
Concurrent Flip-Flop and Repeater Insertion for High Performance Integrated Circuits

Pasquale Cocchini
pasquale.cocchini@intel.com, Intel Labs, CAD Research

Abstract
For many years, CMOS process scaling has allowed a steady increase in
the operating frequency and integration density of integrated circuits.
Only recently, however, have we reached a point where it takes several
clock cycles for global signals to traverse a complex digital system such
as a modern microprocessor. Thus, interconnect latency must be taken
into account in current and future design tools at the architectural as well
as synthesis level. To this purpose, this work proposes a new latency-
aware technique for the performance-driven concurrent insertion of flip-
flops and repeaters in VLSI circuits. Overwhelming evidence showing
an exponential increase in the number of pipelined interconnects with
process scaling, for high-performance microprocessors as well as high-
end ASICs, is also presented. This increase indicates a radical change in
current design methodologies to cope with this new emerging problem.

1 Introduction
Repeater insertion is a technique extensively used to reduce the delay of
interconnects and improve their noise characteristic particularly when
signals are distributed over long distances on a chip. An elegant
dynamic programming algorithm was proposed in [1] to determine
optimal repeater assignments of the candidate locations of a given
interconnect topology. Several other works based on the same technique,
[3-7] to cite a few, have also been proposed incorporating other
optimization steps such as noise or area minimization, wire sizing, etc.
All of these works, however, only consider the case where a signal is
required to arrive at its destination within one single clock cycle. On the
other hand, in complex digital systems with relatively large die area
operating at very high frequency, as in the case of modern high-
performance microprocessors such as the Itanium® processor [9], many
global signals traveling across the chip need several clock cycles to
reach their destinations, thus requiring the adoption of pipelined
interconnects, i.e. latent wiring structures in which normal repeaters are
interleaved with sequential elements such as latches and flip-flops.
Current scaling trends indicate that this phenomenon will be accentuated
in future process generations. As can be seen in Figure 1, the frequency
of high-performance microprocessors approximately doubles every
process generation, in part due to shorter gate pipelines [10].

Figure 1. Frequency Trend.

Moreover, as showed in Figure 2, the die size also tends to increase by
about 25% per generation, taking advantage of increased complexity and
level of integration. As a result, the numbers of clock cycles needed to
cross the die is bound to increase. In this situation, at least two new

challenges are faced by micro-architects and circuit designers: a) the
accurate prediction of the minimum latency that can be achieved
between the blocks of a design, given the available routing resources of
a CMOS process, and b) the performance-driven insertion of repeaters
and flip-flops in a large number of pipelined nets where interconnect and
functional latency constraints are specified by the micro-architects.

Figure 2. Die Size Trend.

To this purpose, in this paper we propose a new methodology for the
performance-driven concurrent flip-flop and repeater insertion in latency
constrained and unconstrained VLSI interconnects. In the case of
unconstrained latency the problem is solved optimally with the goal of
minimizing the overall interconnect latency, i.e. the latency at the most
latent receiver. In the constrained case the insertion problem is solved
specifying the target latency for each driver-receiver pair of a net.
This technique effectively extends the work of [1] to handle the broader
case of pipelined interconnects by simultaneously inserting normal
repeaters and flip-flop gates, also referred to in this paper as clocked
repeaters, maintaining the optimality of the original algorithm.
Moreover, flip-flops are inserted while taking into account the
distribution of the skew in a clock distribution network modeled as a
grid of independent clock domains. To our knowledge, this is the first
work that addresses in details the problem of repeater insertion while
also considering interconnection latency. For simplicity, interconnects
are modeled in the paper using Elmore [2] delay. Nevertheless, our
technique can also be used with other hierarchical delay models such as
those based on moment matching as in [5][6].

2 Definitions

2.1 Routing Topology
We model the topology of an interconnect as a tree Θ = (N, B) composed
of a set N of nodes ni with branching degree at most two, and a set B of
directed branches bu,v connecting node pairs (u, v), with u < v. The root
and the leaves of the tree host the interconnect driver and receivers,
respectively, whereas other intermediate nodes are the candidate
locations for the insertion of repeaters. Each node ni can also be thought
of as the root of a sub-tree θi ⊆ Θ composed of all nodes and branches of
Θ that can be reached from ni, with θi ≡ Θ at the root of Θ. At a branch
point ni of degree 2, θi,v and θi,z are the sub-trees rooted at ni composed
of the portions of θi departing from branches bi,v and bi,z, respectively.
An example of such a topology is shown in Figure 3, where nodes are
enumerated following the order of a depth first traversal, starting from
the root n1.

