
High Capacity and Automatic Functional Extraction Tool for
Industrial VLSI Circuit Designs

Sasha Novakovsky
Design Technology

Intel Corporation
+972-4-8565810
nsasha@intel.com

Shy Shyman
Design Technology

Intel Corporation
+972-4-8565037

sshyman@intel.com

Ziyad Hanna
Design Technology

Intel Corporation
+972-4-8565303
zhanna@intel.com

Abstract

In this paper we present an advanced functional extraction tool
for automatic generation of high-level RTL from switch-level
circuit netlist representation. The tool is called FEV-Extract and
is part of a comprehensive Formal Equivalence Verification
(FEV) system developed at Intel to verify modern
microprocessor designs. FEV-Extract employs a powerful
hierarchical analysis procedure, and advanced and generic
algorithms for automatic recognition of logical primitives, to
cope with variety of circuit design styles and their complexity.
Logic equations are then extracted to generate a behavioral RTL
model described in industrial standard HDL languages, to be
used in the formal equivalence verification, logic simulation,
synthesis and testability flows.

Categories and Subject Descriptors
D.3 [VERIFICATION, MODELING AND SIMULATION]:
Formal verification techniques. Switch, logic and high-level
simulation, design validation, HW/SW co-simulation,
combinational and sequential equivalence checking. Model
checking. Theorem proving.

General Terms
Algorithms for design verification.

Keywords
Switch Level Analysis, Functional Abstraction, Formal
Equivalence Verification (FEV), Design For Testability (DFT),
Synthesis, Logic simulation, Binary Decision Diagrams
(BDDs), Satisfiability procedures, Hardware Description
Languages (HDL).

1. Introduction

Advances in VLSI technology have made possible the
implementation of large and increasingly complex systems in a
single integrated chip. Rapid verification of the VLSI
implementation and finding logical bugs are amongst the most
challenging and pressing problems in the modern circuit design
projects. Static verification or formal verification methods are
very promising in proving the correctness of circuit

implementation compared to its RTL hardware description. The
first step in the verification is to analyze the circuit
implementation and extract its logic behavior. During the
extraction process, implementation issues and “unsafe”
structures can be detected at early stage of the verification
process.

This paper describes how the functional extraction flow is
efficiently performed in FEV-Extract to address the challenging
design and verification needs.

In the next section we provide a review of the related work and
the advantages in FEV-Extract compared to other tools.

2. Related Work

Functional abstraction or extraction methods have been under
research for many years. Each method tries to address certain
aspects of the problem. However, to our knowledge, there is no
method that is generic and powerful enough to address the
challenging needs of modern microprocessor designs.

In [2] and [3], the authors proposed a BDD based method to
extract the functional behavior from a transistor circuit by
building a transition relation of the “micro-latch” pull-up and
pull-down functions computed for each of the storage nodes in
the circuit. Though this method is considered generic for
extracting the finite state machine from a circuit representation,
it is limited in capacity because it builds a BDD for the entire
transition relation, which naturally may blow up.

Pattern matching methods [1], are based on graph isomorphism
algorithms to identify circuit configurations based on a pre-
defined set of circuit patterns such as Domino, latches, CMOS
gates etc. This method is limited because it does not cover all
the possible configurations in the circuit and therefore, the user
is requested to either enrich the pattern set, or to assist the
extractor by adding additional hints and attributes to help
identifying the unresolved circuit configurations. The advantage
of this method is its simplicity, however it is inefficient and not
“safe” because it usually requires user intervention to help
understanding the circuit logic behavior. The authors of [4]
combined the algorithmic and pattern matching approaches by
employing algorithms for analyzing combinational circuit

0-7803-7607-2/02/$17.00 ©2002 IEEE

configurations, while leaving sequential circuits to be identified
using the classical pattern matching methods.

R.E Bryant (CMU) established a strong mathematical basis and
sound algorithms [5] to analyze MOS circuits using graph
algorithms. Bryant’s method extracts the functional behavior of
channel connected sub networks – CCSN, using Gaussian
elimination procedure. However, this method focuses on unit
delay analysis and is not directly applicable to analyzing and
extracting RTL models. In a later work [6], Bryant tried to
address the problem of sneak paths and false glitches by using
simplification and quaternary logic but the method is still
targeted to unit delay modeling and massive intervention is
required from the user.

