
An energy-conscious algorithm for memory port allocation

Preeti Ranjan Panda
Dept. of Computer Science and Engineering

Indian Institute of Technology, Delhi
Hauz Khas, New Delhi 110016, India

Lakshmikantam Chitturi
Teradyne, Inc.

880 Fox Lane, San Jose, CA 95131, U.S.A.

ABSTRACT
Multiport memories are extensively used in modern system designs
because of the performance advantages they offer. The increased
memory access throughput could lead to significantly faster sched-
ules in behavioral synthesis. However, they also have an associ-
ated area and energy penalty. We describe a technique for mapping
data accesses to multiport memories during behavioral synthesis
that results in significantly better energy characteristics than an un-
optimized multiport design. The technique consists of an initial
colouring of the array access nodes in the data flow graph based on
spatial locality, followed by attempts to consecutively access mem-
ory locations with the same colour on the same port. Our experi-
ments on several applications indicate a significant reduction in ad-
dress bus switching activity, leading to an overall energy reduction
over an unoptimized design, while still maintaining a performance
advantage over a single-port solution.

1. INTRODUCTION
Power-aware optimization techniques at the system level form

an essential feature of modern low-power embedded systems. Very
often, there exists an important trade-off between a performance-
optimized and a power-optimized design; the two respective opti-
mal design points are not always the same. A good example of this
behavior is observed in systems where the clock is slowed down
to decrease power dissipation. However, power and energy aware-
ness can also be explicitly built into the system-level synthesis al-
gorithms used to generate design implementations. In this paper
we study the impact of multiport memories and their associated
port allocation strategy on the performance and energy of synthe-
sized designs. Although multiport memories generally lead to bet-
ter performance, they typically incur a significant area and energy
overhead (up to 100% and 75% for area and power respectively for
the technology we studied). However, with an energy-conscious
memory port allocation algorithm, it is possible to minimize the
energy overhead while still retaining the performance advantage
over a single-port memory solution.

As demonstrated in works such as [1], design considerations
such as power and energy can be tightly integrated into the inner
loop of typical high-level synthesis tasks such as scheduling. A de-
sign optimization problem involving the performance and energy
coordinates can be phrased in one of two forms:

1. Optimize for performance – and while retaining this level
of performance, minimize the energy.

2. Optimize for energy – and while retaining this level of en-
ergy, maximize the performance

In this paper, we present algorithms for solving both forms of the
optimization problem.

The memory subsystem has long been recognized as a serious
bottleneck in terms of performance, area, and power dissipation in
embedded systems [2, 3]. Memories tend to be significant sources
of power dissipation because they are associated with long, high
capacitance wires, both inside the memory module (in the form of

long word-lines and bit-lines) as well as outside the module (in the
form of address and data buses). Consequently, many optimization
efforts at reducing memory power have targeted the transition count
on the memory address and data buses – specifically, address buses
since the pattern of addresses accessed is usually known in advance
[4, 5]. Approaches to address bus switching reduction include data
placement [4] and bus encoding [3].

Minimizing memory power is also closely related to performance
optimizations performed by compilers [6]. Standard optimizations
such as induction variable elimination, loop fusion, loop interchange,
etc., that result in fewer memory access also reduce memory power
as a direct consequence. Loop optimizations that improve cache
performance also reduce power since cache misses impact not only
performance, but also power. Since the actual cache configuration
can be customized in embedded systems, a number of research ef-
forts have addressed the problem of determining an application-
specific memory hierarchy that optimizes performance and power
[7, 8].

Multiport memories have been incorporated into traditional be-
havioral synthesis algorithms by treating the ports as independent
schedulable resources [9, 10]. These algorithms focus on perfor-
mance alone and do not study the energy implications. In [11],
power optimization on multiport memories is applied to a limited
set of applications where the data can be divided into tiles. In this
paper, we outline memory port assignment algorithms that can be
tightly integrated into the scheduling phase of behavioral synthesis.

2. ILLUSTRATIVE EXAMPLES
Consider the following simple section of code to be synthesized

into hardware:

int a[100];
...
for i = 0 to 99

a[i] = a[i] + n

wherea is to be stored in memory;n is a variable; memory reads
and writes require one clock cycle; addition and comparison require
one cycle. An example 3-cycle schedule (Schedule A) of the loop
body is shown in Figure 1(a). A single port memory is sufficient
for this implementation. A loop pipelining transformation shown
in Figure 1(b) can optimize the schedule to execute in only 2 cycles
(Schedule B) – here, the addition on the current item proceeds in
parallel with reading the next element, leading to a 33% shorter
schedule. However, a further improvement is possible if we use
a dual-port memory, as shown in Figure 1(c). Since there are 2
ports, the computation on the current data can proceed in parallel
with writing the previous element and reading the next element,
effectively requiring only one cycle, leading to a 66% performance
improvement in the steady state (Schedule C).