386
486

Pentium®
Pentium Pro®

604

603
601

620

21066
21064A

21164

100

1,000

10,000

1985 1990 1995 2000 2005

D
ie
si
ze

[m
ils
]

Die size grows 25% per
process generation

Source [10]

386
486

Pentium
®

Pentium Pro®

Pentium II®

MPC750
604+604

601, 603

21264S
21264

21164A
21164

21064A
21066

1

10

1,000

10,000

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

M
hz

Processor frequency scales 2X
per process generation

Pentium III®

Source [10]

0-7803-7607-2/02/$17.00 ©2002 IEEE

Figure 3. Example of routing tree topology.

2.2 Clock and Routing Grids
The clock distribution network of a chip is modeled as a regular grid of
n independent domains ∆i distributed over the die. The clock skew is
then represented by an upper triangular matrix Σ where an element σi,i
indicates the skew within domain ∆i and an element σi,j indicates the
skew between domains ∆i and ∆j. The location of the nodes of every Θ is
then constrained to the center of the tiles of a finer regular routing grid
superimposed to the clock one. This scenario is depicted graphically in
Figure 4. An important requirement on the routing grid is that the size
ltile of its tiles should be short enough to allow an effective insertion of
repeaters and flip-flops. In particular this can be achieved by choosing a
value two or more times shorter than a given process dependent repeater
critical length lcrit, defined here as the typical distance between the
repeaters of a delay optimized two-pin interconnect routed over the most
resistive metal layer used. Let Lcrit = lcrit / ltile be such distance measured
in terms of routing tiles. It has been shown [8] that repeater delay is
quite insensitive to local displacement, therefore the center of a
relatively small grid tile provides a good approximation for the real
location of the repeater to be positioned anywhere within the tile.

Figure 4. a) Routing grid and clock domains. b) Skew matrix.

Figure 5. Assignment for the topology Θ of Figure 3. AΘ = {a1, a2,3, a3,
a4, a2,5, a5, a6, a7}, where a1 = 0, a2,3 = 0, a3 = bb, a4 = 0, a2,5 = ff, a5 = 0,

a6 = bb, a7 = 0.

2.3 Routing Resource Allocation
Interconnects routed over a topology Θ can be designed by allocating in
its nodes and branches routing resources such as wires of given metal
layer, length, width, and repeater gates of given size. Since this paper
focuses on the repeater insertion problem, for simplicity we assume all
branches bu,v as allocating wires of given length lu,v = ltile with same
metal layer and fixed width. A repeater assignment AΘ over topology Θ

is then defined as a set of labels au,v and au where au,v = gk corresponds
to the assignment of a repeater gk, taken from a given gate library G, to
branch bu,v right after node nu. On the other hand, a value au,v = 0
indicates that no repeater is inserted. For a node nu branching to two
children nv and nz through branches bu,v and bu,z, au ≡ au,v U au,z, whereas
if nu has one child nv only, au ≡ au,v. Finally if nu is a leaf au = 0. A
possible assignment for the topology of Figure 3 is showed in Figure 5.

2.4 Wire and Gate Modeling
A wire of length lu,v routed over branch bu,v, is modeled with a resistance
Ru,v connected between nodes nu and nv, and two capacitances of value
Cu,v connected between nu and ground and nv and ground, respectively.
If the wire has distributed resistance Rl and distributed capacitance Cl,
the lumped Ru,v and Cu,v can be calculated as Ru,v = Rl lu,v, and Cu,v = 0.5
Cl lu,v. The wire model of a simple topology with three nodes and two
branches is showed in Figure 6. A repeater gk is modeled as a buffer gate
with input capacitance load(gk) and input to output delay delay(gk, Cout),
expressed as a function of the capacitance Cout present at its output.
Similarly, if gk is a clocked device it is modeled as a D-type flip-flop
with input capacitance load(gk), clock to output delay delay(gk, Cout),
and set-up time Tset-up(gk).

Figure 6.Wire modeling.

2.5 Interconnect Cover
Let us assume that a repeater assignment is given for a routing tree Θ
along with timing constraints at its leaves in terms of input load
capacitance and propagation required time. Under these circumstances,
the timing at the root of each sub-tree θi of Θ needed to satisfy those
constraints can be expressed by a 4-tuple γi = (ci, ri, λi, ai). Here, ci is the
input capacitance seen at the root, ri is the required arrival time after the
positive edge of a clock signal φ with period Tφ, λi is the interconnect
latency defined as the max number of clocked repeaters crossed when
going from the root of θi to its leaves, and ai is the repeater assignment
at ni. Since every leaf nu of Θ is also the elementary tree θu ≡ ({nu}, Ø),
the interconnect constraints at the receivers are also specified using a 4-
tuple γu = (cu, ru, 0, 0). Because γ specifies the timing constraints and the
allocated resources of an interconnect mapped onto the topology of sub-
tree θ, we call γ interconnect implementation or cover of θ. In general a
sub-tree θi will have multiple feasible covers specifying different timing
and resource assignments. For convenience, these covers are grouped
per latency in the ordered set Γi = {Γim,…, Γin} with m, n 0, and m < n,
where Γik = {(c1, r1, k, a1),…, (cn, rn, k, an)} is a set of covers of θi with
same latency k. In the case of a sub-tree θu rooted at a branching point of
degree two, γu,v and γu,z are used to denote the covers of the sub-tree
components θu,v and θu,z, respectively.