Very few of the methods offered in the literature provide
hierarchical analysis. Therefore, the majority of the methods
suffer from capacity limitations, which are usually resolved by
partitioning the circuit, thereby introducing productivity and
correctness issues.

FEV-Extract provides a significant leap in the functional
extraction domain compared to the other methods listed above.
It is fully automated, compared to [4], and provides high
capacity for the modern VLSI design. The tool’s main objective
is to analyze VLSI circuit automatically, in a fast and accurate
manner, and to extract its RTL zero delay representation.
Because the tool is mainly targeted for formal equivalence
verification tasks, with a constant need to analyze complex and
large circuits, overcoming capacity limitations of the above
approaches is a must. Other flows that utilize FEV-Extract
capabilities are static timing analysis, power estimation, and
fault grading. In this paper we will focus on zero delay
modeling for formal verification and simulation needs.

In section 4, we describe FEV-Extract flow. In sections 5 and 6,
we elaborate on the novel techniques employed in FEV-Extract,
focusing on symbolic analysis methods for extracting the
functional behavior of combinational networks, on loop analysis
algorithms and the automatic identification of logical primitives.
Hierarchical analysis described in section 7 provides the boost
in extraction performance and capacity. In section 8, we present
some experimental results, which clearly demonstrate a
significant advantage of FEV-Extract over other methods. We
conclude in section 9 with recommendations for future work.
The conclusions appear in section 10.

3. Preliminaries

In this section we define some concepts that will be used in the
following sections.

Template model is an in-memory representation of the sub
hierarchies of a model without instantiations.

DAG - Directed Acyclic Graph – is a data structure for
representing Boolean formulas.

Switch level model consists of a set of nodes and a set of
transistors. Each transistor is assumed bi-directional. Each node
may be classified as regular, input, or storage node. The term
input node refers to a signal coming from the environment of

the circuit. The term storage node denotes a node that can store
its value when not driven, and can share charge with other
storage nodes.

A storage node is assigned with size from the set {1,2…k},
which denotes the node’s ability to store charge compared to
other storage nodes. An input node is assigned a size w > k. A
regular node is assigned a size = 0.

Each transistor is assigned with a strength s from set
{k+1,k+2,…,w-1}, i.e. transistors are always stronger then
storage nodes. This attribute represents the transistor’s
conductance relative to other transistors. A path p is a directed
path originating at Root(p) and terminating at Dest(p), and
consists of a set of transistors Trans(p). The strength s of a path
p, denoted |p|, is defined as:

|p| = ()[]
()

()







∈

tStrengthpRootSize
pTranst

min,min .

A path is termed definite if no transistor in Trans(p) is in state
X. A path p is termed unblocked if there are no prefix path p’
of p and a definite path q such that Dest(p’) = Dest(q) and |q| >
|p’|.

Switch level models can be partitioned to sub networks called
CCSN-s (Channel Connected Sub Network)

The state of node n is represented as two formulas n.h and n.l.
n.h represents the condition under which there is pull- up path to
the node. n.l represents the conditions under which there is a
pull-down path to the node. Then we can define the state of
node n using the following table:

Value n.h n.l

Z 0 0

0 0 1

1 1 0

X 1 1

Table 1. Dual Rail state encoding

4. FEV-Extract Flow

The FEV-extract flow can be summarized as follows:

• Model build and analysis - the hierarchical template model
is read and built in memory.

• Then we apply a decision procedure to determine which
instances have to be smashed and which can be analyzed
separately on the template basis.

For each analyzed template we apply the following steps:

• Partition the model into CCSN-s.

• Symbolically analyze each CCSN and derive dual rail
formulas for each storage node (mainly CCSN outputs).

• Perform zero delay single rail transformation.

• Simplify the equations based on user given and internally
derived relations.

• Find loops in the model and analyze them to derive state
elements and dynamic logics.

• Generate zero-delay output model.

5. Symbolic Analysis of CMOS Circuits

In the following sections we describe the main innovations of
our work with respect to [5] and [6].

5.1 Partial Strength Order
During the analysis of each CCSN, two systems of equations are
generated for each strength s. The first system, called “clear”,
represents conditions under which no node is the destination of
a definite path of strength s. The second system, termed “state”,
denotes the combined effects of all unblocked paths with
strength greater than or equal to s. You may recall that a path
p1 ‘wins’ over path p2 if |p1| > |p2|. The method is referred to as
Total Strength Ordering.

