
Interface Specification for Reconfigurable Components

Satnam Singh
Xilinx Inc, 2100 Logic Drive, San Jose, California 95124, USA

Satnam.Singh@xilinx.com

Abstract
This paper presents a way of encoding some kinds of dynamic
reconfiguration behaviour in the interface portion of circuit descrip-
tions. This has many advantages. The user of a reconfigurable
circuit has some knowledge about the reconfigurable interface of
the circuit. Static analysis tools can make better decisions about
how to schedule virtual hardware. And most importantly the com-
piler can automatically synthesize the required interface between
reconfigurable portions of the system and the regular portions of the
design. Several existing models of dynamic reconfiguration from
the literature are captured using our type system extension based on
sum types. This is especially important in System-on-Chip (SoC)
contexts where a reconfigurable IP block may have to communicate
over a non-trivial IP bus like CoreConnectTM.

1. Introduction

The primary contribution of this paper is a scheme for describing
the types of reconfigurable components which can be realised on
reconfigurable platforms like Xilinx’s VirtexTM-II PRO. Such
architectures make it feasible to produce hot-swappable circuit
components which can be dynamically attached to and removed
from the system and peripheral buses (CoreConnect in the case of
Virtex-II PRO). Supporting for describing reconfiguration behavior
is required because in order to harness the power of dynamic recon-
figuration application developers need high level abstractions for
describing reconfigurable circuits and systems. Reconfigurable cir-
cuits can change type as they execute and this fact is not adequately
captured using existing type systems and interface descriptions. By
enhancing the types of reconfigurable circuits with information
about their reconfiguration behaviour, high level compilers can
exploit this information to perform sophisticated optimizations and
to generate code to automate the reconfiguration process e.g. per-
form scheduling. It is widely accepted that one of the main barriers
to the acceptance of reconfigurable computing is the lack of high
level tools and languages that support this technique. The work pre-
sented here tries to close the semantic gap between painstakingly
hand-coded reconfiguration schemes and high level circuit design.

Types have often been neglected in the design of many hardware
description languages and it is notable that the type systems of
modern programming languages are more powerful and flexible
than the type systems of mainstream hardware description lan-
guages. This is unfortunate because types can capture important
information about the interface and behaviour of reconfig-
urable circuits. In the software community researchers have
even been able to use type checking to ensure run-time secu-
rity properties in mobile computing environments [5]. It should be

possible for dynamically reconfigurable circuits to enjoy some of
the same advantages using advanced type systems.

The type system presented here is designed to describe interacting
reconfigurable circuits. The ability to describe and safely compose
interacting reconfigurable circuits allows us to invent new abstrac-
tions for dynamic reconfiguration behaviour which would
otherwise have been too difficult to model satisfactorily with con-
ventional type systems.

2. Interface Representation

Asked where information about reconfiguration behaviour should
be expressed, many would advocate the use of ad hoc annotations
to the code, pragmas or special language constructs. All of these
techniques have been shown to work but they often result in clut-
tered code which is hard to read and modify and specialised to a
particular mode of operation. Furthermore, by looking at the inter-
face of the circuit one cannot deduce anything about the
reconfiguration behaviour of the circuit.

The principal argument of this paper is that reconfiguration behav-
iour is so important that it should be expressed in the circuit
interface. In hardware description languages the circuit interface
includes the types of the signals at the interface of cells. We propose
that the types say something about how circuits are reconfigured.

We take further the notion of just using types to describe reconfig-
uration behaviour by showing how types can be used to constrain
reconfiguration behaviour of composite circuits. This is accom-
plished by supplying a type more specific than the most general
type.

The remainder of this paper describes in an informal manner some
extensions to an existing type system used in the Lava HDL. Why
not choose the type systems of VHDL [11] or Verilog? First, the
Lava HDL has been designed to directly support the expression of
dynamically reconfigurable circuits. However, its type system has
been wholly inherited from the Haskell programming language
without any regard for the expression of dynamic reconfiguration.
Second, it is virtually impossible to express dynamic reconfigura-
tion in VHDL or Verilog and these languages have inflexible and
unclean type systems which are not easy to subject to modification
and experimentation.

Although the type experiments presented here are expressed using
the Lava type system we emphasise that the results of this research
can be applied to the development of mainstream hardware descrip-
tion languages and emerging systems like JHDL [2][10] and Pebble
[14]. This is where the practical benefits of the largely theoretical
results of this paper lie.

0-7803-7607-2/02/$17.00 ©2002 IEEE

The exploration and experimentation described here is guided by
the desire to describe a useful subset of coarse-grained reconfigura-
tions by introducing as few extra concepts as possible. We are
guided by the restriction which views reconfiguration as a dynamic
choice between circuits which may have different types. This natu-
rally leads us to a type system which has the notion of choice built-
in. We build upon this one extra type feature to describe surpris-
ingly wide and useful modes of dynamic reconfiguration.