3 Cover Computation
If we assume that the covers at the leaves of Θ are given as constraints
and that an assignment AΘ is known, the cover of every sub-tree θi can
be recursively determined, from leaves to root, using a hierarchical
delay model such as Elmore [2]. This is accomplished here by the three
operations wire, repeat and join sketched in Figure 7. Specifically, If a
node nu branches to node nv with a known γv through branch bu,v, cover
γu ≡ γu,v is first calculated through operation wire, where γu,v is back
propagated to nu inserting a wire on branch bu,v using Elmore delay. It
must be noted that, unlike [1], covers γ are here constrained by a fixed
given clock cycle Tφ. Therefore, only covers with non-negative required
time are generated. After operation wire, if a gate must be inserted at nu,
operation repeat is called. For the reason just stated, a non-clocked
repeater is inserted only if the required time at its input is zero or

n1

n7n5

n3n2

n6

n4

b2,5

b1,2 b2,3 b3,4

b5,6 b6,7

θ2,3

θ2,5

σ1,1 σ1,n

σn,n

σ1,2

σ2,2Σ =

∆1 ∆ 2

∆ n-1 ∆ n

a) b)

Cu,v Cu,v Cv,z Cv,z

Ru,v Rv,znv nznunv nznu

n1

n7n5

n3n2

n6

n4

b2,5

b1,2 b2,3 b3,4

b5,6 b6,7

positive. In that case the new required time and the input capacitance of
g are stored in the cover while the latency remains unchanged. Similarly,
a clocked repeater is inserted only if the slack at its output is non-
negative. In particular, this slack is computed from the required time of
the wire by subtracting the delay of the flip-flop and the term σm,n that
models the skew of the clock signal ϕ as defined in Section 2.2.

Figure 7. Operations for cover computation.

Here, ∆m is the clock domain where the flip-flop g is located and ∆n is
chosen among the domains of the upstream flip-flops so as to consider
the most pessimistic value of σm,n. If the slack is not negative, the
required time at the input of the gate is set to the period of the clock
minus the set-up time of gate g, and the latency of the new cover is
increased by one. When two covers γu,v and γu,z are back propagated to a
branch node nu of degree two via operations wire and repeat, cover γu is
calculated by means of operation join. Here, the input capacitance is the
sum of the load seen at the two branches and the required time is the
minimum of that at γu,v and γu,z to account for the worst case, whereas
according to its definition the latency of the joined cover is the
maximum of the latencies at the merging branches.

4 Cover Optimality
When multiple covers are computed for a sub-tree θ, only those non-
inferior covers that can lead to optimal solutions at the root of Θ need to
be saved. A principle for cover optimality was introduced in [1] to prune
cover sets of their inferior solutions. We extend here those concepts to
the general case of non-zero latency in the following property.

Property 4: Cover Inferiority
∀ γ ∈ Γ, γ is inferior in Γ if ∃ γ′ ∈ Γ such that at least one of the
following is true:

a. λ = λ′, c c′, r < r′

b. λ = λ′, c > c′, r = r′

c. λ = λ′, c = c′, r = r′, cost(γ) > cost(γ′)
d. λ > λ′, c c′, r r′

In properties 4.a and 4.b it is easy to see that γ is an inferior cover since
any gate driving a sub-tree θ with cover γ will have input required time
always worse than that of the same gate driving θ with γ′, while having
the same input capacitance and the same latency. On the other hand,
when γ and γ′ have identical input capacitance and required time, as in
property 4.c, γ is also inferior if the value of a user specified cost
function associated with the routing resources allocated in θ by γ, e.g.
repeater area, is greater than that of γ′. Finally, when γ has latency higher
than that of γ′, as in property 4.d, γ is inferior for the same reasons as in

4.a, 4.b and, when it has identical input capacitance and required time,
because γ covers sub-tree θ with same timing as in γ′ but wasting an
unnecessary extra clock cycle.

5 Assignment for Minimum Latency
The repeater insertion problem for the design of interconnects with
minimum latency, under the definitions of Section 2, is stated here with
the following formulation. Given an interconnect topology Θ mapped
onto a routing grid and a clock grid with skew matrix Σ, timing
constraints at the receivers in terms of γu ≡ (cu, ru, 0, 0), a library G of
clocked and non-clocked repeaters, find a set of optimal covers Γ1 with
minimum latency at the driver of θ1 ≡ Θ, according to property 4. This is
accomplished here by calling the algorithm MiLa, whose pseudo-code
is outlined in Figure 8, with argument θ1. Notice that minimizing the
latency in Γ1 corresponds to minimizing the signal latency at the most
latent receiver of the net. Also, please notice that the latency values λu at
the receivers are here set to zero only for convenience. The optimal
covers at each node of the tree are computed recursively after multiple
nested calls, starting from the leaves and ending at the root, traversing
the tree in a depth first fashion. At any call, if θu is a leaf the given
constraint at the corresponding receiver Γu = {(cu, ru, 0, 0)} is returned.