Using total strength order requires user intervention to tune
transistor strengths in order to solve contentions. In today’s
VLSI design style, when a large portion of a circuit is
implemented using asynchronous design and ratio logic (rather
than complementary logic), this is a tedious task, and can lead to
inaccurate modeling. FEV-Extract overcomes this issue by using
Partial Strength Order based on the transistor’s physical
strength. The strength for each transistor is calculated based on
its physical sizes (width and length), with proper consideration
for fabrication process parameters (such as P/N ratio). A
transistor t is considered stronger than transistor r iff
Strength(t)>SR*Strength(r). Here SR stands for strength ratio.
Using partial strength order enables solving contention without
user intervention.

5.2 Logic Function Representation
As in ANAMOS [5] and TRANALYZE [6], FEV-Extract uses
DAG to represent Boolean equations. The original DAG used
by ANAMOS and TRANALYZE assigns terminals to circuit
nodes. FEV-Extract introduces powerful sharing of the DAG
sub-formulas using formula templates. The DAG terminals are
indexes rather than real circuit nodes, and the indexes are
mapped at every instance to the appropriate circuit nodes. This
technique allows FEV-Extract to store the entire model logic in
the memory, unlike ANAMOS, which stores the logic in files.

5.3 Logic Simplification
FEV-Extract simplifies the logic equations using signal relations
that either are provided by the user for top cell input signals or
are derived from the extracted formulas. This notion of
simplification was also introduced in [6], where the main
motivation to simplify the output logic was to reduce false
contentions. FEV-Extract uses the simplification technique
mainly for reducing the following verification efforts by the
proper state identification. We also use BDDs for more
powerful simplification of small equations only.

6. State Identification

One of the key challenges in automatic functional extraction is
the resolution of circuit loops and extraction (out of them) of
logical elements. Loops can be resolved into two types of
elements: Combinational elements used for dynamic
implementation of combinational functions (e.g. domino), and
Sequential elements, used for the implementation of storage
elements such as latches or BUS keepers.

The device (combinational or sequential) identification flow has
three main steps: 1) Loop finding, 2) Functional loop analysis
and inference, and 3) Extracting the appropriate logical element.

6.1 Loop Finding
Inherently VLSI models have loop structures for combinational
and sequential logical elements. A combinatorial loop may
either form a single sequential state element, like latch, or be a
part of a dynamic implementation of the pure combinatorial
RTL logic, while a sequential loop spans over one or several
sequential state elements.

The goal of FEV-Extract is to identify and resolve
combinational loops only. Sequential loops are left in the
extracted finite state machine of the circuit. In order to
distinguish between the combinational and sequential loops, we
make an assumption that most of sequential loops have longer
paths than the combinational ones (every sequential loop passes
through at least one smaller combinational loop that forms its
state element). Based on this assumption we employ a common
loop identification algorithm, such as DFS graph traversal, to
find structural loops in several steps, starting from the shortest
loops (3 to 4 transistors or 2 CCSN-s in a loop) that, for sure,
can’t be sequential. Each loop is analyzed and logical elements
are identified and marked. Once we identify a sequential
element, the algorithm recognizes it, marks appropriately, and
ignores it in longer loops that contain it as a sub-loop.

The loop identification algorithm looks first for the SCC-s
(Strongly Connected Components) using a simple DFS linear
traversal algorithm. It then traverses through all the possible
loop paths of every found SCC, looking for the loops with
limited stack depth. The second stage of the algorithm is
exponential. However, since most of the structural loops are
small and even bounded, the run time is very reasonable.

FEV-Extract identifies structural loop logic on circuit nodes
with accumulative capacitance storage capabilities (single
CCSN in a loop) and extracts appropriate latch logic.

6.2 Functional Loop Analysis and Inference
Given a combinational loop, we want to identify its
corresponding logical element. In order to analyze the loop
correctly, there is a need to analyze it together with additional
logic surrounding it. For doing this, let us introduce a concept of
stage, which is a set of CCSN-s that form the combinational
loop and correspond to a functional element (combinational or
sequential). The stage includes a driving logic, a combinational
logic that introduces new values into the loop during the circuit
execution, a feedback path that is a logic function used to store

the current value in case the driving logic is disabled, and a
collateral logic that is usually used to simplify the overall stage
functionality.

