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ABSTRACT
A novel circuit topology for inductive coupling between intercon-
necting wires is presented. The model is local, i.e., only coupling
between neighboring wires is explicitly modeled. However, the
topology accounts for long-range coupling by propagating the vec-
tor potential from one wire to the next. Examples of model cali-
bration, both directly from layout and as model-order reduction of
a given inductance matrix, are presented for simple wiring struc-
tures.

1. INTRODUCTION
Computer-aided design of gigahertz-range digital and analog inte-
grated circuits requires accurate and efficient models for inductive
effects in interconnection wires, both on- and off-chip. Unlike ca-
pacitances and resistances, parasitic inductances do not lend them-
selves to simple models for circuit simulation. In the absence of
magnetic materials or extensive shielding, magnetic fields propa-
gate to large distances, with only a 1

�
r attenuation. Therefore,

the coupling between numerous circuit elements must be accounted
for. In mathematical terms, a partial inductance matrix can be de-
fined, where each entry describes the electromotive force on a wire
segment caused by the time dependence of current in another wire.
Unlike the capacitance matrix, the inductance matrix is dense, i.e.,
in general no entries are so small as to be neglected without loss
of accuracy. Moreover, the simple pruning of small elements in
the partial inductance matrix may lead to unphysical and unstable
networks [1]. For circuits of realistic size, the number of induc-
tive coupling coefficients rapidly becomes unmanageable. Some
attempts towards sparsifiying the inductance matrix have focused
on removing long-range interactions while preserving stability [1,
2, 3]. Clearly, if such long-range interactions are important, a loss
of accuracy occurs. The inductance problem may also be recast
in an alternative form, by computing the inverse inductance matrix
which has better sparseness and stability properties [4, 5]. Other�
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authors have focused on algorithms to identify current-return paths
[6, 7], or on multipole expansions to reduce the number of coupling
coefficients [8].

Ultimately, the complexity of the existing inductance models can
be attributed to the integral representation adopted, whereby the
magnetic field or vector potential at any given point depends on the
currents at every other point in the circuit. In this paper we present
an alternative representation, which is intrinsically sparse and lo-
cal. By analogy with the electrostatic problem, a vector-potential
equivalent circuit (VPEC) is obtained, which describes the propa-
gation of the vector potential from one region of space to the next.
Only coupling coefficients between neighboring wires are needed,
rather than between every possible pair of wires.

The model parameters can be directly extracted from wire geome-
try, by integration of the basic magnetostatic equations. However,
the VPEC topology can also be used as a reduced-order model to re-
cast any existing inductance matrix into a local, more sparse form,
while conserving a straightforward physical interpretation for all
circuit elements. With respect to alternative sparsification tech-
niques, the present approach offers advantages of improved flexi-
bility in the accuracy-complexity tradeoff, simplicity of implemen-
tation, and a clearer physical foundation. In this paper we mainly
focus on the problem of long-range inductive interactions between
large wires. Short-range phenomena such as the skin effect affect
local wire models only, and can be added a posteriori using one of
the common modeling techniques [9].

The paper proceeds as follows. In Section 2 the mathematical for-
malism for the vector potential in the Coulomb gauge is briefly
reviewed. Section 3 introduces the topology of the VPEC. In Sec-
tion 4 we describe the first-principle extraction of circuit elements
from wire geometry. The unconditional stability of the equivalent
circuit is proved in Section 5. In Section 6 we present examples
of direct model extraction from wire geometry, while in Section 7
an example of model-order reduction is discussed. Conclusions are
drawn in Section 8.