Figure 8. The MiLa algorithm.

If the root of θu is connected to a single branch bu,v, in line 2.1 the
algorithm is called again to compute the optimal covers Γv of the next
sub-tree θv, then in line 2.2 such covers are propagated to node nu
inserting wires. Next, in loop 2.4 an additional cover is inserted in Γu for
each repeater in G. To do this, all the covers previously computed in line
2.2 are repeated using the same repeater gate g calling operation repeat
thus generating a new set Γ. Inferior covers are then deleted according to
property 4 leaving Γ with only one optimal cover for every available
sub-set Γk ⊆ Γ with latency k, since its covers originated from the same
repeater. Finally, on line 2.5, Γu is updated adding the repeated covers.
Section 3 of the MiLa algorithm computes the optimal covers of sub-
tree θu when its root is connected to two branches bu,v and bu,z. A
methodology for joining covers without taking into account latency was
given in [1] and more formally in [3]. The same method, extended to the
latency case, is implemented in the function merge outlined in Figure 9.
Here, only the elements of Γu and Γv with the same latency are joined
using a technique similar to the merging of two sorted lists. In this case
we assume that covers in sets Γu and Γv are sorted first by increasing
latency and then, within each latency, by increasing required time and

// Compute a new γ from γu,v inserting repeater g
repeat (γu,v, g)
1. γ = Ø
2. if slack = ru,v – delay(g, cu,v) 0
2.1 if g is not clocked
2.1.1 γ = (load(g), slack, λu,v, g)
2.2 else if slack – σm,n 0
2.2.1 γ = (load(g), Tφ – Tset-up(g), λu,v + 1, g)
3. return γ

// Compute γu joining γu,v and γu,z
join (γu,v, γu,z)
1. γu = (cu,v + cu,z, min(ru,v, ru,z), max(λu,v, λu,z), au,v U au,z)
2. return γu

// Compute γu,v from γv inserting a wire on branch bu,v
wire (bu,v, γv)
1. γu,v = Ø
2. if slack = rv – Ru,v (Cu,v + cv) 0
2.1 γu,v = (2Cu,v + cv, slack, λv, 0)
3. return γu,v

// Compute optimal covers Γu of sub-tree θu for min latency
MiLa(θu)
1. if θu is a leaf then Γu = (cu, ru, 0, 0)
2. else if θu root branches once to bu,v
2.1 Γv = MiLa(θv)
2.2 Γu = Uγ∈ Γv (wire(bu,v, γ)) // insert |Γv| covers
2.3 Γg = Ø
2.4 for each g in G // insert |G| covers
2.4.1 Γ = Uγ∈ Γu (repeat(γu,v, g))
2.4.2 apply property 4. to Γ⇒ ∀ |Γk| = 1
2.4.3 Γg = Γg U Γ
2.5 Γu = Γu U Γg
3. else if θu root branches twice to bu,v and bu,z
3.1 Γu,v = MiLa(θu,v), Γu,z = MiLa(θu,z)
3.2 // Γu,v ≡ {Γx, …, Γy}, Γu,z ≡ {Γm, …, Γn}
3.3 if y < n then swap(Γu,v, Γu,z)
3.4 for k = x – n to y – m // latency shift operation
3.4.1 Γu = Γu U merge (Γu,v, {Γm+k, …, Γn+k})
4. apply property 4. to Γu
5. if θu = θ1 then Traverse the tree from root up and

compute the latency at each receiver
6. return Γu

capacitance. It is apparent that a cover not featuring such a monotonic
increasing behavior would be an inferior one according to property 4
and would then be deleted from its set prior to the merge.

Figure 9. Function merge.

