
1 

Test-Model based Hierarchical DFT Synthesis 
 

Sanjay Ramnath, Frederic Neuveux, Mokhtar Hirech and FelixNg 
Synopsys Inc., Mountain View, CA 94043 

{sramnath, fredn, hirech, felixng}@synopsys.com 
 
 
Abstract  
    
   With increasing design sizes and adoption of System on a Chip 
(SoC) methodology, design synthesis and test automation tools are 
hitting capacity and performance bottlenecks. Currently, 
hierarchical synthesis flows for large designs lack complete design-
for-test (DFT) support. With this paper, we address a solution, 
involving the introduction of test models in a traditional DFT 
synthesis flow, that we term Hierarchical DFT Synthesis (HDS). We 
discuss the use of Core Test Language (CTL) based test models 
combined with physical and timing models to provide a complete flow 
for chip-level DFT. In doing so we address some challenges the new 
flow presents such as Design Rule Checking (DRC), DFT 
architecting and optimization. We describe methods to overcome 
these challenges thereby presenting a new methodology to handle 
complex next generation designs. 
 
1.0 Introduction 
 
   Recent advances in manufacturing and methodology allow for 
larger and more complex IC designs.  In today’s environment, circuit 
sizes typically exceed million gates introducing further complexity to 
the design flow in terms of timing, placement and routing. This, 
coupled with the increasing relevance of the design-reuse paradigm 
suggests that capacity and performance will soon become major 
concerns with most DFT tools. In the past, DFT flows advocated a 
top-down approach to synthesize, optimize and insert test logic on 
flattened designs. Today, Design re-use and System on a Chip (SoC) 
methodologies [1] are driving the shift towards hierarchical flows, 
where pre-assembled blocks are integrated with control logic to form 
a complete system. These flows recommend a bottom-up approach to 
perform DFT synthesis on large hierarchical designs. Designers 
develop blocks concurrently, synthesizing them and implementing 
DFT at the front end of the design process. This enables predictability 
and facilitates optimization to minimize the impact of test logic on 
the design. Once all the blocks are complete and DFT ready, final 
assembly integrates them and addresses DFT at the chip-level. If 
each of these blocks is over a million gates large, then reading in 
the entire design and performing DFT insertion at the chip-level 
becomes impractical. In addition we also have to account for glue 
logic between these blocks which might be significant. 
 
   The concept of test modeling presents a solution to this problem. 
Test modeling refers to the abstraction of DFT structures embedded 
in a design, in the form of a test model. In other words, a test model 
encapsulates all DFT information needed by a system integrator. The 
proposed HDS flow uses a test model instead of a netlist 
representation of the sub-modules during chip-level integration. 
Thus, we realize a significant improvement in terms of both capacity 
and performance since the size of the abstract model is typically only 
a small fraction of the original netlist.  
 

      The use of test models instead of complete netlists presents us 
with a number of challenges, in terms of reusing existing proven 
technology. In this context we address Design Rule Checking (DRC), 
DFT architecting and optimization.  

 
   DRC can be applied stand-alone, to validate test design rules or as a 
pre/post-processor to DFT synthesis, to extract information for the 
purpose of DFT modeling such as sequential cells that violate test 
design rules and scan chain information. Our implementation of DRC 
in a traditional DFT synthesis flow is simulation based and therefore 
relies on the availability of a gate-level netlist. To leverage this 
technology we present a technique by which we extract 
representative netlists from test models. 
 
   DFT Closure, that is to rapidly and predictably meet all DFT 
requirements from RTL to GDSII[2], is a mandate for most designs. 
This needs to be achieved at every stage in the design process, 
particularly at the chip-level. Therefore HDS must avoid the 
following:  

 
• Timing violations of design rules and constraints due   to test logic. 
• Placement violation and routing congestion created by scan path 

buffers and scan nets. 
 
   Although CTL models provide sufficient details for inserting DFT 
logic and connecting scan structures, they lack information that is 
required to optimize designs. Design optimization integrated with 
DFT insertion is already implemented in one-pass DFT synthesis[3]. 
The challenge lies in enabling this technology in the presence of test 
models.  