However, a study of the memory address bus switching activity
of the three schedules yields different results. In Schedule A, the
sequence of addresses on the memory address bus is:
0,0,1,1,2,2,3,3,4,4,...,99,99

0-7803-7607-2/02/$17.00 ©2002 IEEE

(a) (b) (c)

Rd a[i]

Wr a[i]

+

Mem +
n

1

2

3

Rd a[i+1]

Wr a[i]

+

Mem +
n

1

2

Rd a[i+1] +

Mem +

Wr a[i−1]
n

1

Figure 1: (a) Example Schedule – A (b) Pipelined Schedule – B
(c) Schedule using Multiport Memory – C

In Schedule B, the sequence of addresses is:
0,f1,0,2,1,3,2,4,3,5,4,...,98,97,99,98g,99 where braces denote ac-
cesses in the pipelined loop. This is a more expensive alternative in
terms of energy dissipation because the additional switching activ-
ity on the memory address bus amounts to almost 100%.

Finally, in Schedule C, the address sequences are:
Port 1: 0,1,2,3,...,99
Port 2: 0,1,2,3,...,99
Clearly, this leads to twice the number of address bits transition-
ing compared to Schedule A, since now the address buses of both
ports are switching, as opposed to only one. When synthesis for
low power/energy is an important design objective, the aggressively
performance-oriented optimizations may actually result in inferior
power characteristics. However, the unoptimized design from a
performance point of view is not always power-optimal. The fol-
lowing example illustrates this point.

for i = 0 to 99
a[i] = b[i] + n

The unoptimized, pipelined, and multiport/pipelined schedules
are shown in Figure 2. In this case, arraya is located at addresses
0...99 andb occupies 100...199. We have the sequence of addresses
as follows.
Schedule A: 100, 0, 101, 1, 102, 2,...,199,99
Schedule B: 100,f101, 0, 102, 1, 103, 2,...,199,98g,99
Schedule C: Port 1:f0,1,2,3,...,97g,98,99
Schedule C: Port 2: 100,101,f102,103,...,199g

(a) (b) (c)

Wr a[i]

+

Mem +
n

1

2

3

Rd b[i]

Wr a[i]

+

Mem +
n

1

2

Rd b[i+1]
+

Mem +

Wr a[i−1]
n

1 Rd b[i+1]

Figure 2: (a) Example Schedule – A (b) Pipelined Schedule – B
(c) Schedule using Multiport Memory – C

In this case, Schedule B results in 9 % more switching than
Schedule A, but Schedule C results in 57 % less switching than
Schedule A, possibly making Schedule C a viable candidate from
both the performance as well as energy points of view. The dual-
port memory configuration actually led to minimum address bus
switching because spatial locality could be exploited resulting in
sequential accesses. Moreover, addresses being sequential in Sched-
ule C means that we can use appropriate encoding techniques such
as Gray code, T0, etc. [3] to further reduce power dissipation both
on the memory interface and in the memory module itself.

The measured reduction in memory address bus switching does
not translate to an equivalent reduction in the total system energy.
In order to determine the actual energy dissipation figures for the
different designs represented by the three schedules of Figure 2(a),
(b), and (c), we synthesized them using the commercial synthe-

sis tool Synopsys SystemC Compiler and a0:18� IBM ASIC li-
brary of components. We used the Synopsys Design Power utility
to measure the power dissipation of the resulting circuit. In order to
understand the actual impact of address bus switching, we divided
the total system energy into the following components:

Interconnect Energy – energy dissipated due to switching of the
(relatively high capacitance) data and address buses, and other
nets in the design.

Memory Internal energy – energy dissipated inside the memory
module during the READ and WRITE accesses. This in-
cludes the dissipation at the address decoders, word-lines,
bit-lines, address latches, etc.

Datapath and FSM energy – energy dissipated in the cells of the
datapath and finite state machine generated from synthesiz-
ing the application.

The energy dissipated in each of the above components for the
three schedules of Figure 2, A, B, and C, is indicated in Figure 3.
The difference in the interconnect energy is mainly due to the vary-
ing switching activity on address buses reported earlier.