On line 3.1 MiLa calls itself twice to compute the covers of sub-trees
θu,v and θu,z. As illustrated in line 3.2, the corresponding sets Γu,v and Γu,z
will be in general composed of an arbitrary number of sub-sets Γk of
different latency k, where k is equal to the max latency at the root of
each branch. Similarly to the cover latency λ defined in section 2, the
signal latency at any node of an interconnect can be defined as the
number of flip-flops crossed to reach the node starting from the driver
where the signal latency is zero. While the algorithm is geared towards
minimizing the signal latency at the most latent receiver, it must also
determine the signal latency at all other receivers such that optimal
covers are obtained and propagated back to the driver. To do so, we
must join all combinations of the sub-sets Γk ⊂ Γu,v and Γh ⊂ Γu,z so that
for each couple (Γk, Γh) a new joined sub-set Γq ⊂ Γu is generated with
function merge where q = max(k, h). For example, a value q = k would
correspond to the case of joined covers of Γu of latency k where the h-
latency covers of Γu,z have been shifted in time by latency k – h. The
general case is implemented in loop 3.4 of MiLa where all possible
shifts in latency are generated and the joined covers of Γu computed by
function merge. Here, because of line 3.3, set Γu,v is the one which
contains covers with maximum latency. Therefore, on line 3.4.1, only
the covers of Γu,z need to be shifted by latency k to consider all possible
cases. After determining the optimal covers Γu for every case of
branching degree at the root of θu, in line 4 set Γu is pruned of its inferior
elements according to property 4. Finally, in line 5 the optimal set Γu is
returned. It is worth noting that the application of property 4 has the
important consequence of limiting the returned set Γu to having covers
with at most two values of latency, that is Γu = {Γk, Γk+1}. Such a
property, also experimentally verified, holds assuming that library G
contains at least one flip-flop with input capacitance equal or lower than
the input capacitance of all non-clocked repeaters. After the last call to
MiLa returns, the optimal covers γi in Γ1 for the whole interconnect are
computed and repeater assignments and the signal latencies at every
receiver found by traversing the tree from root on.
The optimality of the algorithm is proved by induction on the sequence
of recursive computations of cover sets Γu generated by the depth first
traversal induced by the first call to θ1. Therefore, assuming that the
given covers Γ at the receivers are optimal, we only have to prove the
optimality of the covers produced by one recursive call to section 2 or 3
of the algorithm. However, both sections 2 and 3 produce a cover set Γu
containing among its elements all possible optimal solutions according
to the problem formulation. The optimality of all the covers of Γu is then
ensured by property 4, which eliminates any inferior element.

6 Assignment for Given Latency
Algorithm MiLa is here modified into a new algorithm called GiLa,
outlined in Figure 10, to accept latency constraints and perform repeater

insertion with the same underlying methodology, using a simple and
effective heuristic to resolve latency mismatch at intermediate points.
Similarly toMiLa, timing constraints at the receivers are given in terms
of γu ≡ (cu, ru, λu, 0), but now λu specifies the latency constraint between
the receiver at γu and the driver at the root, with inverted sign.

Figure 10. The GiLa algorithm.

The latency λ1 at the driver is set to be always zero. For example, the
latency constraints of the assignment of Figure 5 are λ1= 0, λ4 = 0, and
λ7 = -1. Using negative numbers to express the latency at the receivers
allows us to reuse operations join and repeat in GiLa without
modification. As in the case of MiLa, the covers Γ1 solutions of the
problem are computed calling GiLa with argument θ1. GiLa proceeds
then exactly in the same way of MiLa except when branch points of
degree two are reached in Section 3 of the algorithm.

Figure 11. Function ReFlop.

Here, if the computed sets Γu,v and Γu,z have covers with same latency,
then function merge is called in line 3.5 and the merged set Γu returned
after being pruned of inferior solutions. However, if no such covers exist
the difference in latency between the two branches is computed and the
sub-tree with lowest latency recomputed in line 3.3.1 for θu,v, or 3.4.1

// Join covers with same latency from Γu and Γv in Γ
// max |Γ| = |Γu| + |Γv|
merge (Γu, Γv)
1. // γji ≡ i-th element of Γj, λji = latency of γji
2. Γ = Ø, x = y = 1
3. while x |Γu| and y |Γv|
3.1 if λux > λvy then y = y + 1, goto 3.
3.2 if λux < λvy then x = x + 1, goto 3.
3.3 Γ = Γ U join(γux, γvy) // from Fig. 3
3.4 if rux rvy then x = x + 1
3.5 if rvx ruy then y = y + 1
4. return Γ

// Compute optimal covers Γu of sub-tree θu given latency
// constraints λuat each driver-receiver pair
GiLa(θu)
1. if θu is a leaf then Γu = (cu, ru, λu, 0)
2. else if θu root branches once to bu,v
2.1 Γv = GiLa(θv)
2.2 Γu = Uγ∈ Γv (wire(bu,v, γ)) // insert |Γv| covers
2.3 Γg = Ø
2.4 for each g in G // insert |G| covers
2.4.1 Γ = Uγ∈ Γu (repeat(γu,v, g))
2.4.2 apply property 4. to Γ⇒ ∀ |Γk| = 1
2.4.3 Γg = Γg U Γ
2.5 Γu = Γu U Γg // Γu ≡ {Γx, …, Γy}
2.6 if θu = θ1 then
2.6.1 if x > 0 then exit: the net is not feasible
2.6.2 if y < 0 then // insert –y more flops in Γu
2.6.2.1 Γu = ReFlop(θu, –y)
3. else if θu root branches twice to bu,v and bu,z
3.1 Γu,v = GiLa(θu,v), Γu,z = GiLa(θu,z)
3.2 // Γu,v ≡ {Γx, …, Γy}, Γu,z ≡ {Γm, …, Γn}
3.3 if y < m then // insert m – y more flops in Γu,v
3.3.1 Γu,v = ReFlop(θu,v, m – y)
3.4 if n < x then // insert x – n more flops in Γu,z
3.4.1 Γu,z = ReFlop(θu,z, x – n)
3.5 Γu = Γu U merge (Γu,v, Γu,z)
4. apply property 4. to Γu
5. return Γu

// Insert extra flops in branch rooted by sub-tree θu
ReFlop(θu, extra_flops)
1. Traverse the tree from θu up removing sets Γ along the way

and computing the number crossed_flops of crossed flip-flops
until either a leaf or a branch point of degree 2 is reached.

