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Abstract
Fourier-envelope algorithms are an important component of the

mixed-signal/RF verification toolbox. In this paper, we address the
unpredictability and lack of robustness that has been reported for these
algorithms. We show that the problem stems from fast oscillations
in envelopes that are expected to be slowly varying. We demonstrate
that this is related to the fact that the envelope equations are always
stiff, whether or not the underlying system is. We show that care-
ful choice of envelope initial conditions is necessary to obtain useful
solutions, and propose two techniques for finding good initial condi-
tions. Applying these, and solving the envelope equations with stiffly-
stable numerical methods, we improve the robustness and reliability
of Fourier-envelope methods. We illustrate the new methods with a
direct-downconversion mixer circuit.
1 Introduction

A long-standing problem of considerable importance in mixed-
signal/RF simulation and verification is that of predicting slow en-
velopes of circuit responses. Envelopes are of interest, for example,
when investigating startup transients of circuits that have rapid oscil-
lations which change amplitude/phase only much more slowly. An-
other area of application is in communication circuits, where fast car-
rier waveforms are modulated by much slower information signals.

Finding these envelopes via initial-value simulation of differential
equations (e.g., using SPICE’s transient simulation capability) is of-
ten not practical because of the widely-separated time scales of the
waveforms involved. Initial value solution techniques are constrained
to taking timesteps that are much smaller than the time-period of the
fastest components of the signal. Hence an excessive number of time-
points can be required to track the envelopes, which are often slower by
orders of magnitude. As a result, numerical algorithms that alleviate
this limitation have been sought.

Several such techniques have appeared in the literature. The earli-
est appears to be the time-domain envelope-following technique pro-
posed in [7], later adapted for circuit applications in [5]. So-called
Fourier-envelope methods, which compute slowly-varying Fourier
components of fast oscillations as they change with time, were pro-
posed in 1996 [3, 6, 14]. Shortly after, multi-time PDE techniques
were used to place Fourier-envelope methods on a sounder mathemat-
ical footing, and also to propose novel time-domain envelope meth-
ods [12,13]. Following their advent, Fourier-envelope techniques were
implemented in commercial simulation tools, notably from Agilent
Technologies.

Despite this progress, practitioners have observed that Fourier-
envelope techniques do not always succeed in finding slow envelopes
in a predictable and robust manner. Even in some extremely simple
linear circuits, it has been noted that Fourier-envelope simulation can
produce, instead of the smooth envelope expected, large and seemingly
random oscillations [9]. Yet, at the same time, Fourier envelope ap-
pears to produce meaningful results for many circuits.

In this paper, we address the issue of incorrect and strange be-
haviour in Fourier-envelope methods. We find that the root cause of
the problem is not purely numerical, but that even the exact solution of
the Fourier-envelope equations need not be slowly-varying and can, in-
deed, be expected to have fast oscillations in the typical case. We show
that the Fourier-envelope differential equations are stiff even when the
underlying circuit has no stiffness. We find that, however, rapid oscil-

lations can be reduced to insignificance via selection of envelope initial
conditions.

We propose two methods for the important task of finding ‘good’
envelope initial conditions to eliminate rapid envelope oscillations.
The methods are based on, respectively, mapping initial conditions be-
tween orthogonal lines in the multi-time domain, and the use of artifi-
cial damping. Together with good initial conditions, we advocate the
use of stiffly-stable integration techniques.

These enhancements have a significant positive impact on the re-
liability of Fourier-envelope techniques. We present an application of
the enhanced method to a direct-downconversion mixer circuit. We
are able to avoid the aforementioned problems and predict 10kbps bit-
streams recovered from a 900MHz carrier, in the presence of slow gain
modulation.

Throughout the paper, multi-time PDE concepts are used for both
diagnosis and circumvention of Fourier-envelope problems. The re-
mainder of the paper is organized as follows. In Section 2, we demon-
strate the failure of existing Fourier-envelope techniques. In Section 3,
we develop an understanding of the underlying phenomena responsi-
ble for this failure. In Section 4, we propose and discuss remedial
enhancements, and in Section 5, demonstrate their application.