Throughout this paper when we write “R :: t” this should be under-
stood to be an abbreviation for “circuit R has type t.” Types can be
concrete e.g. Int8 for an eight bit integer, Bit for a bit type or they
can be type variables which allow us to type very general circuits
sing polymorphic type checking. Concrete types start with a capital
letter and polymorphic types start with a lower case letter. For
example here is the type of a circuit which swaps its inputs:

swap :: (a, b) -> (b, a)

This circuit can be called with a pair containing elements of
any type. The arrows in the type separate lists of argument
types and the final type expression gives the type of the
result. For example a circuit take takes as input a clock signal
and an eight bit integer and returns a bit value could be given
the following type:

serialize :: Bit -> Int8 -> Bit

This way of writing types allows us to partially apply argu-
ments which results in residual circuits. This feature can be
exploited to express run-time circuit specialization.

3. Reconfiguration and Time

The type scheme presented in this paper assumes a particular style
of reconfiguration where the clocking of sub-circuits can be tempo-
rarily suspended for several reasons. This is easily established with
clock-enable inputs to registers. One reason for doing this is to hold
up logic while some portion of the FPGA is reconfigured. Another
reason is to hold up a circuit while it waits for a shared resource like
a bus. Thus, when we talk about clocks and ticks and temporal
sequences it should be understood that it is the “enabled-clock” that
is being referred to. This allows us to abstract away from reconfig-
uration time and the time it takes to acquire shared resources to give
a tractable type system for describing dynamic reconfiguration.

4. Type Extensions

4.1 Dynamic Replacement

One of the most basic forms of reconfiguration that occurs is to
replace a circuit A :: t1 -> t2 by another circuit with a totally differ-
ent type B :: t3 -> t4. This occurs whenever an FPGA is totally
reprogrammed with a different circuit. In the context of reconfig-
urable systems, this usually occurs to a portion of the FPGA fabric,
leaving other parts of the system intact and operational. We relate
the circuits A and B by composing them to form a “reconfigurable
circuit” R which can at any given moment be circuit A or circuit B.

We allow nested reconfigurable circuits so A can be either a static
or a reconfigurable circuit.

Exactly how the definition of R is written depends on the particular
reconfigurable mechanism or abstraction used and later we provide
an example from the literature that fits this model. For the moment
we concentrate on the question of R’s type. At any given moment
R has either type t1 -> t2 or t3 -> t4. We propose that the uncon-
strained type of R should be both t1 -> t2 and t3 -> t4. We form a
sum of the two types and express this sum type using the + operator:

R :: (t1 -> t2) + (t3 -> t4)

A user of the circuit R can now immediately tell without looking at
the definition of R that this is a reconfigurable circuit. In a realistic
scenario, R may have some control inputs which would help to
determine which particular type R has at any given moment. An
example of dynamic replacement is shown in Figure 1 which shows
the same block of reconfigurable fabric being configured to circuits
A, B, B, A at successive enabled clock ticks.

Figure 1. An example of dynamic replacement.

A special case of dynamic replacement occurs when all the circuits
in the composition have the same type e.g. t1 -> t2. For such a cir-
cuit we could choose a general type like t1 -> t2. However, this
does not capture the fact that the circuit described can be reconfig-
ured between two circuits which happen to have the same type. For
such circuits we choose the more specific type (t1 -> t2) + (t1 ->
t2). A compiler can now examine the body of such a reconfigurable
circuit and ensure that the two alternative implementations do
indeed have the same type. The fact that a circuit can have two valid
types which have no common canonical representation leads to
some problems described later in this paper.

4.2 Composition of Dynamic Replacement

When used without any other contextual information, the circuit R
presented earlier is free to assume either the type of circuit A or cir-
cuit B. However, when R is composed with another dynamically
reconfigurable circuit or a static circuit the types interact in an inter-
esting manner.

Circuit composition in the paper is modelled using the serial com-
position combinator in Lava which connects the output of one
circuit to the input of another circuit. However the role of serial
composition appears implicitly in other hardware description lan-
guages e.g. implicitly using names to wire together nets as is the
case in structural VHDL. For this reason the typing scheme we
present here can be ported to other languages taking account of the

t = 0

A

t = 1

B

t = 2

B

t = 3

A

particular circuit composition mechanisms provided by that
language.

The connecting wires for serial composition should have compati-
ble types under unification. This is illustrated in Figure 2 for a very
simple composition of two static circuits. The composite NAND
gate has a legal type because the result type of the AND gate (Bit)
is compatible with the input type of the invertor (also Bit).

Figure 2. Typing serial composition

Consider first two static circuits P :: t2 -> t5 and Q :: t4 -> t6. What
is the type of the Lava serial composition R >-> P? In this case R
is no longer free to assume type (t1 -> t2) or (t3 -> t4) at any given
moment because at all moments circuit P is expecting an input of
type t2. Thus it is possible to use our type system to calculate that
the type of R >-> P :: t1 -> t5. This means that we no longer have
a reconfigurable circuit and static analysis by the compiler can
prune away unwanted circuitry for this composition. Similarly the
type of R >-> Q :: t3 -> t6.