2. Traverse the tree down back to θu generating new sets Γ using
the wire and repeat functions but this time forcing the
insertion in the branch of an exact number of flip-flops equal
to crossed_flops + extra_flops. In particular, flip-flops are
equally spaced along the branch so as to equally distribute
the extra positive slack introduced. If there are more flip-flops
to be inserted than available locations, extra flip-flops are
inserted in already occupied locations.

3. return Γu

for θu,z, by function ReFlop, outlined in Figure 11, so that its latency is
augmented by the corresponding difference. ReFlop implements a
simple heuristic to insert the needed extra flip-flops in the processed
branch. Its effectiveness relies on the following observation: if the
covers Γu computed for minimum latency at the root of a sub-tree θu
meet their timing constraints with less latency than requested, it is
always possible to meet the same timing constraints also inserting extra
flip-flops to increase the latency of the branch rooted at θu. Furthermore,
to avoid wasting unnecessary area, extra flip-flops are not inserted after
a branching point of degree two as that would lead to the use of two flip-
flops for the gain of a latency value of one only. After reaching the root
of Θ, in Section 2.6 GiLa also checks that the solution set Γ1 has covers
with latency zero, corresponding to meeting the latency constraints
specified at the receivers. If all covers have latency greater than 0, then
the latency constraints are infeasible as no solution can be achieved with
fewer flip-flops. On the other hand, if all covers have latency less than 0
ReFlop is called to insert the needed extra flip-flops.

7 Experimental Results
Instead of directly implementing the basic algorithms, we have chosen
to verify our methodology by applying it to a more complex case where
repeater insertion is simultaneously performed with interconnect
topology synthesis. To this purpose we have incorporated our repeater
insertion strategy and the P-TreeAT [3] routing tree construction
technique in two new algorithms referred here as to FloP-Tree-ML and
FloP-Tree-GL based on the MiLa and GiLa algorithms, respectively.
Aside from testing the correctness of the proposed methodology this has
also served us in verifying that our technique is indeed amenable to
being employed in other interconnect design algorithms based on the
same dynamic programming style of [1] to extend them to the broader
case of clocked repeater insertion. In the following both FloP-Tree-ML
and FloP-Tree-GL are experimentally verified.

7.1 Set-up
In our experiments, the proposed algorithms are applied to perform
concurrent topology synthesis and repeater insertion in a test case
composed of 10972 nets with various pin count, representing the global
nets of a previous generation commercial microprocessor based on a
0.18µm CMOS process. The repeater library G used in the experiments
is composed of two repeaters, a single-stage inverter and a D-type flip-
flop, with sizes chosen to optimize the delay of an infinite repeated line
[11]. The use of an inverting gate is possible since FloP-Tree-ML and
FloP-Tree-GL keep track of the polarity of the repeated signals. For
every net, a cover constraint Γ specified at each receiver is composed of
two covers γ corresponding to two different available gate sizes. To
consider the case of root covers with negative polarity two choices are
also specified at the driver: a first given initial gate and a second gate
with inverted logic function. Topology synthesis is then constrained to
produce routing trees mapped onto a routing grid satisfying the
requirements of Section 2.2, using only two metal layers. Moreover, the
intra-domain σii and the inter-domain σij clock skews values of matrix Σ
are equal to 10% and 25% of the target clock period, respectively.
Finally, all experiments are run on an IBM ThinkPad equipped with a
1GHz Intel Pentium III processor and 512MB of memory.

7.2 Scaling Trends of Pipelined Interconnects
The goal of this experiment is the study of the latency scaling properties
of the global nets of a high-performance microprocessor across different
CMOS process generations. To this purpose, algorithm FloP-Tree-ML
is applied to all the nets of our test case to produce routing solutions
with minimum latency following different scaling scenarios created by:

• Scaling the devices and interconnects by a factor S=0.7 from the
original 0.18µm process, first to a 0.13µm process and then to a
0.09µm one. Parasitics are derived from the ITRS [12] roadmap.

Notice that using a 0.18µm design as a base for this study leads to
optimistic projections since the number of global signals is likely to
increase with newer processes leading to larger repeater counts.