Single-port Pipelined Dual-port
0

100

200

300

E
ne

rg
y

(x
 .0

01
 u

J)

DP+FSM
Interconnect
Memory Internal
Total

Figure 3: Energy dissipation comparison

The internal memory energy of dual port memories is, in gen-
eral, larger than that of a single port memory because each memory
cell drives a larger capacitive load; the address decodes, latches,
and other circuitry are duplicated; etc. In the0:18� IBM ASIC li-
brary, the dual port memory had a 75% power dissipation overhead
compared to a single port memory of the same size.

The energy dissipated in the datapath and FSM cells is minimum
for case A, and is 21% and 31% more in cases B and C. This is
expected since the pipelining leads to slightly more complex con-
trol and address generation circuitry. The energy dissipated in the
Datapath and FSM cells is a relatively smaller fraction of the total
energy (about 6%). This is obvious in a small example with mini-
mal computation, but the trend of computation related energy begin
dwarfed by memory related energy is also observed in the wider
class of data-intensive applications, and is independently reported
in other studies too. The interconnect and internal memory are the
more significant contributors to the total system energy. This is
a very important observation and forms the motivation for our re-
search. Dual-port memories incur a higher internal memory energy,
but it may be possible to reduce, or even (in some circumstances
such as this example) completely negate the overhead by a more
efficient addressing mechanism. More importantly, if a dual-port
memory has already been chosen for a design due to performance
considerations, the techniques presented in the next section help
achieve an energy-efficient allocation of memory ports to data so
that superior energy characteristics can be obtained for the same or
similar performance levels.

3. ENERGY-AWARE SYNTHESIS
The memory energy-aware synthesis problem involves the gen-

eration of a schedule for a behavioral specification that reduces en-
ergy by minimizing switching activity on the memory address bus.
The primary optimization criteria may be performance or energy.
We address both cases, which require different solution approaches.

3.1 Colouring of Memory Access Nodes
The scheduling of memory accesses is preceded by acolour-

ing phase where we identify those accesses in a loop body that
have spatial locality and are likely to cause only a small number of
address bit transitions when accessed consecutively, e.g.,a[i] and
a[i+1]. Prediction of spatial locality is done by examining whether
the array indices differ by a small constant (constrained to be� 4).
Standard array index analysis techniques are used for this purpose.
An example of colouring memory accesses in a loop is shown in
Figure 4.a[i][j] anda[i][j + 1] are the same colour because they
are spatially close;a[i][j] anda[j][i] are coloured different.

b [i][j]

Colour X

Colour Y

Colour Z

c [i][j]

a [i][j+1]a [i][j]

Colour W a [j][i]

(a) (b)

a[i][j+1] + a[j][i];

for i = 0 to 99
for i = 0 to 99

c[i][j] = b[i][j] + a[i][j] +

Figure 4: (a) Example loop (b) Colouring

3.2 Scheduling Memory Accesses Primarily for
Performance

When the primary objective is performance, we employ energy-
optimization as a post-processing step that modifies the generated
schedule by assigning the ports to memory accesses in a energy-
efficient way without changing the schedule length. At every cycle
in the schedule, we attempt to assign each memory access to that
port whose previous access had the same colour. A simple exam-
ple with an initial schedule is shown in Figure 5(a). The memory
accesses are grouped into two colours black and white. The white
node is reassigned to port P2 because a white node was accessed in
the previous access to P2. In the third control step, the black node
is reassigned to P1 (Figure 5(b)). This results in a energy-optimal
schedule where successive memory accesses on each port have spa-
tial locality and hence results in the minimum number of address
bit transitions. The schedule length remains unchanged because the
swaps are alwayshorizontal, neververtical. We omit the detailed
algorithm due to lack of space.

P1 P2

1

2

3

(a)

P1 P2

1

2

3

(b)

Figure 5: (a) Initial schedule (b) After port reassignment

3.3 Scheduling for Low Energy
If the schedule length is allowed to be modified, i.e., perfor-

mance is allowed to be sacrificed at the expense of energy, then

more aggressive energy-optimized schedules are possible. Our strat-
egy in this case, is to perform the port assignment up front as a
pre-processingstep instead. We first assign the ports to memory
accesses using the colour information to ensure that each port is
assigned memory accesses of the same colour as far as possible, re-
sulting in spatial locality being preserved to the maximum extent.
Algorithm PREASSIGNPORTS outlines the strategy.