2 Failure of Fourier-envelope methods
Consider the standard test problem for investigating stability and

accuracy properties of linear multistep integration methods [2, 11]:

ẋ � λx � b � t ��� (1)

In circuit terms, this corresponds to a simple RC network, with a ca-
pacitor voltage of x � t � , and driven by a voltage source with value b � t � .
For illustration, we use the values

λ � 103 � b � t � � sin � 2π106t � � (2)

corresponding to an RC time constant of 1ms and a sinusoidal excita-
tion of 1MHz.
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Figure 1: Standard test ODE: Transient simulation

A solution of (1) with initial condition x � t � 0 � � 0 is shown in
Figure 1. As expected, the 1MHz excitation results in a ‘fast response’
that varies at the same rate; due to the slow RC time-constant, however,
there is also a decaying transient ‘slow response’, that eventually dies
out in this case. This is the classic widely-separated time scale issue,
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a challenge for transient simulation because of the large number of
timepoints required.

The goal of envelope methods is to predict the waveform in Fig-
ure 1 more efficiently than lengthy initial-value simulations. Fourier
envelope is particularly attractive for this system, since the response
can be captured exactly in the form

x � t � � X0 � t � � a � t � sin � 2π106t � φ � t ���� X0 � t � � X1 � t � e j2π106t � X � 1 � t � e � j2π106t � (3)

X0 � t � is called the DC envelope, while a � t � , φ � t � , X1 � t � and X � 1 � t �
are various components of the first harmonic envelope. For envelope
simulation to be useful, these must all be slowly-varying quantities.
Simply from examination of Figure 1, it may be expected that the DC
envelope for this system should be a slowly-decaying curve, while the
first harmonic envelope (i.e., the amplitude of the oscillations) should
remain substantially constant.
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Figure 2: Test ODE: Fourier envelope simulation

Unfortunately, when existing Fourier-envelope techniques [3, 14]
are applied to this problem, the waveforms obtained can be very dif-
ferent. The results of Fourier-envelope simulation [3] with zero initial
condition are shown in Figure 2. Not only is the DC envelope substan-
tially different from that expected, the first-harmonic envelope shows
large oscillations that appear clearly unphysical.

Such undesirable phenomena appear to have limited the application
of envelope methods. To the author’s knowledge, a clear understanding
of the causes of this unpredictable envelope behaviour is not available.
An important basic question is whether these undesirable phenomena
have purely numerical causes. In the remainder of the paper, we first
provide an answer to this question, and then propose and evaluate tech-
niques to circumvent the undesirable phenomena of Figure 2.

3 Non-slow envelopes, and stiff systems
To investigate the problem identified above, we use the mathemat-

ical framework of multi-time partial-differential equations (MPDEs,
e.g., [1, 13]). The MPDE formulation is useful in this context because
it provides an underlying unifying basis from which a number of en-
velope simulation techniques, including Fourier envelope, can be de-
rived [13]. An MPDE corresponding to (1) is

d
dt1

x̂ � t1 � t2 � � d
dt2

x̂ � t1 � t2 � � λx̂ � sin � 2π106t2 ��� (4)

Recall that the usefulness of (4) stems from that if x̂ � t1 � t2 � is a solution,
then x � t � � x̂ � t � t � solves (1). In the above MPDE, t2 is the artificial time
scale corresponding to the 1MHz fast variations, while t1 captures slow
variations. The envelope should then be a slow function of t1.

To find a unique envelope solution of (4), an envelope initial con-
dition must be specified (akin to the initial condition for (1)). We set

the envelope initial condition at t1 � 0 to be

x̂ � t1 � 0 � t2 �
	 0 � (5)

Note that this envelope initial condition is consistent with the zero ini-
tial condition used for the initial value solution of (1).

3.1 Rapid undulations in envelopes
For the simple MPDE (4) with initial condition (5), an exact ana-

lytical solution can easily be found; it is

x̂ � t1 � t2 � � λ
e ��� λ  j2π106 � t1 � 1

4π106 � 2 jλ
e j2π106t2 � c.c. terms � (6)