• Scaling the die size and clock frequency following: N) nominal
scaling, representative of microprocessor shrinks, where die size
scales down by S2 and frequency scales by S-1, and T) trend
scaling, where die size scales by 1.25 and frequency scales by 2 as
indicated by the current microprocessor trends of Figure 1 and
Figure 2 [10]. In addition, we also follow a third scaling rule C)
constant scaling, representative of high-performance ASICs, in
which the die size remains the same.

The combination of these rules generates six distinct scaling patterns for
which the results of FloP-Tree-ML are shown in Table 1. Patterns are
indicated with two letters corresponding to their component rules. For
example, CN corresponds to a scaling pattern with constant die size and
nominal frequency. A first run marked as REF, corresponding to the
original 0.18µm process and a target clock frequency of 1GHz, is used
to normalize the values of subsequent runs. Since FloP-Tree-ML
produces a set of multiple net implementations with different topologies
and repeater assignments, only one solution per set, the one with
minimum number of repeaters and highest positive slack at the driver, is
considered to generate the experiment results. As expected, for all
scaling patterns, both the total number of flip-flops Flops and their
percentage FlopsR with respect to the total number of clocked and non-
clocked repeaters Rptrs increase. For brevity, let us consider in more
details the two extreme scaling patterns NN and TT and the intermediate
case CN. In the case of pattern NN, even though the die size shrinks, the
total number of repeaters increases by about 30% each generation due to
sheer process scaling, i.e. since in a delay optimized repeated line,
repeaters scale faster than interconnects [11].

Table 1. Repeater and flip-flop insertion for minimum latency performed
across three process generations for six different scaling patterns.

Scaling
Pattern

Proc
Die
Size

Freq Rptrs FlopsR Flops Area λ > 0 Covers cpu

[µm] [GHz] [%] [%] [%] [s]
REF 0.18 1 1 1 1.7 1 100 1 17 679

0.13 0.5 1.4 1.29 2.2 1.7 56 3 13 367
NN

0.09 0.25 2 1.66 2.4 2.4 33 4 11 240
0.13 1 1.4 2.16 2.4 2.9 79 6 15 761

CN
0.09 1 2 4.17 3.5 8.8 67 10 10 440
0.13 1.25 1.4 2.5 3.1 4.6 89 6 13 589

TN
0.09 1.56 2 5.32 4.3 13.7 84 15 8 378
0.13 0.5 2 1.3 4.2 3.2 57 5 13 382

NT
0.09 0.25 4 1.77 10.2 10.8 37 12 10 252
0.13 1 2 2.17 5 6.5 81 8 15 757

CT
0.09 1 4 4.24 13.8 34.9 75 32 9 414
0.13 1.25 2 2.5 5.2 7.7 90 9 13 579

TT
0.09 1.56 4 5.46 15.4 50 97 42 7 354

More interestingly, the total number of flip-flops increases by about
70% each process generation, but in this case also because of frequency
scaling. Moreover, the total area of all repeaters decreases following the
die size shrink. As can be seen, the run time of FloP-Tree-ML tends to
decrease as the number of flip-flops goes up. This is due to the fact that
in general more covers (the average number of covers per net is reported
in column 10) are pruned as a consequence of the insertion of a flip-flop
than because of the insertion of a non-clocked repeater. At the other
extreme, using scaling pattern TT, which corresponds to a scaling trend
that high-performance microprocessors have been able to sustain so far,
the die size increases by 25% and the frequency doubles each
generation. For this reason, the increase in repeaters is here more
dramatic: every process generation the total number of repeaters goes up

by a factor of about 2.5X, while the number of flip-flops increases by
about 7 times! Moreover, the percentage of pipelined interconnects
(column λ > 0) is 9% and 42% for the 0.13µm and 0.09µm processes,
respectively. For the scaling pattern CN, representative of high-end
ASICs, the increase in the number of flip-flops is 2.16X and 2.9X for
the scaled 0.13µm and 0.09µm processes, respectively.
For the convenience of the reader the total number of inserted clocked
and non-clocked repeaters Rptrs and the total number of flip-flops
Flops are plotted in logarithmic scale in Figure 12 and Figure 13,
respectively, for the six scaling patterns of Table 1. In Figure 12, as
expected, for all scaling patterns the total number of repeaters increases
exponentially, independently of frequency, with increase rate growing
from a minimum corresponding to the nominal die size scaling rule, to a
maximum corresponding to the trend die size scaling rule. Similarly,
Figure 13 shows that the number of inserted flip-flops also grows
exponentially for all scaling patterns. This time, however, the increase
rate depends on both die size and frequency.

Figure 12. Increase in total number of repeaters and flip-flops for six
scaling patterns across three process generations.

1

10

100

0.18um 0.13um 0.09um

F
lip

-F
lo
p
s

NN

CN

TN

NT

CT

TT

Figure 13. Increase in number of flip-flops for six scaling patterns
across three process generations.