 
   This paper describes the combined use of test, timing and physical 
models to develop a new complete chip-level DFT synthesis flow to 
handle complex multi-million gate hierarchical designs. 
 
   We use Core Test Language (CTL) to describe test models. CTL is 
the modeling language portion of the proposed P1500 standard for 
Embedded Core Test[4]. Although the standard is targeted towards 
SoC methodologies, this paper illustrates a powerful application of 
CTL to enhance traditional DFT flows. 
 
   This paper is organized as follows. In section 2 we present an 
overview of the classical bottom-up approach to one-pass DFT 
synthesis. In section 3 we introduce HDS. In this context we briefly 
introduce some key concepts of CTL and present the new flow and its 
advantages. In section 4 we discuss the challenges we faced and the 
techniques we used to migrate existing technology to the new flow. 
In section 5 we present experimental results and conclude in section 
6. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0-7803-7607-2/02/$17.00 ©2002 IEEE 



2 

2.0 Classical DFT Synthesis 
 
   Figure 1 illustrates a traditional one-pass bottom-up DFT synthesis 
flow. In this flow, insertion of DFT logic (e.g. test-points) and scan 
assembly first takes place at a module level. The module designer 
then hands out a DFT-ready block to the system integrator. This 
testable block is integrated ‘as-is’ at higher levels of abstraction.  
This means during integration, no further changes are allowed to the 
DFT structures within the block. 
 
   As sub-design sizes increase, this flow will soon hit capacity and 
performance limitations. However it presents several advantages with 
respect to predictability and optimization during insertion of DFT 
logic. A key point to be noted here is the fact that once DFT is 
inserted in the sub-modules, we do not require any information about 
them other than the DFT structures. Therefore it is possible to model 
the sub-modules in a more compact fashion instead of retaining the 
entire netlist during chip-level integration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Bottom-up DFT synthesis 

 
3.0 Test Model-based Hierarchical DFT synthesis 
 
3.1 Core Test Language (CTL) 
 
   CTL (P1450.6) is being developed as part of the IEEE P1500 
standard for Embedded Core Test. The goal is to define a language to 
describe all the necessary information for test pattern reuse and the 
needs of test during system integration. Test aspects of a core can be 
described via CTL so that the core can be integrated as a black box 
into a SoC design. While [4][5] give more details on the language 
and syntax, we briefly describe some key concepts that are required 
for this discussion. 

 
 
 

3.1.1 CTL Structure and Syntax 
 
   The information contained in the CTL model for a module is 
classified according to configurations (modes) of the module. Figure 
2 illustrates this architecture. Every mode has an associated 
initialization sequence. Some modes contain test pattern information 
while others contain structural information about the DFT logic 
included in the module. For the purpose of this discussion we focus 
on the InternalTest mode of operation of the module. This mode 
allows for the testing of the internal logic of the module through the 
DFT structures. The CTL description for this mode typically contains 
the following details: 
 

1. Signals and Signal Groups – Defines the I/O boundary  
2. Macros – A template that applies data defined by a pattern 

in a certain sequence. The initialization sequence for the 
mode is defined here. 

3. Procedures – Define the scan test sequence. 
4. Scan Structures – Describes the scan chains. 
5.  Data Types for various control signals, such as clock, test 

Mode, and scan enable. 
 
 The CTL syntax can be illustrated with a simple example of a DFT 
ready design shown in Figure 3 and its associated partial CTL model 
described in Figure 4. The design comprises one scan chain built with 
2 multiplexed scan flip-flops and a synchronization latch.  Since CTL 
is under development, the syntax is subject to modification.    
 
   The following sections describe the application of test models to 
HDS. 
 