Observe that the t2-variation of (6) is a pure sinusoid at 1MHz, periodic
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Figure 3: Standard test ODE: analytical multi-time solution

with period 1µs. x̂ � t1 � t2 � is plotted in Figure 3 for t1 ��� 0 � 3µs � .
Figure 3 reveals an unexpected phenomenon: the ‘slow’ envelope,

i.e., variation of x̂ � t1 � t2 � with respect to t1, contains fast oscillations of
frequency about 1MHz. This is contrary to the fundamental expecta-
tion for envelope techniques, i.e., that the envelope will vary slowly.
We remind the reader that Figure 3 is plotted from the exact analytical
solution (6), and is therefore not affected by any possible numerical ar-
tifacts. This is borne out by the multi-time envelope simulation results
shown in Figure 4.
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Figure 4: Standard test ODE: short multi-time envelope simulation

We now turn to the manifestation of this phenomenon in Fourier-
envelope methods. The Fourier-envelope equations corresponding to
(4) are

d
dt

X0 � t � � � λX0 � t � �
d
dt

X1 � t � � ��� λ � j2π106 � X1 � t � � 1
2

jλ �
d
dt

X � 1 � t � � ��� λ � j2π106 � X � 1 � t � � 1
2

jλ �
(7)
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The solution of these equations with initial condition Xi � 0 � � 0 corre-
sponds to the multi-time solution (6), from which it is apparent that the
Fourier envelope solution is

X0 � t ��	 0 � X1 � t � � X̄ � 1 � t � � λ
e ��� λ  j2π106 � t � 1

4π106 � 2 jλ
� (8)

Observe that rapid undulations (of frequency 1MHz) are present in the
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Figure 5: Short Fourier-envelope simulation of test ODE

envelope waveform given by (8); these are verified by a few fast cycles
of Fourier-envelope simulation, shown in Figure 5.

3.2 Envelope initial conditions
The above observations begin to shed light on the undesired phe-

nomena of Figure 2. Clearly, if the analytically-obtained envelope has
fast oscillations that persist, it is only to be expected that numerical
integration with time-steps much larger than the oscillation period will
provide meaningless, artifact-ridden results.

Note, however, that (6) and (8) are not the only possible envelope
solution to this problem. As noted earlier, the envelope is determined
as much by the initial condition (5) as by the system itself. The only
requirement on the envelope initial condition x̂ � t1 � 0 � t2 � is that it be
consistent with the original problem’s initial condition at t � 0, i.e.,
x̂ � t1 � 0 � 0 � � x � t � 0 � . This leaves open the possibility that with ap-
propriate choice of initial condition, the envelope solution can be made
free of fast undulations.

To illustrate this, we return to the Fourier-envelope equations (7)
Instead of the previous initial condition X0 � 0 � � X1 � 0 � � X � 1 � 0 ��	 0,
consider the alternative initial condition

X1 � 0 � � λ
2 jλ � 4π106

� X � 1 � 0 � � X̄1 � 0 � �
X0 � 0 � � � 2ℜ � X1 � 0 ����� (9)

It may be verified that this new envelope initial condition leads to the
envelope solution

X1 � t �
	 X1 � 0 ��� t � X � 1 � t � � X̄1 � t � �
X0 � t � � X0 � 0 � e � λt � (10)

Unlike (8), the envelopes (10) do not contain fast variations, and it is
thus meaningful to use numerical methods to find them.

3.3 Envelope equations are stiff
Having established that proper initial conditions are critical for ob-

taining meaningful and slowly-varying envelopes, we now turn our at-
tention to properties of the Fourier-envelope equations that may impact
their numerical solution.

We first note that the test problem (1) has only a single intrinsic
time-constant 1

λ , which in our illustrative example is 1ms. The problem

is therefore not stiff1. It is the fact that the external input is far more
rapid than the system’s intrinsic relaxation rates that creates a widely-
separated time scale problem requiring envelope methods for efficient
solution.

Now consider the corresponding Fourier-envelope equations given
by (7). Note that the input to each of these equations has no fast
variations (being constants); this is the feature that enables the enve-
lope equations, potentially, to have slowly-varying solutions. However,
note that the intrinsic time-constants of the envelope equations are now
widely separated. For example, in the equation for X1 � t � , the real part
of the time constant is λ � 103, while the imaginary part is 2π106 .
The fast-time variation of the input to (1) has been transformed into an
intrinsic time-constant in the envelope equations.

In other words, even though the original circuit or DAE problem
was not stiff, the Fourier-envelope equations (7) are. It is the stiff-
ness that manifests itself as fast oscillations that decay only as slowly
as (potentially) the slowest time-constant of the original system. It
is also apparent that the larger the number of harmonics considered in
the Fourier-envelope method, the stiffer the Fourier-envelope equations
become.