7.3 Latency Constrained Pipelined Interconnect Synthesis
In this experiment we test the functionality of FloP-Tree-GL by
applying it to the latency constrained repeater insertion of the same test
case used in the previous experiment. The set-up of the experiment is the
same as the previous one with the exception that now latency constraints
are given at each net driver-receiver pair. In particular, the constrained
repeater insertion is performed on the scaled test case corresponding to
the scaling pattern TT in Table 1. The latency constraints are generated
by randomly adding 1 or 2 extra clock cycles to the receiver latency
values computed by MiLa in the previous experiment in all nets with λ
> 0. In practice, in the case of a microprocessor, such increase could be
attributed to conservative latency values set at the architectural level.
The results of the experiment are reported in Table 2, where normalized
values refer to the REF experiment of Table 1. As can be seen, in all
three runs the number of inserted flip-flops increases due to the higher
latency constraints with respect to the values of Table 1. Nevertheless,
the total number of flip-flops and repeaters does not substantially vary.

Intuitively, this can be explained by the fact the inserted extra flip-flops
take the place of normal non-clocked repeaters. As expected, for all
runs, the run-time increases due to the extra calls to routine ReFlop.

Table 2. Latency constrained repeater and flip-flop insertion across three
process generations for nominal scaling pattern.

Scaling
Pattern Proc

Die
Size Freq Rptrs FlopsR Flops Area λ > 0 Covers cpu

[µm] [GHz] [%] [%] [%] [s]
0.18 1 1 1.00 3.2 1.9 100 1 14 738
0.13 0.5 1.4 1.29 4.0 3.0 56 3 10 385NN
0.09 0.25 2 1.67 4.2 4.2 33 4 8 257

8 Conclusion
We have presented a new methodology for the simultaneous insertion of
repeaters and flip-flops in VLSI circuits. Pipelined interconnects are
designed so as to minimized the overall signal latency or to satisfy
latency constraints. Experimental results demonstrated the applicability
of the methodology to a large industrial test case, where our study on the
scaling properties of pipelined interconnects showed an exponential
increase in the number of inserted clocked repeaters. The increase is
dramatic enough to indicate that radically new design methodologies
that are able to cope with this emerging problem must be adopted if
current scaling trends are to be sustained.

References
[1] L.P.P.P. van Ginneken, “Buffer Placement in Distributed RC-Tree
Networks for Minimal Elmore Delay”. Proc. IEEE Int. Symp. Circuits
Syst., 1990, pp. 865-868.
[2] W.C. Elmore, “The Transient Response of Damped Linear
Networks”, Journal of Applied Physics, vol. 19, pp. 55-63, Jan 1948.
[3] J. Lillis, C.-K. Cheng, T.-T. Lin, C.-Y. Ho, “New Techniques for
Performance Driven Routing with Explicit Area/Delay Trade-off and
Simultaneous Wire Sizing”, Proc. IEEE/ACM Design Automation
Conference, 1996, pp. 395-400.
[4] C.J. Alpert, J. Hu, S.S. Sapatnekar, P.G. Villarubia, “A practical
Methodology for Early Buffer and Wire Resource Allocation”, Proc.
IEEE/ACM Design Automation Conference, 2001, pp. 189-194.
[5] C.-P. Chen, N. Menezes, “Noise-Aware Repeater Insertion and Wire
Sizing for On-Chip Interconnect Using Hierarchical Moment-
Matching”, Proc. IEEE/ACM Design Automation Conference, 1999, pp.
502-506.
[6] C.J. Alpert, A. Devgan, S.T. Quay, “Buffer Insertion With Accurate
Gate and Interconnect Delay Computation”, Proc. IEEE/ACM DAC
1999, pp. 479-484.
[7] T. Okamoto, J. Cong, “Interconnect Layout Optimization by
Simultaneous Steiner Tree Construction and Buffer Insertion”,
ACM/SIGDA Physical Design Workshop, 1996, pp 1-6.
[8] J. Cong, T. Kong, D.Z. Pan, “Buffer Block Planning for
Interconnect-Driven Floor-planning”, Proc. IEEE/ACM Int. Conf.
Computer Aided Design, 1999, pp. 358-363.
[9] R. McInerney, M. Page, K. Leeper, T. Hillie, H. Chan, and B.
Basaran, “Methodology for repeater insertion management in the RTL,
layout, floorplan and fullchip timing databases of the ItaniumTM

microprocessor”, Proc. Int. Symp. Physical Design, San Diego, CA,
Apr. 2000, pp. 99-104.
[10] Vivek De and Shekhar Borkar, “Low power and high performance
design challenges in future technologies”, Proc. Great Lakes Symp. On
VLSI, IL, March 2000, pp 1-6.
[11] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI.
Reading, MA: Addison-Wesley, 1990.
[12] International Technology Roadmap for Semiconductors,
http://public.itrs.net.

1

10

0.18um 0.13um 0.09um

T
o
ta
lR

ep
ea

te
rs

NN

CN

TN

NT

CT

TT

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