 

Timing 

Structures 

Attributes 

Initialization 

Patterns 

Protocols 

Constraints 

Statistics 
 
 

Figure 2. CTL Structure 
 
   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. DFT ready design 
 
 
 
 
 

ATPG 

Module 1 

 
 
                                                          Chip level 

 

Module 2 Module 1 

Design Rule Checking 

DFT logic insertion + Scan Assembly 

Module 2 

Synthesize and 
Replace Scan 

DFT logic 
insertion + 
Scan 
Assembly 

Design Rule 
Checking 

Synthesize and 
Replace Scan 

Design Rule 
Checking 

DFT logic 
insertion + 
Scan 
Assembly 

Modes 

SIGNALS

FF1 FF2 L1

in 
   test_si1 

test_se 

clk 

tm 

out 

 so1 

clk_int 



3 

3.2 Hierarchical DFT Synthesis (HDS) 
 

   Figure 5 illustrates the HDS flow. During chip-level integration, we 
use the test model representation of the sub-modules instead of their 
netlist representations. Since the sub-modules are DFT-ready, we do 
not allow any changes to their netlists. Test models are useful here 
because during integration, we are only concerned with portions of 
sub-modules that are important for inserting DFT at the higher level of 
abstraction. CTL enables us to either manually create the test models 
or integrate the process with automated tools. Thus, the new flow 
helps accommodate multi-million gate hierarchical designs. 
 
4.0    Challenges 
 
  The following sub-sections discuss the challenges imposed by HDS 
in the context of DRC, DFT architecting and optimization. We present 
the requirements of each task and describe the techniques devised to 
meet these requirements by leveraging as much of the existing 
technology as possible. For the sake of simplicity, all examples assume 
Multiplexed flip-flop scan style [6]. 
 
4.1 Design Rule Checking 

    
4.1.1 Requirements 
 

   Our implementation of DRC in a classical DFT synthesis flow relies 
on symbolic simulation of a test protocol. A test protocol is a formal 
description of the sequence of operations performed while testing a 
design. A test protocol for a serial scan design comprises the serial 
scan-in, parallel measure and capture, and serial scan-out operations 
[7][8]. The key idea is to logic simulate the process of testing a design 
and through this simulation verify compliance with scan test design 
rules. The symbolic simulator is based on a system of classical three-
valued logic {1,0,x} in addition to values that enable simulation of test 
protocols. Simulation values are propagated as tokens to establish 
states in all sequential cells within the design that are then checked for 
scan compliance. For example, simulation of a scan-in operation 
should establish an arbitrary known state in all sequential cells within 
the design. A cell whose state is not controllable represents a design 
rule violation. This approach generalizes the concept of scan design to 
any sequential cell that can be controlled and observed through the 
application of a test protocol. When DRC is invoked on a DFT-ready 
design, the test protocol is updated with details regarding the new scan 
structures, if any. Figure 6 illustrates the typical DRC flow. 

 
   Symbolic simulation requires a gate-level netlist representation. 
Modules without such netlists are considered black boxes since we 
cannot propagate simulation tokens through them. This includes DFT-
ready sub-modules with only test model representations.  

 
   Therefore, for the purpose of DRC, we need to replace each DFT-
ready sub-module with a CTL model by a significantly smaller 
equivalent netlist that only represents DFT information described in 
the corresponding test models a process we term DRC modeling. This 
netlist should accurately represent the DFT logic in the sub-module 
while at the same time preserving the capacity benefit that we realize 
by using test models. 
 
4.1.2 DRC for HDS 
 
   The following sub-sections detail the DRC modeling mechanism. 
We begin by introducing some definitions that characterize the DFT 
information that is extracted from a test model representation of a 
sub-module for the purpose of DRC modeling. We then use these 
definitions to describe the mechanism in detail. 

 
 
 
   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 4. Partial CTL model  

Signals { 
     ... 
 clk_int Pseudo; 
  ... 
} 
 
ScanStructures Internal_scan { 
    ScanChain "1" { 
        ScanLength 2; 
        ScanCells "FF1" “FF2”; 
        ScanIn "test_si"; 
        ScanOut "out1"; 
        ScanMasterClock "clk"; 
    } 
} 
Environment “TOP” { 
CTL Internal_scan { 

Internal { 
"clk" { 

DataType MasterClock ScanMasterClock; 
} 
"clk" { 

IsConnected Out  
{ Signal  clk_int; } 

} 
"test_si" { 

CaptureClock "clk_int" ;  
DataType ScanDataIn ; 
{ ScanDataType Internal; } 

} 
"test_se" { 

DataType ScanEnable  
{ ActiveState ForceUp; } 

} 
"so1" { 

LaunchClock "clk_int"  
{ LeadingEdge;  } 
OutputProperty SynchLatch; 
DataType ScanDataOut  
{ ScanDataType Internal;  } 