Algorithm PREASSIGNPORTS (G: DFG, n: #ports)
for all loop bodies L

Let colours 0..m-1 be used in this loop body
Sort the colours in decreasing order of their access frequency

in L into array c[0]..c[m-1]
for ports i = 0..n-2

Assign colour c[i] to port i
Assign remaining colours c[n-1]..c[m-1] to port n-1

(b)

P1 P2

1

2

3

(a)

Figure 6: (a) DFG (b) Port assignment and schedule

For each loop, we attempt to assign only one colour to each port
for all but one port, considering each colour in decreasing order
of its access frequency in the loop body. We assign the remain-
ing colours to the final port. This configuration is energy-efficient
because spatial locality is violated the minimum number of times.
The violation takes place when colours change on any port. By
assigning one colour to each of m-1 ports, we ensure that colours
never change for those ports. The assignment is illustrated in Fig-
ure 6. Since the black coloured memory access occurs more fre-
quently (twice), it is assigned to port P1; others are assigned to P2.
This ensures spatial locality (no colour change through all loop it-
erations) in P1, and the violations are restricted to P2 (3 per loop it-
eration). Note that if, instead, two colours each were to be assigned
to P1 and P2 respectively, then there would be at least 4 violations
per iteration. The assignment strategy may have a negative impact
on the schedule length. However, the strategy helps identify impor-
tant design points on the performance-energy trade-off curve. The
final selection decision can be made by the designer.

The port resources are now bound to the memory accesses and
scheduling can begin. List scheduling works by invoking apriority
functionto determine the next node to be scheduled among the set
of schedulable nodesin the current cycle. A common priority func-
tion is themobility of operations, but this targets a performance-
optimized design. Our modification to the priority function that at-
tempts to schedule consecutive nodes of the same colour to a port is
summarized in function NEXTNODE.PrevColour[p]keeps track
of the colour of the previous node scheduled on portp. If a schedu-
lable memory access node with the same colour asPrevColour[p]
is found for anyp, then we select that node. If no such node is found
and there is a schedulable non-memory operation (Y 6= �), we use
the mobility of that operation to determine the selected node. This
serves to defer any unfavourable memory port assignment until ab-
solutely necessary. But ifY = � we must switch colours on one
port (port n-1, as indicated in PREASSIGNPORTS). Ideally, we
would like to select a node such that future memory access nodes

of the same colour would get clustered together, but this can be
computationally expensive. To prune the search space, we select
the node for which the next DFG node with the same colour is at a
maximum depth, to allow for the possibility of clustering of other
colours later on. Function NEXTNODE omits some details (initial
condition, update ofPrevColour) due to lack of space.

Function NEXT NODE
X = Set of schedulable memory nodes
Y = Set of schedulable non-memory nodes
for all ports p =0:::n � 1

for all x 2 X
if Colour(x) == PrevColour[p]

returnx; // matching colour found
if Y 6= �

return nodey 2 Y with minimum mobility
else // forced to switch colour on port n-1

returnx 2 X for which depth of DFG node with
Colour(x) is maximum

DFG Schedule

A B

+

c G D

−

H I

0 1 2 3 4 5 6 7 8

Cycle

+

AB

q c

E −

D G

H

I

F

Figure 7: Operation of NEXT NODE

Figure 7 shows an example of how NEXTNODE selects can-
didate nodes for scheduling. Sets of memory access nodes of the
same colour are:fA;B;Cg, fD;Hg, andfG; Ig. Suppose the
last node scheduled on the single port memory isA. We have
X = fB;D;Gg. B is selected because it is the same colour as
A. Now, we haveX = fD;Gg; Y = fEg. Since there is a colour
mismatch at the port with nodesD andG, we selectE. Now we
haveX = fC;D;Gg. C is chosen to match the colour at the port.
In the next cycle, we haveX = fD;Gg. Note that nodeI (same
colour asG) is at a greater depth thanH (same colour asD). Thus,
NEXT NODE returns nodeG to allow for the possibility ofD and
H being consecutive on the port (selectingD here would lead to an
additional colour switch).

3.4 Loop unrolling and pipelining
Loop transformations such as unrolling tend to increase the num-

ber of consecutive memory accesses of the same colour due to the
concatenation of array accesses of different iterations. Similarly,
loop pipelining improves the throughput by keeping more resources
(memory ports) busy in each cycle. The post-processing and pre-
processing steps, and the new priority function discussed earlier are
directly incorporated into scheduling techniques that involve these
loop transformations, since these power optimizations are indepen-
dent and always applicable.