2. VECTOR POTENTIAL FORMALISM
The vector potential concept represents a convenient way of deal-
ing with magnetostatic problems in an electrostatic-like formalism.
The vector potential A in the Coulomb gauge is defined by [10]

∇ � A � B (1)

∇ � A � 0 � (2)
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where B is the magnetic field. The total electric field acting on
charged particles can be obtained as

E ��� ∇φ � Ȧ � � 3 	
where the dot represents the time derivative. The three compo-
nents Ax � Ay � Az of the vector potential A are obtained from the three
equations

∇2Ai 
 µJi � 0 � i � x � y � z � � 4 	
With the boundary condition A � ∞ 	�� 0, the vector potential can be
explicitly obtained as

A � r 	
� µ
4π

�
dr � J�

r � � r
� � � 5 	

where the integral is computed over all space. Eq. (5) can be used
to compute the vector potential once the currents are known. The
numerical calculation of the integral can be expensive, which moti-
vated the development of acceleration methods based on multipole
expansions [11]. In the rest of this paper we will assume that such
integral can be accurately evaluated at whatever point in space and
whenever necessary. As we will see, the distribution of currents can
be considerably simplified, and the number of evaluations required
for the integral is so small that no special acceleration techniques
are needed.

With the above approach, one can find all the self- and mutual in-
ductances of a set of conductors in three-dimensional space. With
n conductors, one obtains a dense matrix of n2 coefficients. In the
next section we will find a more compact formulation of the same
problem, where only order O � n 	 electrical elements are necessary.

3. VECTOR-POTENTIAL EQUIVALENT
CIRCUIT TOPOLOGY

In order to derive a local equivalent circuit for the vector potential,
we decompose the entire domain of interest into discrete control
volumes, or boxes, of arbitrary shape, that we denote as Ωk [12,
13]. Typically, each control volume will surround a single wire seg-
ment. Integrating Eq. (4) over volume Ωk and applying the Gauss
theorem, we obtain�

Sk
dS � ∇Ai 
 µ

�
Ωk

dΩJi � 0 �
where Sk is the outer surface of Ωk. Let us now define Skl as the
surface separating volume Ωk from Ωl , so that

∑
l

�
Skl

dS � ∇Ai 
 µ
�

Ωk
dΩJi � 0 � � 6 	

where the sum over l includes all nearest neighbors of Ωk. Eq. (6)
can be seen as the Kirchhoff current law for the vector-potential
equivalent circuit of Fig. 1. The node voltages Ak

i and Al
i repre-

sent the (suitably averaged) i-component of the vector potential in
volumes Ωk and Ωl . The current source Ik

i is defined as

Ik
i � µ

�
Ωk

dΩJi � � 7 	
The surface integrals in Eq. (6) are proportional to the gradient of
the vector potential on the surfaces Skl . This is similar to the ex-
pression for conduction current flow through a surface S:

J ��� σ
�

S
dS � ∇φ �

where σ is the conductivity, and φ is the electrostatic (scalar) po-
tential. Ohmic transport is commonly represented by resistive ele-
ments. By analogy, we model the flux of the gradient of the vector

i

iI
Rkl

kA
l
iA

i

k

Figure 1: Equivalent circuit for the i-component of the vector
potential A. Voltages Ak

i and Al
i correspond to the vector poten-

tials in two neighboring control volumes Ωk and Ωl . Current
source Ik

i models the effect of conduction current on the vec-
tor potential. Resistor Rkl

i represents the propagation of vector
potential between the two regions.

potential as a current flow through resistors Rkl
i . Since such ele-

ments do not correspond to physical resistors, they are measured
not in Ohm but in units of inverse length [i.e., 1

�
m in the MKS

system; see also Eq. (11) below].

The circuit of Fig. 1 has the following simple interpretation. The
current source Ik

i tends to increase the i-component of the vector
potential in region Ωk , as shown by Eq. (5). However, the vector
potential is also affected by current flowing in neighboring regions,
which act through lumped resistors Rkl

i . Although this model is
local, it allows for nonlocal effects, by letting the vector potential
‘enter’ and ‘exit’ discrete regions in space. Note that the Coulomb-
gauge condition of Eq. (2) should not be confused with the flux
equations (6). In other words,

∇ � A � 0 � but ∇Ai �� 0 �
To represent the effect of the magnetic field on current flow, we
must introduce a voltage source acting on charged particles. The
applied voltage must be proportional to the line integral of the elec-
tromotive force:

V kl
em ��� �

Γkl
dΓ � Ȧ � 8 	

where Γkl is a path connecting regions k and l. In the case of nar-
row, rectilinear wires, with a small cross-section, the ambiguity in
the choice of the integration path is usually irrelevant. Note that the
straightforward use of Eq. (8) would require knowledge of the elec-
tromotive force at the interface between regions, to properly model
conduction-current flow. However, the electromotive force is pro-
portional to the time derivative of the vector potential, and is best
defined within each region. It is convenient in practice to adopt two
complementary discretization schemes, one for the electrical quan-
tities (scalar potential) and another for the magnetic quantities (vec-
tor potential). When obtaining circuit equations, the edges of the
electrical network will correspond to nodes for the magnetic net-
work, and vice versa. Such staggered discretization is well known
in the context of partial-element equivalent circuit (PEEC) models
[14]. Accordingly, in the following we will denote the electromo-
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Figure 2: Equivalent circuit connecting two voltage nodes, V p

and V q. A conventional resistor Rpq and capacitor Cpq repre-
sent the flow of conduction and displacement current between
points p and q, respectively. The effect of magnetic fields is
modeled by a voltage source V k

em, controlled by the vector po-
tential in the control volume Ωk which lies between p and q.

tive voltage source as V k
em rather than V kl

em, and define it as

V k
em ��� �

Γk
dΓ � Ȧ � 9 	

where Γk is a path internal to control volume Ωk. The complete
circuit connecting two voltage nodes, V p and V q, is presented in
Fig. 2. The magnetic control volume Ωk is assumed to lie in the
space between points p and q. An ohmic resistance Rpq and a ca-
pacitance Cpq are shown, as well as the electromotive force V k

em.
Note that the topology is such that the presence of V k

em does not
affect the dielectric displacement represented by capacitor Cpq,
which is proportional to the gradient of the scalar (electrostatic)
potential only. However, the conduction current will be affected by
the sum of the potential drop V p � V q and the electromotive force
V k

em, consistently with Eq. (3).

Three circuits of the type of Fig. 1 will be defined for each vol-
ume Ωk , one for each of the components i � x � y � z. If all currents
are flowing in a plane (e.g., for large planar layouts, where the z
dimension is negligible), then one of the circuits can be omitted.
Figure 3 shows the complete circuit topology for a set of wires
arranged in both x and y directions, adopting the staggered dis-
cretization scheme. Two VPECs model the x and y components
of the vector potential, respectively, with resistors connecting only
neighboring wires. Note that orthogonal wires do not couple mag-
netically. Although in this example only horizontal and vertical
wires are shown, the treatment could be easily extended to diago-
nal wires and non-Manhattan layouts. This would be achieved by
letting current in one wire affect both x and y components of the
vector potential, and by letting both components of the vector po-
tential affect the current in the wire. Boundary conditions (shown
as resistors to ground) will be discussed in the next section.

4. EXTRACTION OF MODEL
PARAMETERS

In the previous section, an equivalent circuit topology was rigor-
ously obtained from field equations. However, to achieve a usable
model, branch-constitutive equations are needed, whereby the cur-
rents flowing through elements are computed as functions of the
terminal voltages. As will be seen later in this section, the only non-
trivial parameters in the VPEC are the resistances Rkl

i . The number
of such parameters is equal to the number of nearest-neighbor inter-
connections, which is of the same order of the number of physical

c)

a) b)

d)

Figure 3: Complete circuit topology for a simple arrangement
of wires, neglecting current conduction in the z direction. a)
Physical layout (top view in the xy plane). b) Magnetic cir-
cuit for the x component of the vector potential (voltage nodes
correspond to wire midpoints). c) Magnetic circuit for the y
component of the vector potential. d) Electrical circuit (volt-
age nodes correspond to joints between wires). Wire-to-wire
stray capacitances are omitted for clarity. Current sources in
the magnetic circuit are controlled by currents in the electrical
circuit according to Eq. (7). Voltage sources in the electric cir-
cuit are controlled by voltages in the magnetic circuit according
to Eq. (9).

elements in the circuits. We will first describe how such resistors
can be extracted from wire geometry. In Section 7 we will give an
example of the extraction of the magnetic resistances from a pre-
computed, dense partial inductance matrix.

