveforms.  These waveforms are then used to evaluate 
worst case behavior in subsequent levels. 
Figure 6 shows an example of the determination of worst 
case rising waveforms of a NAND2.   A NAND2 has two 
potential worst case rising configurations corresponding to 
falling waveforms on different inputs.  During the analysis 
of the previous level, instances producing worst case falling 
waveforms WCFI (and worst case rising waveforms WCRI) 
for each of these inputs were determined.  A simulation of 
both rising configurations of the NAND2 is performed and 
an analysis of the resulting output waveforms yields a worst 
case rising waveform for the NAND2. 
Details of the simulation are as follows.  For each gate in 
levels less than the current level, only the WCRI and WCFI 
are instantiated and simulated.  The load for each gate is 
represented by the actual fanout gates in the netlist, each of 
which is configured to transition.  The load for each of 
these fanout gates is additionally modeled as a single 
capacitor.  This approach insures that the kickback effect of 
a transitioning fanout gate upon the gate of interest is taken 
into account.  The waveform thus obtained for the gate of 
interest is stored as a voltage-controlled voltage source and 
used as an input waveform for subsequent gates.    
Figure 7 shows the complete algorithm used by WTA to 
construct and propagate worst case waveforms from one 
level to another. For each gate in the current level, all 
instances contained in FI and RI are simulated in the same 
way as are instances in lower levels. Once simulation has 

For each level from 1 to Num_levels
For each gate in level
Initialize list of falling gate instances
FI to NULL
For each falling config in FC
Add to FI all instances formed from
WCRI for each controlling input in config

End For
Initialize list of rising gate instances
RI to NULL
For each rising config in RC
Add to RI all instances formed from
WCFI for each controlling input in config

End For
End for
Simulate all gate instances in WCRI and WCFI
at levels less then current level and all gate
instances in FI and RI for current level
For each gate in level
Initialize WCFI to (dominant) instance in FI
with latest waveform transition at VDD/2
For each instance in FI
If (instance output waveform is later
than dominant waveform at some voltage)
add instance to WCFI

End For
Initialize WCRI to (dominant) instance in RI

with latest waveform transition at VDD/2
For each instance in RI
If (instance output waveform is later
than dominant waveform at SOME voltage)
add instance to WCRI

End For
End For

End For

Figure 7. Algorithm for propagation of waveforms 
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Figure 6. Example of worst case rising output analysis for a NAND2. 



 
 

completed, the waveforms for the FI and RI are analyzed to 
determine what subset must be included in WCRI and 
WCFI for that gate.  Several methods of determining this 
subset are possible.  Our method is to first include the 
leading waveform at VDD/2 (the one having the latest 
crossing), then add any other  instances which cross the 
waveform of this dominant instance at other voltages.  In 
our experience the effects of ambiguous worst case 
waveforms, where two or more instances need to be 
included in the WCFI or WCRI, are resolved in one and at 
most two subsequent levels and do not result in an 
explosion of instances in WCFI and WCRI. 
The computational effort required by WTA is dependent 
upon the number of gates and the number of paths from 
output to ground (falling delay) and output to VDD (rising 
delay) for each gate.   Each rising/falling path in a gate 
requires the construction and simulation of a single worst-
case gate instance (unless there is ambiguity in the choice of 
worst case input waveforms) For most standard cell 
libraries, the complexity of cells is limited as is the list of 
possible paths.  The 25-cell library known as lib2 has for 
example a maximum of 9 paths for any rising or falling cell 
output. 
 

 
4. Experiments 
Results of performing WTA calculations upon a set of 
ISCAS benchmarks are shown in Table 2. All benchmarks 
were synthesized and mapped using Synopsys. The target 
static CMOS library contained 25 cells.  The cells are the 
same as in the lib2 library from SIS.  They are 2-4 input 
NAND and NOR gates, XOR, XNOR, eight AOIs and eight 
OAIs, and an inverter. Gates were implemented in the 
TSMC 0.18-micron process described earlier.  
Table 2 shows results for WTA using Hspice and Hsim as 
the underlying simulation engines in combination with 
typical-typical BSIM3 parameters for the TSMC process.  
Hsim is a circuit simulator from Nassda Corp. with controls 
that allow tradeoffs between running times and accuracy.   