4. EXPERIMENTS
We studied the effect of our memory port assignment algorithms

by performing experiments on several loop- and data-intensive ap-
plications involving array accesses and computations. Since most
practical systems use either single port (SPRAM) or dual-port (DPRAM)
memories, we conducted our experiments on these two port types,
although the algorithms themselves are general enough to handle a
larger port count. We studied the following 3 cases:

Case A: Performance-optimized schedule (no power optimization)

Case B: Performance-optimized schedule with power optimizations
applied as a post-processing step (Section 3.2)

Case C: Power optimizations applied as a pre-processing step be-
fore and during scheduling (Section 3.3)

For each of the above three cases, we performed experiments
on both single- and dual-port memories. We used the0:18� IBM
ASIC library in our experiments. The procedure consisted of the
following steps for each design example: (1) Behavioral and logic
synthesis using the Synopsys SystemC Compiler and Design Com-
pier; (2) Logic simulation of the gate-level netlist with Cadence
NC-Verilog simulator; and (3) Energy calculation from the result-
ing Activity file and the ASIC library using the Synopsys Design
Power simulator.

4.1 Detailed Example
We discuss in detail the experimental results for one important

example, the Fast Fourier Transform (FFT) algorithm, which is a
popular routine used in several Digital Signal Processing applica-
tions. We assume that memory accesses, additions, and subtrac-
tions require one cycle, and multiplication requires 2 cycles. In
Case A (performance-optimized) the dual-port memory causes a
significant reduction in the schedule length, resulting in 30% better
performance. Figure 8 shows the schedules for single- and multi-
port memories for case B, when power optimizations are applied
as a post processing step. The single-port schedule is the same as
case A, but the dual-port schedule is modified by interchanging the
port assignments of two memory accesses. The memory access
nodes are grouped into two colours, and it is desirable to assign the
same colour to successive accesses from the same port.x[i]:re and
x[i]:im are grouped into the same colour because the fields of the
struct have spatial locality.

Rd x[i].im

Rd x[i+j].im

Rd x[i].re

Rd x[i+j].re

+

+

−

− *

*

+ −

Wr x[i].re

Wr x[i].im

Wr x[i+j].re

Wr x[i+j].im

*

*

Rd x[i].im Rd x[i+j].im

Rd x[i].re Rd x[i+j].re

+
+

−
−

* *

+ −

Wr x[i].re

Wr x[i].im

Wr x[i+j].re Wr x[i+j].im

* *

Case B: Dual PortCase B: Single Port

Figure 8: Case B: Schedules for single and multiport memory

Figure 9 shows the schedules generated by case C. Note that
the single-port schedule is longer, but thex[i] elements (coloured
white) are clustered together, which results in reduced transitions
on the address bus. Finally, the case C dual-port schedule is 8 cy-
cles long; energy considerations caused our port assignment algo-
rithm to assign each colour to a different port. Overall, the power-
optimized dual-port memory configuration results in a 20% better
performance than the unoptimized SPRAM-based design.

The energy dissipation characteristics of the six schedules dis-
cussed above are summarized in Figure 10. For each configuration,
we have indicated: (1) the energy spent in datapath and FSM cells;
(2) interconnect energy; (3) memory internal energy; and (4) total

Rd x[i].im Rd x[i+j].im

Rd x[i].re Rd x[i+j].re

+
+

−
−

* *

+ −

Wr x[i].re

Wr x[i].im

Wr x[i+j].re

Wr x[i+j].im

Case C: Dual PortCase C: Single Port

Rd x[i].im

Rd x[i+j].im

Rd x[i].re

Rd x[i+j].re

+
+

−
−

*
*

+ −

Wr x[i].re

Wr x[i].im

Wr x[i+j].re

Wr x[i+j].im

*
* * *

Figure 9: Case C: Schedules for single and multiport memory

energy. For the three single port configurations, the energy dissipa-
tion in the various components are almost the same.

A - Single B - Single C - Single A - Dual B - Dual C - Dual
0

500

1000

1500

2000

2500

3000

E
ne

rg
y

(x
 .0

1
uJ

)

DP+FSM
Interconnect
Memory Internal
Total

FFT - Energy

Figure 10: Energy dissipation comparison forFFT

The DPRAM offers an interesting energy comparison. Case A
results in higher interconnect energy as well as higher internal mem-
ory energy due to the DPRAM. The total energy is 11% higher
than the SPRAM-based design. However, our energy optimiza-
tion, when applied to the DPRAM based design, results in lower
interconnect energy, which offsets the increased internal memory
energy of the DPRAM. Cases B and C result in 9% and 14% less
energy than case A (unoptimized) for the DPRAM. In fact, case C
actually results in marginallylowerenergy than even the SPRAM-
based design.