} 
“out1” { 

IsDisableBy Out Logic !a0 { 
a0 { 

Type signal; 
Name test_se; 

} 
} 

        } 
        ”tm” { 
 DataType TestMode; 

 { ActiveState ForceDown;} 
         } 
     } 
} 



4 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. High-capacity DFT flow 
    

4.1.2.1 Definitions 
 
a. Scan Segment 
 
    This concept of scan segment has been introduced in the context of 
hierarchical scan synthesis [9]. 
 
   A scan segment is a chain containing one or more completely 
connected scan cells. A scan chain specified as a scan segment is 
complete and atomic in the sense that it cannot be reconfigured. A 
scan segment has a scan-in pin si and a scan-out pin so. A scan 
segment can be made a part of another scan chain. Therefore in a 
bottom-up flow, at the module level each scan chain is a scan 
segment. At the chip-level integration, each scan segment in the sub-
module can be a part of a scan chain. Our discussion on DFT 
architecting will further elaborate on scan segments and how to 
structure them. Here we will concentrate on the application to DRC. 
 
b. Clock domain 
 
   An active edge (leading edge or trailing edge) of each clock is 
considered to be in a separate clock domain. Both edges of a clock 
and clocks with different timing characteristics may be used to 
control edge-triggered scan flip-flops of a scan chain. In order to 
construct functional scan chains, two adjacent scan flip-flops A and B 
(A serially driving B) must adhere to the rule that B must be clocked 
at the same time or before A. 
 

c. Clock ordering 
 
   The precedence relationships between scan flip-flops imposed by 
clock domain timing characteristics are defined at the scan segment 
level. Capture and launch times for a scan segment are deduced from 
the capture time of its first scan cell (driven by its scan input) and the 
launch time of its last scan cell (driving its scan output). This this 
precedence relationship between scan segments can be respected 
during chip-level DFT architecting. 
 
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Design Rule Checking 
 
4.1.2.2 DRC Modeling 
 
   Figure 7 transcribes the algorithm and Figure 8 illustrates the 
scheme followed for DRC modeling. The algorithm makes use of the 
following terminology: 
 
S = {s1, s2 … sn}  is the set of all scan segments in a DFT-ready sub-
module.  
 
Ni is defined as the number of scan cells in scan segment si. 
 
CM  = {cm1, cm2 … cmn} is the set of all scan master clocks for a scan 
segment. 
 
CS  = {cs1, cs2 … csn} is the set of all scan slave clocks for a scan 
segment.  

 
Each clock has an associated rise time r, and fall time f. 
 
A = {a1, a2 … an} is the set of asynchronous sets/resets for a scan 
segment 
 
E = {e1, e2 … en} is the set of scan enable signals for a scan segment 
 
   Figure 8a shows the netlist of a sub-module (M) from which a test 
model is generated. L1 and L2 denote combinational logic and ff1, 
ff2 and ff3 are multiplexed D flip-flops. Figure 8b describes the 
integration of sub-module M at a higher level of abstraction (design 
Top). L’ and L” could be combinational or sequential user-defined 
logic (UDL). At this level, sub-module M appears as a pure black 
box. Only the interface and the test model are visible to the DFT 

 
 
 
                                                          Chip Level 

TM2 TM1 

DFT logic insertion + Scan Assembly 

Module 1 

Synthesize and 
Replace Scan 

DFT logic 
insertion + 
Scan Assembly

Design Rule 
Checking 

Create Test 
Model– TM1

Module 2 

Synthesize and 
Replace Scan 

Design Rule 
Checking 

Create Test 
Model – TM2 

DFT logic 
insertion + 
Scan Assembly 

Design Rule Checking 

Read design 

Define Test Protocol 

Read Test Protocol 

Simulate Test Sequence

Report Violations 

Update Test Protocol, if necessary 

Extract DFT synthesis information 

ATPG 



5 

architect. Figure 8c shows the equivalent netlist resulting from DRC 
modeling.  
 