The results in Table 2 were obtained with the default 
settings for these controls.  As is apparent from the 4 
circuits for which WTA-Hspice results were obtained, there 
is little sacrifice in accuracy from the use of Hsim as the 
underlying circuit simulator.  Running times for WTA-
Hsim were about a factor of 100 less than for WTA-Hspice. 
The WTA-Hsim delays are as much as 18% above the 
Pathmill delays, with the average being 10%. These 
differences are less than what was observed for the chains 
of gates where the inputs for each gate were set up to arrive 
at exactly the same time. In these random logic circuits 
there is considerable variation in arrival times, resulting in 
fewer cases where simultaneous input changes have as large 
an effect as with the chains of gates. 
Perhaps the most surprising observation is that the 
difference between the Pathmill and WTA-Hsim delays 
varies considerably – from less than 1% to more than 18%.  
Clearly, the idea of allowing a fixed percentage of total 
delay (as determined by a conventional timing analyzer 
such as Pathmill) as a margin does not make sense.  Circuits 
vary considerably in the accuracy of the slope model for 
critical path calculations.  

Table 3. ISCAS benchmark characteristics and running times on a 
Sun Blade 1000. 

 
Table 3 shows the number of gates and levels for each of 
the benchmarks, as well as the CPU seconds required for 
Pathmill and WTA-Hsim.  WTA-Hsim is approximately 
100 times slower than Pathmill, averaging 0.53 sec/gate on 
a Sun Blade 1000.  Clearly, WTA-Hsim is more compute-
intensive than Pathmill, however the computation times are 
still within reason for a design modification – analysis 
cycle. It is noteworthy that the WTA method is highly 
parallelizable since the evaluation of each gate 
configuration on a given level can be performed 
independently.  Analysis of worst-case waveforms is 
minimal compared to the simulation times. This suggests 
considerable speedups are possible on parallel processors 
where circuit instances on the same level may be simulated 
on different processors. 
 

 
Circuit 

 
#Gate

# Gate 
Levels 

Pathmill 
(sec) 

WTA-
hsim (sec) 

x3 583 13 3 123
k2 1117 16 5 486
i8 1117 11 5 181
rot 697 15 3 223
des 3236 18 16 1510
dalu 599 12 3 159
C5315 1439 31 7 876
C7552 1887 34 10 2176
too_large 268 11 2 62 

Circuit Pathmill WTA- Hsim WTA- Hspice 

x3 0.738 0.794  (7.6%) 0.804 (8.9%)
k2 1.121 1.234  (10.0%)  
i8 0.953 0.955  (0.1%) 0.966 (1.3%)
rot 0.998 1.069  (7.1%) 1.080 (8,2%)
des 1.182 1.402  (18.6%)  
dalu 0.976 1.071  (9.7%)  
C5315 2.051 2.393  (16.7%)  
C7552 2.035 2.372  (16.6%)  
too large 0.741 0.816  (10.1%) 0.830 (12.0%)
Average            (10.7%)  
Table 2. Delay comparisons on ISCAS benchmarks (ns) 

(%’s are relative to Pathmill) 



 
 

5. Conclusions 
Existing static timing analyzers make several assumptions 
about circuits, implicitly trading off accuracy for speed. In 
this paper we examined the validity of these assumptions, 
notably the slope approximation to waveforms, single-input 
transitions, and the choice of a propagating signal based on 
a single voltage-time point. We provide data on static 
CMOS gates that show delays obtained using these 
approximations can be optimistic by more than 30%. Some 
of this error results from the slope approximation, the 
remainder accounted for by assuming single-input 
transitions. 
We propose a new approach, Waveform-based Timing 
Analysis (WTA), that employs a state-of-the-art circuit 
simulator as the underlying delay modeler. Using WTA, 
multiple-input transitions are handled in a realistic fashion, 
taking into account actual waveforms.  When multiple 
controlling paths produce waveforms that are ambiguous as 
to worst case delay, all such waveforms are propagated 
forwards. We show that such an approach can achieve more 
accurate delay bounds than slope-based timing analyzers at 
a computation cost that still allows iterations between 
design modification and delay analysis. 
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