4.2 Summary of Results
We report the performance and energy results on three other ex-

amples:SOR, Dprod, andPlanckian. SORis the successive over-
relaxation algorithm often used in image processing;Dprod is the
dot product example from DSPStone benchmark set; andPlanck-
ian is a scientific computing benchmark from the Livermore Loop
set. ForSOR, the optimized DPRAM-based design (C-Dual) re-
sults in 42% performance improvement over the SPRAM design,
while maintaining comparable energy dissipation. ForPlanckian,
the dual-port memory improves performance by 40%, while the
energy-optimization in C-Dual causes a 7% overhead. In theDprod
example, we observe a 33% performance improvement from using
DPRAMs, with the total energy overhead being 3%.

4.3 Discussion
The most important observation from our experiments is that an

efficient assignment of memory ports to data accesses usually en-

sures a reduction in energy dissipation of synthesized designs based
on multiport memories. It is important to note that this work does
not attempt to demonstrate that multiport memory-based design
can always yield lower overall energy than single port-based ones.
The single port numbers were presented as a reference/baseline to
perform comparisons. Our experiments show that the energy of
the optimized dual-port configurations (C-Dual) was comparable to
that of SPRAM-based ones. However, performance considerations
might lead designers to choose DPRAMs in system designs. Once
this decision is made, our port assignment algorithms help reduc-
ing the energy dissipation significantly, as the A-Dual vs. C-Dual
numbers clearly show.

The energy consumed in the datapath and FSM cells is a small
fraction of the interconnect-related energy, confirming our motiva-
tion for this work. Note that it is not necessary to have multiport
memories to benefit from the algorithms in Section 3.3. The energy
optimization strategy can be useful even with single-port memo-
ries. In such cases, the problem is not assignment of data to ports,
but the appropriate re-ordering of data accesses to reduce address
bus switching (this is incorporated into the NEXTNODE function.
Finally, The area overhead of the multiport memories will usually
lead to larger overall design area (e.g., area overhead was 37% in
FFT).

5. CONCLUSION
We presented algorithms to reduce memory address bus switch-

ing energy by an efficient allocation of memory ports to behav-
ioral array accesses combined with the re-ordering of data accesses
by incorporating energy optimizations into the scheduling phase of
behavioral synthesis. The optimizations apply to both single- and
multiport memories. Frequently, multiport memories can offer sig-
nificant performance advantages in system designs because of the
increased data throughput, but lead to overheads in area and en-
ergy. We have shown that our strategy can help reduce some of this
overhead in the overall energy dissipation of the system, while still
retaining most of the performance advantages offered by multiport
memories.

6. REFERENCES
[1] E. Musoll and J. Cortadella, “High-level synthesis techniques

for reducing the activity of functional units,”ISLPD, 1995
[2] P. R. Panda et al., Data and memory optimization techniques

for embedded systems,TODAES, Apr. 2001.
[3] L. Benini and G. De Micheli, “System level power

optimization: Techniques and tools,”TODAES, Apr. 2000.
[4] P. R. Panda and N. D. Dutt, “Low-power memory mapping

through reducing address bus activity,”TVLSI, Sept. 1999.
[5] L. Benini et al., “Power optimization of core-based systems

by address bus encoding,”TVLSI, Dec. 1998.
[6] M. Kandemir et al., “Influence of Compiler Optimizations on

System Power,”DAC, June 2000.
[7] P. R. Panda et al., “Local memory exploration and

optimization in embedded systems,”IEEE TCAD, Jan. 1999.
[8] W.-T. Shiue and C. Chakrabarti, “Memory exploration for

low power embedded systems,”DAC, June 1999
[9] M. Balakrishnan et al., “Allocation of multiport memories in

data path synthesis,”IEEE TCAD, Apr. 1988.
[10] T. Kim and C. L. Liu, “Utilization of multiport memories in

data path synthesis,”DAC, June 1993.
[11] P. R. Panda and N. D. Dutt, “Behavioral array mapping into

multiport memories targeting low power,”Intl. Conf. on VLSI
Design, Jan. 1997.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