   Therefore we replace the black box by a netlist (CTL-to-gates) that 
we quickly construct from the test model description, the basic idea 
being to minimize the size of the scan segments . DRC then operates 
on the modeled netlist.  
 
   For DRC, we need to ensure that all control and access pins for 
scan segments are completely represented in the model. This is 
required for accurate validation. As long as this property is preserved 
during the modeling process, there will be no loss of critical 
information. For example, a scan segment of any sequential length, 
with one asynchronous input, and one clock domain, can be 
represented by a single scan cell. 
 
   Therefore, we obtain a significant reduction in segment length for 
most scenarios. In the worst case when A = N or CM = N, there will 
be no reduction in the segment length. A similar technique can be 
applied to other scan styles as well by using more complex 
technology-independent, and pre-defined set of cells.  
    
The following considerations figure in this context: 
 
• We do not perform capture checks since they require functional 

information that is not available in the test model. Capture 
checks are more pertinent to automatic test pattern generation.  

 
• In the case of 3-state pins, the model is enhanced with additional 

structures to represent disabling logic. 
 
• We assume that segments in the test-modeled sub-designs are 

correct by construction.  
 
• The DRC module is a transient entity and is removed at the end 

of rules checking. Therefore violations detected on cells of the 
model must be reported at the boundary of the sub-module and 
not on the virtual cells that constitute the model. 

 
This technique has the following impact: 
 
• The test protocol needs to be updated before simulation to 

reduce the number of simulation cycles depending on the length 
of the DRC modeled segment. The original value is restored at 
the end of simulation. 

 
• We need to maintain correspondence between the original scan 

segment and the scan segment in the DRC model. This is critical 
to reporting violations on the correct entity. 

 
• One of the functions that DRC performs, when run as a post-

processor to DFT insertion, is to extract scan structures for 
reporting purposes. Here, care should be taken here to extract 
the original scan segment out of the DRC model. 

 
    This solution therefore allows us to leverage the current DRC 
technology, without modifying the DRC engine.  
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. DRC modeling algorithm 
 
 
 
 
 
 
 
 
 
 

 
a. Sub-module M  

 
 
 
 
 
 
 
 
 

 
b. Hierarchical design with test model for M. 

 
 
 
 
 
 
 
 

c. DRC Model for M 
 

Figure 8. DRC modeling 

∀ test-modeled sub-module M in Top  
 

       ∀ scan segment si in S: 
    
• ∀ clock cmj (j = 1…n) 
 Perform clock ordering on CM based on r and f    
 
• Create a new netlist SNi with Ni new identical serially 

connected scan cells  
 
• n = MAX(CM, A) 
 
• Connect clocks in CM to n scan cells in SNi (one clock 

per cell) in order 
 
• If (n < Ni) connect cmn to the remaining (Ni -n) scan 

cells 
 
• Connect signals in A to SNi (similar to clocks) 
 
• Connect signals in E to SNi 
 
• Connect scan segment access pins 
 
• Replace si with SNi 

si so

cm1

 
 

a1

ffn ff1 

si

si

so

cm1

e1

 
a1

ffn ff1 ff2 

in[0:7
o1[0:3]
o2[0:7]

L1 

L2 

 

M 

Top 

L’ 

L” 

a1 

si 

in[0:7] 

e1 
cm1 

o1[0:3] 

o2[0:7] 

so 

s1 

e1



6 

 
4.2 DFT Architecting 
 
4.2.1 Requirements 

 
   Given a design encapsulating a set of module instances, each 
pointing to a CTL model, the task of DFT architecting, involves 
generating a complete DFT plan for the design, integrating DFT 
structures from the modeled instances. The DFT structures created at 
the design level must preserve the testability achieved at the module 
level and provide access to the instances from the design ports. 
 
   DFT insertion using CTL models must obey the same rules as the 
classical flow that works with leaf level cells. Controllability of clock 
and asynchronous signals, clock sensitivity, balancing of scan chains, 
avoidance of float and contention conditions during scan shifting are 
typical constraints that drive DFT architecting. These constraints 
require that the CTL model contain information such as: 
 

1. Scan structures 
2. Enabling/disabling conditions on tri-state ports 
3. Test Control ports and purpose 
4. Clock dependency 
5. Asynchronous control signals 

 
4.2.2 DFT Architecting for HDS 

 
   Migrating from a full gate level netlist representation of a sub-
module to a CTL model requires changes to the way we evaluate the 
design for DFT architecting. To facilitate this we utilize the concept 
of a scan segment as described earlier.  
    