Each stage is analyzed separately in three steps, which are:
1) Identification of the stage output(s) on which the loop logic is
to be solved; 2) Generation of the overall zero-delay collapsed
stage functionality on the stage output(s); and 3) Stage
inference, which is identification of the functional parts that
form the stage, like asynchronous set/reset, clock/enable,
driving data, feedback type and control.

Let’s now assume that the overall stage logic S is collapsed into
the form:

S = f(i1, i2 , …, S’),

where f is a dual rail function of S in quaternary format, and S’
is the previous value of S itself.

The following stage functional parts are identified using the dual
rail logic manipulations on the function f, using DAG and BDD
representations:

• The driving logic - part of stage formula that doesn’t depend
on the stage previous value (quantify out variable S’ from
the equation f):

D = S(S’=1) && S(S’=0)

• The driving control - either high or low rail of the driving
logic holds:

DC = D.1 || D.h

• The stage feedback logic - assuming that contention on the
stag output is checked using CCSN extracted logic we may
and weaken the feedback:

FB = S && !DC

• The feedback control:

FBC = FB.l || FB.h

• The stage feedback type - checking how 0 and 1 values on
the stage output are propagated by the feedback logic.

The feedback has High Retain type if:

FB.h(S’=1) != 0 && FB.h(S’=0) == 0

The feedback has Low Retain type if:

FB.l(S’=0) != 0 && FB.l(S’=1) == 0

The feedback has Full Retain logic if it follows both High
and Low Retain rules.

Self-reset feedback types are identified appropriately when

FB.h(S’=0) != 0 || FB.l(S’=1) != 0

In case the feedback logic doesn’t propagate either 1 nor 0
values:

FB.h(S’=1) == 0 && FB.l(S’=0) == 0

the loop is considered structural but not functional one.

• Asynchronous Set and Reset logics are identified as
independent parts of DC that leads D to constant 1 or 0
appropriately.

6.3 Extracting the appropriate logical elements
Given the stage parts inferred in the previous phase, FEV-
Extract solves stages as one of the following logical structures:
BUS retainer, domino (or Precharge logic), latch, or self-reset
loop logic. The identification is based on the logical behavior of
the inferred stage. For example, domino elements are
recognized if the driving logic is fully separated into set and
reset paths, either one of the paths is controlled by clock signal
(the precharge logic), and the feedback loop forms full or half
keeper that matches the precharge logic polarity. Latch elements
are identified in a slightly different manner. Two latches in a
tour, with opposite control logic and same set/reset can be
combined into one Flip Flop sequential element.

7. Hierarchical Extraction

Hierarchical extraction is performed template by template,
generating a hierarchical output model.

Hierarchical extraction in FEV-Extract is attempted for each sub
circuit that contains more than a predefined number of
primitives, as the overhead of analyzing small cells separately
may result in inefficiency.

Hierarchical extraction outperforms flat extraction in computing
time and memory space. In flat extraction, every portion of the
model is analyzed, causing the identical blocks to be analyzed
repeatedly. Hierarchical extraction significantly reduces the tool
run time. For example, flat memory array extraction that may
take ~15 hours can be extracted hierarchically just in one
minute.

The hierarchical extraction in FEV-Extract has three levels of
analysis:

• Native hierarchy: Each model has a hierarchy inherent to
it. Every template is extracted only once and instances are
appropriately mapped to the template logic.

• Recognized hierarchy: Like [5], FEV-Extract partitions the
model into CCSN-s and identifies the CCSN templates by
recognizing the similarity in transistor structures. Every
CCSN template is extracted only once. Unlike [5], partial
strength ordering technique requires the transistor strengths
to be normalized, in order to achieve better results.

• Partially flattened model: CCSN-s that collide with the
netlist native hierarchy and cross hierarchical boundaries
(except of BUS CCSN-s) are smashed and flat extraction is
locally performed.

7.1 Partial flattening
Each instance that collides with CCSN boundaries is smashed.
The smashing is performed on the instance itself, maintaining its
internal hierarchical structure. In order to identify the CCSN-s’
boundaries and mark smashing instances, the native model
hierarchy is traversed in DFS manner, performing the following
instance interface analysis:

• Instance pins that are connected directly to the transistor
source or drain are considered to be outputs.

• Instance pins that are connected to any sub-cell output are
considered to be outputs.

• Instance pins that are connected through the hierarchy to
the top cell input pins are considered to be inputs

• Black box interface is taken according to its definition in
the netlist.