The main insights obtained in this section are:� The exact solution of envelope equations can have rapid vari-
ations in addition to slow ones, thereby undermining the pur-
pose of envelope simulation. Without first addressing this basic
issue, it is pointless to seek or apply ‘better’ numerical tech-
niques.� The nature of the envelope solution, in particular its fast vari-
ations, depends strongly on the envelope initial condition ap-
plied. The possibility remains that with appropriate initial con-
ditions, the envelope solution will have only slow variations.� Even when using initial conditions that eliminate fast variations,
care must be taken to use numerical integration methods appro-
priate for stiff problems, to avoid numerical artifacts stemming
from stiffness of the Fourier-envelope equations.

In the next section, we propose techniques to address these issues
and devise a robust Fourier-envelope method.

4 Robust Fourier envelope
As pointed out in the previous section, the two main tasks in de-

vising a robust Fourier-envelope method are 1. to find envelope ini-
tial conditions that result in slowly-varying solutions, and 2. to use
stiffly-stable integration techniques for solving the envelope equations
numerically.

The latter task is the easier to address. A wide body of litera-
ture on effective numerical methods is available for stably integrat-
ing stiff differential equations (e.g., see [2, 4, 8, 11]). For example, the
second-order Backward Differentiation Formulae (BDF), better known
as Gear’s methods, are popular in circuit simulation.

The task of finding good envelope initial conditions, for a gen-
eral system, is more challenging. In the remainder of this section, we
present two approaches towards this end. The first uses several short
transient simulations of the underlying DAE to find an initial condition
for the envelope equations. The second exploits numerical damping
properties of ‘overstable’ integration methods, specifically the Back-
ward Euler (BE) method in this work, to arrive at an envelope initial
condition.

To facilitate exposition, the remainder of this section uses the sim-
ple illustrative example already encountered in Section 2 and Section 3.
It should be kept in mind, however, that the techniques proposed are
motivated by, and applicable to, the general problem posed by the po-
tentially large system of DAEs

q̇ � x � � f � x � � b � t � � 0 � (11)
1Recall that differential equations are stiff if they have widely-separated intrinsic time-

constants or eigenvalues [2, 4].
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and its corresponding MPDE�
d

dt1
� d

dt2 � q � x̂ � � f � x̂ � � b̂ � t1 � t2 � � 0 � (12)

descriptions adequate not only for circuit applications, but for a variety
of optical, mechanical and mixed-domain problems.

4.1 Mapping slow-timescale initial conditions
The insight behind the first approach is best grasped using multi-

ple time scales. Consider Figure 3. The envelope initial condition is
specified along the entire t2 line, at t1 � 0; in the figure, this condition
is identically zero, which as noted in the previous section, leads to the
fast variations along t1.

The only real constraint on the envelope initial condition is that it
be consistent with whatever initial condition is specified for the under-
lying DAE problem (1) – in this case, that the value at � t1 � 0 � t2 � 0 �
is zero.

Furthermore, there is no real necessity that the envelope initial con-
dition be specified at exactly t1 � 0, so long as consistency with the
DAE initial condition is retained. It could, for instance, be specified
along the t2-line at t1 � T2, where T2 is the period of the fast time scale
– 1µs in our example.

The key idea behind finding a ‘good’ envelope initial condition is
the following: instead of directly specifying a (hard-to-guess) enve-
lope initial condition along the t2 line at t1 � 0, a) specify instead a
slowly-varying initial condition along a short segment of the t1 line,
specifically t1 ��� 0 � T2 � at t2 � 0, and then b) map this slow t1-initial-
condition to the t2-line at t1 � T2. The envelope simulation is then
started from t1 � T2 instead of t1 � 0.