A scan segment is characterized by the following: 
 

1. Scan length 
2. Serial scan access ports 
3. Scan control signals. 
4. Clock synchronization 
5. Test control signals 

 
   In addition to this we might have information about 
enabling/disabling conditions for tri-state signals, attached to the scan 
segment. 
    
   Recollect that during chip-level integration, each scan segment in the 
sub-module can be made a part of a scan chain. 

 
   The description of the scan structures in a CTL model identifies the 
scan serial inputs, serial outputs and global inputs ports of the block. 
This indicates how the segment should be connected. Information from 
the CTL model like CaptureClock, LaunchClocks, DataType, Scan 
Length (Figure 4) is modeled as a scan segment object. Therefore we 
encapsulate all the information about scan structures available in a 
CTL model in the form of scan segments. At the end of this process, 
each scan segment becomes analogous to a leaf level scan cell. Once 
all the scan segments are extracted from the CTL description of a sub-
module, chip-level DFT architecture and insertion can happen 
transparently. By making the scan segment the unit of representation, 
we blur the difference between cell instances that are leaf level cells 
and instances that are characterized by CTL models.  

 
   Proper attention must be paid to disabling logic on the tri-state 
signals as this may cause contention or float conditions during scan 
shifting if not properly accounted for. In the CTL model, tri-state logic 
driving outputs of the sub-module is represented by the IsDisabledBy 
property and a boolean equation combining inputs of the sub-module. 

This information is translated and stored as boolean equations in our 
internal model. During integration, combining these equations will 
help identify the enabling and disabling conditions for drivers 
connected to the same bus.  

 
4.3 DFT Insertion and Optimization 
 
4.3.1 Requirements 

 
   Since DFT insertion calls for design modification, it is important that 
the design be optimized in order to meet logical and physical synthesis 
constraints. CTL models lack timing and cell information that is 
required during optimization. In the example of Figure 3, the 
functional output of a scan register or a block is used as a scan output; 
thereby increasing the load on the register “FF_2” or the module 
output pin. This timing consideration is illustrated in Figure 9. 
 
 
 
 
 
 
 
 

 
Figure 9. Chip-level timing path 

 
   Design optimization during DFT insertion has been implemented in 
what is known today as one-pass DFT synthesis[3]. This flow is part 
of our DFT solution and has been proven on a variety of industrial 
designs. In order to harness this technology for HDS we require 
information that is not available in the CTL model. This includes loads 
on inputs, drive strength of outputs, timing path to the closest register 
etc. Therefore we rely on additional models for logical and physical 
optimization. 
 
4.3.2 DFT Insertion and Optimization for HDS 
 
4.3.2.1 Logic Optimization 
 
   Recently, logic synthesis tools have started using timing models to 
cope with increased design sizes. The model used, called Interface 
Logic Model (ILM) [10], is well suited for synthesis and timing 
analysis. The concept is illustrated in Figure 10 where we show a 
module and its ILM representation.  The ILM shown here 
encapsulates the following information: 
 

1. The cloud of combinational logic going from input ports to the 
sequential cells in the fan-out cone of these ports. 

 
2. The cloud of combinational logic between output ports and 

sequential cells in the fan-in cone of these ports. 
 

3. The cloud of combinational logic between ports. 
 

   This partial representation of the design enables us to extract 
accurate timing information and design port characteristics. 

 
    If the full gate level netlist is available, one-pass DFT synthesis 
integrates DFT insertion and design optimization steps to concurrently 
fix synthesis design rule and timing constraint violations. For 
hierarchical designs, availability of ILM and CTL models for sub-
modules extends the one-pass DFT synthesis approach to be applicable 
during chip-level assembly. During chip-level DFT synthesis, unified 
models that have both CTL and ILM information are used to perform 
DFT synthesis to meet both the timing and test constraints. 