• An instance with at least one output pin (except for BUS
outputs) connected to an output pin of another instance of
the same hierarchical level is considered to be smashed.

7.2 BUS Extraction
From the hierarchical point of view, we may classify all the
model signals as either BUS or regular signals. Most of the RTL
formats allow only one assignment to be specified for a regular
signal. Complying with this rule requires that the entire logic of
the signal will be analyzed as one indivisible entity, thus
preventing hierarchical or step-by-step extraction. BUS signals
can be multiply driven, and have several assignments assuming
a strong or relaxed MUTEX relation between the drivers’
control signals.

FEV-Extract performs the following steps to generate BUS
logic:

• BUS-es are identified as multiply driven nodes that have
drivers with several hierarchical levels.

• Each BUS node can be driven by a single local CCSN and
an arbitrary number of hierarchical bus drivers.

• The BUS’ multiply driven logic is generated according to
the output format.

7.3 Memory Array Extraction
Circuit memory configuration usually uses a huge signal called
memory bit line that either passes data to the memory states
(write operation), passes the stored memory values to the output
logic (read operation), or does both. The memory cells are
usually instances of the same logic template. In most cases, the
entire memory is one single CCSN consisting of two memory bit
lines, which are inputs to the sense-amplifier circuitry. Such
CCSN-s tend to be very big and cause major performance issues
in extraction, verification and debugging. However, in FEV-
Extract we developed a special method, similar to the BUS
analysis method described above, to avoid such an explosion.

8. Experimental Results

The algorithms described in sections 6 and 7 considerably
boosted the capacity, performance, and productivity of FEV-
extraction flow. This section presents experimental evidence
that supports our claims. All tests are taking from the current
Intel design.

8.1 Hierarchical extraction
Table 2 presents the memory and CPU run time data for
hierarchical versus flat extraction on 15 test cases. We also
included the number of transistors in each test case for

reference. Tests 1-11 are control logics and data paths. Tests 12-
15 are memory arrays. All measurements were conducted on
Linux dual CPU P4 machine, 1.8 GHz (one CPU is used).

Test case # trans Flat (s) Hier (s) Flat (MB) Hier (MB)
1 1346 5 1.6 29 18
2 5829 14 3 60 24
3 9857 10 4 37 18
4 11260 15 8 51 26
5 19800 25 6 60 20
6 24912 78 7 63 30
7 25207 20 10 53 27
8 43813 68 33 108 31
9 50926 68 30 118 31
10 93376 156 65 155 40
11 98306 553 25 181 27
12 108388 692 7 231 24
13 198254 1430 28 300 30
14 225108 464 50 260 54
15 396728 6711 60 598 61

Table 2. Comparison between flat and hierarchical approaches

The leap achieved by the hierarchical approach is evident – the
hierarchical approach is ~25x faster! The gain in memory usage
is also easily noticed. Note how the flat approach suffers
greatly from the increase in the number of transistors while the
hierarchical approach is immune to that.

8.2 Productivity
While it is trivial to measure the run time and memory usage, it
is difficult to measure the impact of the automation provided in
FEV-Extract. Since lack of such a capability entails manual
work (also called tuning of the circuit), combined with several
iterations, it is important to supply measurements criteria, in
order to estimate the benefit from the automatic state/domino
identification. You may note that the problem worsens in cases
where iterations of the extraction tool may take hours and even
days. In this section we suggest measurement criteria to estimate
the time needed to get the circuit model abstracted and ready for
verification. We do not claim that the formula we suggest is
100% accurate since subjective influences cannot be ignored,
but we view it as good approximation. The formula that we
suggest incorporates two guidelines: 1) Learning is
logarithmical – first attributes are hard to find and tune; 2)
Tuning effort for iteration is measured for an attribute category
rather than one attribute. For example, when the tool exits with
an error because some complex domino structure is not tuned, it
is more likely that the circuit designers will tune the most, if not
all of the instances of this complex structure.

First we introduce a few definitions:

=T e Average time to analyze extraction failure and tune

the circuit.

=T a Turn-around time for the extraction tool

=L Learning factor. Denotes improvement in designer’s

ability to tune the circuit.

=K Number of extraction iterations.

Based on these definitions, the formula to estimate the elapsed
time to get the circuit model ready for verification is:

where the first product stands for the run time of the extraction
tool, while the second one represents the iterative manual work
needed to tune the circuit. Note how the formula is sensitive to
the learning factor – as the designer is more experienced, the
elapsed time will decrease exponentially.