As shown in our previous paper [12], the numerical values of a
physically-based equivalent circuit can be calibrated using data
from numerical simulations. In this case, all the element values
can be estimated from the knowledge of the current density J. We
call this initial information a ‘trial’ or ‘experiment’ and denote it
by J. One way of obtaining a realistic current density is by a nu-
merical solution of the Poisson and continuity equations at steady
state. However, as will be shown in the following, in most practi-
cal cases an ad-hoc current density can be generated that allows a
much faster evaluation of the numerical expressions.

4.1 Vector-potential resistances
First of all, let us define the average vector potential in region k as

Ak
i � 1

Ωk

�
Ωk

drAi � r 	 W k � r 	�� i � x � y � z � � 10 	
where W k is a weighing function. The weighing may be uniform
(W k � 1), impulsive (W k � Ωkδ � r � rk 	 ), or somewhere in be-
tween. Choice of weighing will be dictated by the problem at hand.
The vector-potential resistance Rkl

i is then obtained as

Rkl
i � A

l
i � A

k
i�

Skl dS � ∇Ai
� � 11 	



where A is the vector potential computed from a trial current dis-
tribution J according to Eq. (5). Note that in principle, we do not
need the current distribution J to satisfy any particular property. In
the case of narrow rectilinear conductors, one can simply assume
a uniform current density, and force a unit current through one of
the regions involved (Ωk or Ωl ), leaving zero current in all other
regions. Although unphysical (∇ � J �� 0!), this situation allows the
maximum accuracy in the determination of the resistance Rkl

i , as it
emphasizes the role of the vector potentials in regions k and l and
their magnetic coupling. Note that in this case, the method allows
an extremely rapid model extraction, since the integral of Eq. (5)
only includes volumes Ωk and Ωl rather than the entire simulation
domain. Moreover, if the conductors are rectilinear, the surface
integral in Eq. (11) can be analytically evaluated, or well approx-
imated, in many important cases (e.g., flat and cylindrical region
boundaries).

4.2 Vector-potential current sources
The current source Ik

i was defined in Eq. (7) as a function of the
three-dimensional current distribution J. If, as is typical, each vol-
ume Ωk comprises a single wire, a unique conduction current Ik can
be defined (neglecting charge storage in the wire) and the vector-
potential current source is written as

Ik
i � Fk

i Ik �
where the ‘current gain’ Fk

i is extracted from the trial current as

Fk
i � µ

�
Ωk dΩJi�
Sk dS � J � 12 	

and Sk is an arbitrary cross-sectional surface of Ωk. If the wires
are narrow and rectilinear, the calculation of the coefficient Fk

i is
trivial:

Fk
i � µλkuk � ui � � 13 	

where λk is the conductor length, uk is the unit vector giving its di-
rection, and ui is the unit vector corresponding to the i-component.

4.3 Electromotive voltage sources
Once the vector-potential circuit definition is complete, Eq. (6) be-
comes the Kirchoff current law

∑
l

Al
i � Ak

i

Rkl
i


 Ik
i � 0 �

From the knowledge of the average vector potential Ak in each vol-
ume Ωk, one can now obtain the electromotive force. If the mag-
netic ‘voltage nodes’ are defined on the edges of the electrical net-
work, the induced voltage is computed as

V k
em ��� ∑

i � x � y � zEk
i Ȧk

i �
where the ‘voltage gain’ Ek

i is extracted from the trial current as

Ek
i � �

Γk dxi Ai

A
k
i

� � 14 	
In the case of narrow, uniform, rectilinear wires, with uniform
weighing of vector potential, the coefficient Ek

i reduces to

Ek
i � λk uk � ui � � 15 	

4.4 Boundary conditions
A common issue with magnetostatic problems is that of boundary
conditions. In the absence of magnetic materials, magnetic field
lines slowly decay to infinity, without sources or sinks. The vector-
potential approach of Eq. (5) is not affected by such problems, as it
allows the calculation of the vector potential in a limited domain as
long as currents are limited in space.