 
 
 

FF_2 



7 

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 10. ILM model creation 

 
4.3.2.2 Physical optimization 

    
   Timing and placement driven optimization is at the core of today’s 
physical synthesis tools. In addition to logic optimization based on 
library cell data, physical optimization aims at incorporating 
parameters such as wire geometry, cell placement to achieve sharper 
design analysis and better quality of results. 
 
   During chip-level integration, routing scan nets is a significant 
portion of the overall routing process. Scan chain ordering[11] is 
widely used at the sub-module level as well at the chip-level to reduce 
overall routing congestion and reduce connection lengths; thereby 
minimizing the impact of scan nets on timing. Hence, incorporation of 
physical data during DFT insertion is critical to timing closure. This is 
illustrated in Figure 11. 
 
   By enhancing the unified ILM & CTL models with physical data, we 
allow better optimization of block level scan structures during chip-
level assembly. With a structure similar to the Layout Exchange 
Format (LEF) representation,  the outside geometry of a DFT inserted 
block and the position of its scan ports is captured as a physical model. 
The precise position of scan ports on the block provides more accurate 
information than just the simple block location. As shown in Figure 
11, those models drive DFT synthesis to perform optimal partitioning 
and ordering of block scan structures. This reduces routing congestion 
due to scan nets. Long scan nets are handled by addition of buffers 
during timing driven optimization.  
 
   Therefore by unifying CTL, ILM and physical models we avoid 
iterations between DFT synthesis, logic optimization and placement 
thereby guaranteeing a fully integrated flow. 
 
 
5.0 Experimental Results 
 

   The techniques described above have been implemented as part of 
our commercial DFT Synthesis tool. Two experiments were run to 
compare the memory usage and CPU run time between the 
conventional DFT synthesis flow and the new flow. The comparisons 
are based on applying the same tool to two different flows, the 
classical DFT synthesis flow versus the HDS flow using test-models. 
Table 1 describes the statistics of the design used for the experiments. 
 
    In Experiment 1 we inserted DFT on the design containing 3 
hierarchical sub-modules. We performed DFT synthesis on each block  
and saved it as both full gate database and test model representations. 
During the top level DFT synthesis we compared the memory 
consumption and CPU run time between using full gate database and 
using test models. The comparison was done at different stages in the 
flow. Table 2 describes the results. We observe 2X improvement in 
memory and 4X improvement in run-time. 

 

 

 

 

 

 

 

 

 

Figure 11. Physical DFT architecture and optimization 
 
 
   In the Experiment 2 we instantiated the design used in the first 
experiment eight times and performed top-level DFT synthesis. The 
total number of transistors was around 4 million. Again we compared 
the memory consumption and CPU run time between using full gate 
and test model representations. Table 3 describes the results. We 
observe 7X improvement in memory and 41X improvement in run-
time. 
 
   The results show that we can obtain significant capacity and 
performance benefit by replacing netlists with test-model 
representations, especially for large hierarchical designs. 
 
6.0 Conclusion 
 
   Capacity and performance bottlenecks are growing concerns for 
most commercial EDA tools. In this paper, we present a new 
hierarchical DFT synthesis flow based on test, timing and physical 
models. This work was motivated by a comprehensive effort to 
address the capacity issue with current DFT synthesis flows, and 
illustrates a powerful application of the IEEE P1450.6 Core Test 
language (CTL) for test modeling.  
 
   The combined use of DFT, timing and physical abstractions has 
enabled us to solve the capacity bottleneck without compromising on 
the quality of results. Core Test Language is a technology enabler for 
modeling DFT information. Using ILM abstractions, timing closure 
is achieved during top-level DFT synthesis. Physical abstraction 
enables better ordering of DFT structures that reduces top-level 
routing congestion.  
    
   The techniques described here have been implemented as part of our 
commercial DFT synthesis solution. Several enhancements to the 
current implementation are being planned. Some of these being 
support for test-models with pass-through control signals (such as 
clocks, resets), and support for models with more complex sequential 
initialization sequences (as opposed to combinational initialization 
sequences that are currently supported).  