In table 3, we compare another in-house tool (‘Manual’ in this
table) that required tuning to perform analysis to Fev-Extract
(‘Auto’). We used a learning factor of 2 and for T e we used 30

minutes (those numbers are taken just from our experience).

Test
case

trans

Manual Auto Manual Auto Manual Auto
13 198254 1430 28 7 2 ~4.1h ~0.5h
12 108388 692 7 5 1 ~3h ~1m
15 396728 6711 60 5 2 ~10h ~1h

Ta K Et

Table 3. Impact of automatic identification

Note how the impact of automatic identification strengthens as
the run time of the tool increases.

9. Future Work

Looking ahead, innovation in circuit design is always
encouraged to achieve the maximum speed and density. This
puts the challenge ahead on FEV-Extract to be accurate and
automatically handle self-timed logic, pulse circuits, and other
fancy circuit implementations. It is very important to improve
FEV-Extract to be efficient in handling delay dependent circuits
as it handles today zero delay circuits. For doing this we are
planning to develop new algorithms for unit delay extraction,
improve extraction accuracy by considering actual circuit delays
and thus combining functional and static timing analysis
capabilities to cope with future >10 GHZ circuit designs. For
bridging the gap between high level RTL model and detailed
circuit implementation, we are planning to identify high level
circuit structures such as memory arrays (i.e. extract memory
two-dimensional constructs rather than bit-wise latch-s),
pipelines, arithmetic operators and additional RTL constructs.

10. Conclusions

In this paper we presented FEV-Extract, which was developed
as part of Intel’s Formal Equivalence Verification CAD system
[8,9]. We explained its working flow, its main algorithms that

enable automatic identification of logical elements, its
hierarchical analysis flow, and a few other innovative algorithms
that overall make FEV-Extract a step function compared to
other published methods in academic or in the EDA industrial
world. With the advent of complex VLSI circuits, FEV-Extract
is indispensable for generating an accurate functional
representation of custom circuit designs, and thus becomes a
major component in the design and verification flow.

The algorithms presented were implemented in FEV-Extract and
are successfully used in Intel chip design projects. In addition,
we have started a patent process for key algorithms and methods
employed in FEV-Extract.

Acknowledgments

Thanks to Intel DT Strategic Cad Lab researchers Jeremy Casas
and Carl Seger for participating in the development of the core
technologies in FEV-Extract. Additional thanks go to the CAD
infra structure group in Design Technology for the co-
development of numerous algorithms and software modules
needed in FEV-Extract implementation.

References

[1] Daniel Fischer, Yossi Levhari, Gadi Singer: NETHDL:
Abstraction of Schematic to High Level HDL. Design
Technology, Intel Israel (74) Ltd. ICCAD 1990.

[2] Timothy Kam, P.A. Subrahanyam: Comparing Layouts with
HDL Models: A Formal Verification Technique.

[3] Timothy Kam, P.A. Subrahanyam: State Machine
Abstraction from Circuit Layouts using BDD’s:
Applications in Verification and Synthesis.

[4] A. Lester, P. Bazargan-Sabet, A. Greiner: LIP6/ASIM
Laboratory, University Pierre et Marie Curie – Paris:
Yagle, a second generation functional abstractor for CMOS
VLSI circuits.

[5] R.E Bryant, “Boolean analysis of MOS circuits” IEEE
Transaction CAD/IC, 1987, 634-649.

[6] R.E Bryant, “Extraction of gate level models from
transistor circuits by four valued symbolic analysis”, In
international Conference On Computer Aided Design,
pages 350-353, 1991.

[7] R.E Bryant, “Algorithmic aspects of symbolic switch
network analysis” IEEE Transaction, CAD/IC 1987,618-
633.

[8] John Moondanos, Carl Seger, Daher Kaiss, Ziyad Hanna.
“CLEVER: Divide and Conquer Combinational Logic
Equivalence Verification with False Negative Elimination”.
CAV 2001.

[9] Zurab Khasidashvili, John Moondanos, Daher Kaiss, Ziyad
Hanna, “An Enhanced Cut-point algorithm in formal
equivalence verification”. HLDVT 2001.

∑+∗= −=
=

2
0
ki

i i
e

at
L

T
KTE

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