The extraction technique can naturally include boundary condi-
tions. One can think of surrounding the simulation domain with
extremely large regions of space, which act as grounding termi-
nals. The average vector potential inside each of those regions is
clearly zero. The resistance from region k to ground terminal 0 is
then defined as

Rk0
i ��� A

k
i�

Sk0 dS � ∇Ai
� � 16 	

Resistance Rk0
i then describes the loss of vector potential into

empty space and roughly plays the role of a ‘vacuum impedance.’
Note that such resistors act as absorbing, or perfectly-matched
boundaries. Therefore, they can be placed adjacent to the wire
control volumes, thus removing the need of discretizing the space
around the circuit and greatly reducing model complexity.

5. STABILITY
For the VPEC to be stable, the partial-inductance matrix must be
positive definite. We will prove the stability of the model for a
network of narrow, rectilinear wires. The stability for more com-
plicated geometries follows if one decomposes conductors into nar-
row filaments. From the model construction, the inductive effect is
modeled in three steps: (1) Current flow in wire k causes injection
of current into the VPEC, with current gain Fk

i . (2) As a conse-
quence, a change of vector potential occurs at every other wire l.
(3) The change of vector potential Al

i causes an electromotive force
at wire l, with voltage gain E l

i . Therefore, the partial-inductance
matrix can be written as

Llk � ∑
i � x � y � zFk

i Zlk
i E l

i � ∑
i � x � y � zµλlλk � ul � ui 	�� uk � ui 	 Zlk

i

where Zlk
i is the resistance matrix which describes the increase of

the i-component of vector potential at node l due to a unit current
injected into the VPEC at node k. It is well known that the resis-
tance matrix of any network of positive-valued resistors is always
positive definite, or else the network could generate power. From
elementary matrix algebra, one sees that the positive definiteness of
Zlk

i guarantees the positive definitess of Llk, and therefore the sta-
bility of the circuit. The adoption of a resistive network to represent
the propagation of the vector potential allows not only a compact
representation, but an unconditionally stable one.

6. EXAMPLES
We first illustrate the properties of the VPEC topology using the ex-
ample of a single wire, of length 1 cm and square cross-section of
side 100 µm. We divide the wire into sections of equal length, and
define a control volume or box around each section of wire, at a dis-
tance b from the wire. Note that b is the only free parameter in the
model, and the result will depend on its value. Fig. 4 shows the ge-
ometry of a wire divided into two segments, and the corresponding
electric and magnetic circuits. Since the current flows only in one
direction, a single component of the vector potential has to be ac-
counted for. Current-controlled current sources feed the magnetic



circuit, which represents the propagation of the vector potential be-
tween wire segments. Voltage-controlled voltage sources feed the
electrical circuit with information from the VPEC.

The parameters of the VPEC were extracted for each wire segment.
The segments were approximated as lines of zero width, thus re-
ducing Eq. (5) to a line integral. In most cases, the vector poten-
tial tends to be a slowly varying function, so that the error is very
limited. An exception was made for the vector potential due to the
current in a wire on the wire itself, which diverges for a wire of zero
width. For that case, the classic formula of Rosa was employed for
the self-inductance [15]:

Lkk � µλk

2π � ln � 2λk

wktk � 
 0 � 5 
 0 � 2235
wk 
 tk

λk � �
where wk and tk are the wire width and thickness, respectively. As-
suming uniform weighing within the wire volume, the average vec-
tor potential Ak

i on the wire was extracted from the self-inductance
as

Ak
i � Lkk

λk
Ik ui � uk �

The only free parameter in the model is the size b of the control
box surrounding each wire. If b is very small, the coupling re-
sistance becomes large, and all vector potential is assumed to be
‘lost’ to infinity. If b is too large, the coupling between neighbor-
ing wire sections becomes too strong. It is intuitive that the best
result is obtained if the flux of the vector potential gradient is al-
lowed to propagate equally in all directions. Figure 5 shows the
inductance as obtained from a Spice simulation, as a function of
the box half-size b, for two cases of a single wire segment and two
segments. For a single segment, the model reduces to that of a sim-
ple inductor and the result is exact. For two segments, the exact
result is obtained for b � 1400µm, i.e., when the control volume is
slightly longer than wider, consistently with the elongated shape of
the wire. This result is qualitatively similar to that obtained with
the equipotential shell technique [3].