The mapping between the two lines is carried out simply through
transient simulations (i.e., initial value solutions of the underlying
DAE). This is possible because diagonal lines along the � t1 � t2 � plane
of the MPDE correspond to initial value solutions of the underlying
DAE with appropriate time-shifts to the excitation term [13].
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Envelope simulation progresses

Figure 6: Slow ICs along t1, mapped to ‘good’ t2 ICs at t1 � T2

The idea is illustrated in Figure 6. Using the underlying DAE
initial condition at � t1 � t2 � � � 0 � 0 � , a transient simulation (i.e., initial
value DAE solution) is first carried out to � t1 � t2 � � � T2

� T2 � . This is a
short transient simulation, corresponding to one fast cycle. Periodic-
ity with respect to t2 implies that the solution at � t1 � t2 � � � T2

� 0 � has
been obtained. A smooth curve is now fitted between the end-points� t1 � t2 � � � 0 � 0 � and � t1 � t2 � � � T2

� 0 � to obtain the slowly-varying initial
condition along t1 ��� 0 � T2 � � t2 � 0.

Starting with these initial conditions, a number of transient simu-
lations are now carried out for periods less than T2, as indicated by the
diagonal arrows in Figure 6. The initial condition at t1 � T2

� t2 � � 0 � T2 �
is thus obtained, using which the envelope simulation along t1, employ-
ing large timesteps, is initiated.

Figure 7 shows the initial condition obtained by this procedure for
the test problem (1), as both a time-domain waveform and its Fourier
components. It can be seen that the Fourier components are virtually
identical to those in (9), even though they were obtained by a general
procedure that does not rely on direct knowledge of the specific sys-
tem. The Fourier-envelope simulation started with this initial condition
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Figure 7: Test ODE: mapped envelope initial condition at t1 � 1µs
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Figure 8: Test ODE: Fourier envelope components

(using a stiffly-stable integration method) are shown in Figure 8; ob-
serve that the slowly-varying solutions are consistent both qualitatively
and quantitatively with Figure 1 and (10).

By construction, this mapping technique ensures that the envelope
solution obtained is consistent with the specified initial condition of
the underlying DAE problem. On the other hand, it does not guarantee
an envelope initial condition that completely eliminates fast ringing,
although these are substantially reduced in practice. Extensions of the
mapping, using transient simulations for a few multiples of T2, can pro-
duce even better initial conditions. However, when exact consistency
with the underlying DAE’s initial condition is not mandatory and ap-
proximate consistency suffices (as is often the case in applications),
using artificial numerical damping to augment mapping, as described
below, is simple to implement and proves beneficial in practice.

4.2 Exploiting artificial numerical damping
It is a well-known fact [2, 11] that certain numerical integration

methods, like Backward Euler (BE), are ‘overly stable’, i.e., they can
artificially damp out growing or persistent oscillatory solutions. Since
the resulting solutions are wrong, these artifacts are not desired in most
situations. Particularly when simulating oscillators, for instance, BE is
notorious for requiring extremely small timesteps to achieve any sem-
blance of accuracy, and is therefore usually avoided.

It is instructive, however, to examine the mechanism and features of
this artificial damping. In essence, the damping is caused by the intro-
duction of spurious real (decaying) time-constants, of approximately
the same order as the timesteps taken. If the timesteps taken are of the
same order as the fast oscillatory time-constants, these are therefore
rapidly eliminated within a few cycles. However, these spurious de-
caying time-constants have negligible impact on waveforms with much
slower time-constants.

This insight suggests a way to use artificial damping to advantage
for finding good envelope initial conditions. A few fast cycles of simu-
lation with a numerical technique such as BE can be used to eliminate
fast variations in the envelope. After the fast oscillations have (quickly)
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died out, the remaining solution can be used as an initial condition to
restart the envelope simulation with accurate numerical techniques and
much larger timesteps.

The new initial condition obtained via artificial damping is not con-
sistent with the originally specified DAE initial condition. If, however,
the artificial damping procedure is itself started with the mapped en-
velope initial condition previously described, the oscillations that are
damped out are already relatively small, hence the damped initial con-
dition is approximately consistent with the specified DAE initial con-
dition, to within the amplitude of the small oscillations that are damped
out. This translates to a small change in the originally specified DAE
initial conditions, which is often acceptable in applications requiring
envelope simulation.