 
 

7.0 References 
 
1. Gupta. R.K, Zorian. Y, “Introducing Core-Based System 

Design”, IEEE Design and Test of Computers, December 1997. 
Pages: 14(4): 15-25 

2. Hayat. F, Williams. T.W, Kapur. R, Hsu. D, “DFT Closure”,  
Proceedings of Asian Test Symposium, 2000. Pages: 8-9. 

ILM 

Module  Block 1 

Block 2 Block 3 

Block B2 Block D2 Block A1 

Block 4 Block 5 

Block A2 Block C2 
Block B1 

  
A   
B   

CLK   

X 
Y 

A   
B   

CLK   

X 

Y   



8 

3. Hirech. M and Ramnath. S, “Moving from one-pass scan 
synthesis to one-pass DFT synthesis”, European Test Workshop, 
2001. 3B.1 

4. Kapur. R, Keller. B, Koenemann. B, Lousberg. M, Reuter. P,    
Taylor. T and Varma. P, “ P1500-CTL: Towards a Standard 
Core Test Language”,  Proceedings of 17th IEEE VLSI Test 
Symposium, 1999. Pages: 489-490. 

5. Kapur. R, Lousberg. M, Taylor. T, Keller. B, Reuter. P and Kay. 
D, “ CTL the language for describing core-based test”,  
Proceedings of International Test Conf, 2001. Pages: 131–139. 

6. Scan Synthesis Reference manual, release 2001.08, Synopsys 
Inc., Mountain View, CA, 2001. 

7. Varma. P, “TDRC – A Symbolic Simulation Based Design for 
Testability Rules Checker”,  Proceedings of International Test 
Conference, 1990. Pages: 1055-1063 

8. Pitty. E.B, Martin. D and Ma. H.-K.T, “ A simulation-based 
protocol-driven scan test design rule checker”, Proceedings of 
International Test Conference, 1994. Pages: 999-1006. 

9. Beausang. J, Ellingham. C and Robinson. M, “ Integrating scan 
into hierarchical synthesis methodologies”, Proceedings of 
International Test Conference, 1996. Pages: 751–756. 

10. Daga. A, Ananthanarayanan. S and Neuveux. F,  “Interface 
Logic Models in a Hierarchical SoC Design Flow”, Submitted 
to CICC 2002. 

11. Hirech. M, Beausang. J and Gu. X., “ A new approach to scan 
chain reordering using physical design information”,  
Proceedings of International Test Conference, 1998. Pages: 348-
355. 
 

 
 
 
 
 
 
 

 
  
  
  
  
  

Table 1. Design statistics 
 
 

 
Table 2. Experiment 1 

 
 
 
 
 
 
 
 

 
 
 

 
Table 3. Experiment 2 

 
 
 
 
 
 
 
 
 

 Area (transistors) 
Sub-module #1 1,123 
Sub-module #2 54,709 
Sub-module #3 455,604 
Top level glue logic 1,375 
Total 512,811 

 Using Full gates Using Test 
models 

Improvement 
(X) 

Stage Mem 
(kb) 

Cpu 
time 
(s) 

Mem  
(kb) 

Cpu 
time 
(s) 

Mem 
 

Cpu 
time  

Read in 
sub-
modules 
and top 
level 
netlist 

44752 5 1680 1 26.6 5 

After 
pre-DFT 
DRC 

175168 193 70656 88 2.48 2.19 

After 
DFT 
insertion 

200784 366 89392 107 2.24 3.42 

After 
post-
DFT 
DRC 

208960 507 92176 117 2.26 4.33 

 Using Full gates Using Test 
models 

Improvement 
(X) 

Stage Mem 
(kb) 

Cpu 
time 
(s) 

Mem  
(kb) 

Cpu 
time 
(s) 

Mem 
 

Cpu 
time  

Read in 
sub-
modules 
and top 
level 
netlist 

387936 41 4960 2 78.2 20.5 

After 
pre-DFT 
DRC 

1082720 4481 128784 145 8.41 30.9 

After 
DFT 
insertion 

1207680 6041 167752 216 7.20 28.0 

After 
post-
DFT 
DRC 

1285288 11113 183304 271 7.01 41.0 


	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index