As a more practical example, we consider a 32-line bus, with four
return lines. Each wire is 1000µm long, 2µm thick and 1µm wide,
with a spacing of 1µm. Values of wire resistances and wire-to-wire
capacitances were extracted from the wire geometry and material
properties. Copper and low-κ (κ � 3) were assumed as metal and
insulator, respectively. Wires were modeled using a Π topology,
with capacitors connected to the ends of each segment. A driver
resistance of 100Ω and load capacitance of 2 fF were accounted
for. For the VPEC, a cell was associated with each wire segment,
linked to its neighbors and to ‘vector-potential ground’ by resistors
(Fig. 6). Experiments have shown that the use of multiple segments
for each wire did not improve accuracy greatly, therefore all results
refer to a single-lump model. Since all cells are identical, the eval-
uation of only one line integral and three surface integrals (one for
each face of the cell) was necessary. A box of square cross-section
was chosen, with a side equal to the pitch of the bus, i.e., b � 1µm.
The square shape ensures that the propagation of vector potential
from each wire is approximately isotropic. Figure 7 shows the tran-
sient response at the far end of the first two lines, as obtained from
a Spice simulation, comparing a dense-matrix model with lower-
order approximations. The dense partial-inductance matrix was ob-
tained from Rosa’s analytical expressions [15], which is shown to
fit the result from FastHenry [11] closely. The Spice netlist ob-
tained from the dense matrix includes 36 inductors and 630 cou-
pling elements between them. The local model has only 71 resis-
tors in the magnetic network (36 to ground, and 35 between wires).

circuit
Electric

circuit
Magnetic

2 b

Figure 4: Geometry and equivalent circuit of an isolated sin-
gle wire, divided into two segments of equal length. Each seg-
ment is surrounded by a control volume. Three voltage nodes
define the electric circuit, corresponding to the voltages at the
ends of each wire segment. Two vector-potential node define
the magnetic circuit, corresponding to the average vector po-
tential along each of the wire segments. Current sources feed
the vector-potential circuit, while voltage sources feed back in-
formation on the vector potential into the electric circuit. Re-
sistors in the magnetic circuit represent propagation of vector
potential between wires.

Both the delay due to inductance and the amplitude of the ringing
are well captured by the local model.

Figure 8 illustrates the sensitivity of the model with respect to the
vertical box half-size b. Note that in this case, the cross-section of
the control volumes is rectangular, with the horizontal side equal
to the pitch of the bus, and the vertical side equal to 2b. The same
result of Fig. 7 is shown, where b is varied between 0 � 5µm and
2µm. When b is made very small, coupling between integration
boxes is negligible. The figure shows that in that case, the result
approaches that obtained from an RLC model, where only the self-
inductance of each wire is accounted for (i.e., when the coupling el-
ements are omitted). Such a model fails to reproduce the overshoot
on the active line, while it overestimates coupling to the quiescent
line. On the other hand, when the box is made too tall, coupling
is overestimated. The 50% delay, which is dominated by the wire
self-inductance, is almost unaffected. The sensitivity of the initial
overshoot is around � 10% for a factor-of-four variation in b.