0

2

4

6

8

x 10−6

0

0.2

0.4

0.6

0.8

1

x 10−6

−2

−1

0

1

2

x 10−4

slow time (t1)

TDENV simulation of RC circuit

fast time (t2)

C
ap

ac
ito

r V
ol

ta
ge

   
   

   
   

   

(a) multi-time solution

0 1 2 3 4 5 6 7 8

x 10−6

−2

0

2

4

6

8

10

12

14

16
x 10−5

t1 (slow time)

C
ap

ac
ito

r V
ol

ta
ge

   
   

   
   

   

TDENV simulation of RC circuit: slice at t2=4.66667e−07

analytical
numerical

(b) slice along t2 ! 0 " 5T2

Figure 9: Test ODE: artificial damping by Backward Euler

Figure 9a shows the effect of using BE with 20 timesteps per fast
cycle on the MPDE (4) with zero envelope initial condition. The rapid
elimination of t1 oscillations can be seen. The damping solution is
compared with the correct analytical solution in Figure 9b, which de-
picts a slice of the multi-time solution, as it varies with t1, at t2 # 0 � 5T2.

For the test ODE problem, the mapped initial condition described
previously is excellent, hence there is little extra benefit to applying the
damping procedure in addition. The damping procedure is beneficial
in more complex circuits, however, as shown in Section 5.
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Figure 10: Test ODE: blind application of large-timestep BE

It is interesting also to note what happens when BE is applied di-
rectly to the Fourier-envelope equations with large timesteps, without
first selecting good envelope initial conditions. The artificial damping
property of BE eliminates fast oscillations within a single timestep, as
seen in Figure 10b. The DC envelope obtained in Figure 10a, though
slowly-varying, is however very different from the correct solution
shown in Figure 8. This underscores the importance of paying care-
ful attention to envelope initial conditions, even when the envelope
solution is slowly varying and appears reasonable at first sight.

5 Experimental results
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Figure 11: Balanced CMOS down-conversion mixer [10]

The circuit shown in Figure 11 is a balanced direct-downconversion
mixer adapted from [15]. An important feature of this circuit is that the
lower pair of MOSFETs constitutes a frequency doubler, generating a
current at twice the LO frequency. This current feeds the differen-
tial pair formed by the upper two MOSFETs, resulting in mixing and
down-conversion. The LO signal is a sinusoid at 450MHz, while the
RF signal consists of a 900MHz carrier modulated by a 10kbps bit-
stream. Furthermore, the gain of the downconversion is changed over
the bitstream by slowly changing the LO signal amplitude.

0 0.5 1 1.5 2 2.5

x 10−9

2.964

2.964

2.964

2.964

2.964

2.9641

2.9641

2.9641

2.9641

2.9641

t2

M
O

S
2 

dr
ai

n 
   

   
   

   
   

   
   

t2−initial condition of circuit ENVDAE at t1=T2

(a) time domain

0 10 20 30 40 50 60 70
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

fft harmonic index

lo
g1

0(
ab

s(
Fo

ur
ie

r c
om

po
ne

nt
 o

f M
O

S
2 

dr
ai

n 
   

   
   

   
   

   
   

))

Fourier componeents of t2−initial condition of ENVDAE at t1=T2

(b) frequency domain

Figure 12: Mapped envelope initial condition

A Fourier-envelope simulation was started from the DC initial con-
dition of the circuit. The DC initial condition was first mapped, using
the procedure described in Section 4.1, to an envelope initial condition
at t1 � T2

� 2 � 2ns, the time-period corresponding to 450Mhz. 80 short
transient simulations were employed in the mapping. The mapped en-
velope initial condition at the drain of one of the upper MOSFETs is
shown in Figure 12. The frequency-doubling action of the lower pair of
MOSFETs is apparent. The initial condition was reduced to 16 Fourier
components for the envelope simulation.

Figure 13 shows the DC and second-harmonic Fourier-components
at the same output node, as they vary slowly with time. The initial
startup transient of down-converted bitstream is apparent in the DC
component. The effect of slowly varying the downconversion gain can
also be seen from the changing amplitude of the bits. The 900MHz
second harmonic component is largely filtered away at the outputs, but
the small residual values can be seen to follow the same pattern as the
down-converted bitstream.
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(a) DC component
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Figure 13: Fourier envelope simulation of mixer

6 Conclusion
Full exploitation of Fourier-envelope techniques has been hindered

by robustness issues to date. We have clarified the mechanisms re-
sponsible for problems in these algorithms in this paper, and proposed
effective remedies. The techniques presented in this paper, it is ex-
pected, will substantially alleviate ‘numerical’ robustness problems in
envelope algorithms and enable their wider application.
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