7. MODEL-ORDER REDUCTION
In Section 4 we have discussed how to directly extract model pa-
rameters from wire geometries. However, the VPEC topology can
also be used as a model whose parameters are fitted to external sim-
ulations or measurements, or as a reduced-order model, to approxi-
mate a dense partial-inductance matrix. This procedure allows one
to achieve a guaranteed accuracy, which is arbitrarily close to the
one of the dense inductance matrix. It can be shown that, in general,
a choice of model parameters can be found that conserves a number
of elements in the partial-inductance matrix equal to the number of
parameters in the model, i.e., the number of nearest neighbors in
the topology. Therefore, a VPEC where all wires are coupled can
exactly reproduce any given partial-inductance matrix. Here we
will only show preliminary results for a very simple case, saving a
full discussion of the order-reduction algorithm and its applications
for a forthcoming publication.
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Figure 5: Self-inductance of a wire of length 1 cm and square
cross section of 100µm side. The results are plotted as a func-
tion of the half-size of the control volume enclosing each wire
segment. A one-segment model (solid squares) always yields
the correct self-inductance, while the two-segment model (open
squares) displays some sensitivity on the size of the control vol-
ume.
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Figure 6: Vector-potential circuit for a bus with n lines. Since
all lines are parallel to the x directions, all elements are labeled
with the subscript x. The current-controlled current sources Ik

x
feed the circuit with information from the electrical currents
flowing in each wire. Resistors Rk0

x and Rk � k � 1
x couple each wire

to ‘vector-potential ground’ (i.e., vacuum) and to its right-hand
neighbor, respectively.

We consider three parallel wires, with parameters identical to the
preceding example. We generated three different models, all with
the same topology of Fig. 6 but using the resistances as free param-
eters to conserve a given set of partial inductances. The first model
exactly conserves all self-inductances and all nearest-neighbor par-
tial inductances, i.e., Lkk and Lk � k � 1. The second model conserves
all partial inductances from the first line to the other two lines, i.e.,
L1k. Finally, the third model conserves the partial inductances from
the third line to the other two lines, i.e., L3k. The three models are
compared in Fig. 9, where the response on the middle line is shown
when a step is applied to the first line. The first model yields a very
close approximation to the full partial-inductance response. The
third model, as expected, departs from the exact result, because the
interaction between first and second line was not given any impor-
tance. However, also the second model, where L12 was exactly
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Figure 7: Transient response of the first two lines in a 32-bit
bus with four return lines. A 1-V step with rise time of 10 ps
was applied to the first line. The output voltage is shown at the
far end of the lines. Results are reported for the dense induc-
tance matrix using Rosa’s analytical formulas, the same matrix
obtained from FastHenry, the vector-potential local model, and
an RC-only model. The FastHenry simulation included 9 fila-
ments per wire, to model the skin effect.
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Figure 8: The transient response of Fig. 7, for different val-
ues of the control volume half-size b. The RLC (self-inductance
only) result is also reported for reference.

conserved, shows some error, due to the neglect of the coupling
between the second and third lines. In general, the first-principle
methods described in Section 4 and the model-order reduction tech-
nique give comparable results, if properly applied (i.e., using physi-
cally sound control volumes in the first case, and fitting appropriate
nearest-neighbor couplings in the second).

The VPEC topology can be recalibrated to fit an arbitrary subset
of any given partial-inductance matrix. This property is similar
to other sparsification techniques. For example, the equipotential-
shell method conserves all loop inductances within a given region
of space, while truncating all long-range interactions [3]. The
topology presented in this paper promises a greater flexibility, be-
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Figure 9: Transient response at the middle line of an array of
3 parallel wires, when a step of 1 V is applied to the first line.
Material parameters are identical to the examples of Figs. 7
and 8. Three models are compared, obtained as model-order
reduction of the dense partial-inductance matrix (Lkl) and con-
serving the nearest-neighbor inductance (Lk � k � 1) and the induc-
tances from the first (L1k) and third (L3k) lines.

cause if necessary, even long-range couplings can be conserved,
independently from the physical arrangement of wires. A full
inductance-extraction environment, which offers a wide range of
modeling and order-reduction options, is currently under develop-
ment.

8. CONCLUSIONS
We have presented a novel circuit topology for the description of
inductive effects in interconnection wires. The topology is in-
trinsically local, so that the number of coupling coefficients is of
the same order of the number of wires in the circuit, rather than
quadratic as in the inductance-matrix approach. The model param-
eters can be extracted from layout, or obtained by model reduction
from a given partial-inductance matrix. Initial experiments have
shown that this approach allows a unique flexibility in the accuracy-
complexity tradeoff.
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