Now consider another dynamically reconfigurable circuit with type
S :: (t2 -> t7) + (t4 -> t8). The composition R >-> S should have
a type which expresses all the legally typed combinations of the per-
mutations of possible types. In this case there are only two legal
alternative i.e. t1 -> t7 and t3 -> t8 so the type of R >-> S becomes
(t1 -> t7) + (t3 -> t8).

In general the composite reconfigurable type can be calculated by
forming the sum type of a cross product of all types of the two con-
stituent circuit types A and B and then discarding the pairs that can’t
be composed together with type unification:

It is not always the case that when two reconfigurable circuits are
composed that the resulting circuit is reconfigurable. Consider
another reconfigurable circuit T :: (t2-> t7) + (t1 -> t5). The com-
position R >-> T has only one legal type i.e. t1 -> t7 which means
that R >->T :: t1 -> t7 which is no longer a reconfigurable circuit.

Is it useful to have a type system which can compose reconfigurable
circuits to yield non-reconfigurable circuits? We argue that it is
important because it allows the design of general circuits like R and
their use in specific circumstances (e.g. when only A is required)
which can be optimised by removing redundant logic. Why not use
A directly? This is because R provides an abstraction for the task
performed by A. The performance of R can be modified by replac-
ing A with a better circuit that has the same interface. Other circuits
that use this functionality indirectly via R automatically inherit the
benefits of the improved A.

4.3 Dynamic Selection

Dynamic replacement expresses the notion that a circuit can be
replaced by another circuit of a different type but says nothing about
the circumstances under which this occurs (this is expressed in the
circuit definition). Dynamic selection describes reconfiguration
that is controlled by a specific signal, rather like the control input to
a multiplexor.

Such circuits are given a dependent type. Dependent types allow the
type of an expression to depend on the value of one of the inputs.
Dependent types have been successfully used in languages like
Cayenne by Augustsson [1].

Consider a reconfigurable circuit U which takes a selection input
sel :: Bool which determines which of two circuits A or B (as pre-
viously defines) is instantiated. One valid type for this circuit could
be:

U :: (Bool -> t1 -> t2) + (Bool -> t3 -> t4)

which is the type that can be computed if we know nothing about
how U is reconfigured. However if we know that sel selects either
A or B (implemented by dynamic reconfiguration rather than a mul-
tiplexor) then we can deduce a dependent type for U that captures
this information:

U :: sel::Bool -> sel == True => (t1 -> t2) +
 sel == False => (t3 -> t4)

Here, each of the reconfigurable type components have a guard
which indicates the type of U for a given value of sel. For example
the type of the expression (U True) :: t1 -> t2 and the type of the
expression (U False) :: t3 -> t4.

Dynamic selection can be used to model the RC_MUX dynamic
reconfiguration abstraction proposed by Luk et. al reported in [12]
and to a lesser extent in [13]. The dynamic selection scheme we
present here is a little more general than Luk’s RC_MUX mecha-
nism, which requires all the alternatives to have inputs of the same
type and an output of the same type (at the bit level) as shown in
Figure 3. Our scheme can describe dynamic selection between cir-
cuits having totally different types.

and2 inv

and2 inv

and2 >-> inv :: (Bit, Bit) -> Bit

(Bit, Bit) -> Bit Bit -> Bit

ta td→ ta tb→ tc td→(,) A B×∈ unifybc,{ }∑

Figure 3. The RC_MUX dynamic reconfiguration abstraction

The design of Flexible Array Blocks (FABs) [9] and Reduced Flex-
ible Array Blocks (RFABs) [18] can be expressed using dynamic
selection because the reconfiguration behaviour of these circuits is
controlled by four configuration bits, which are inputs to the blocks
and essentially effect a dynamic selection.

It may be tempting to apply the dynamic selection type to the active
4x4 ATM switch described by Dollas et. al. [6] since the control
inputs to the switch effectively drive multiplexors which effect
selection. However this circuit does not have a dynamic reconfigu-
ration type because the selection occurs between static circuits (not
by reconfiguration) so this circuit can be adequately typed by the
base type system (or regular type systems of languages like VHDL
or Verilog).

4.4 Temporal Interleaving

Sometimes a reconfiguration occurs in a specific sequence e.g.
alternating A, B, A, B, A, B... relative to some clock signal as shown
in Figure 4.

Figure 4. Temporal interleaving

Such behaviour is captured by specifying a sequence that can be
repeated any number of times (including zero):

V :: clk:{t1 -> t2, t3 -> t4}+
Valid execution traces of the types of the reconfigurable circuit V
include {}, {t1 -> t2}, {t1 -> t2, t3 -> t4}, {t1 -> t2, t3 -> t4, t1 -
> t2} relative to a clock signal called clk.

The execution type traces of V are equivalent to the execution type
trace of U where the control signal is a clock pulse clk i.e. U clk.
The clk control signal switches between the two alternatives giving

arise to the same sequence. This observation allows us to implement
the temporal interleaving type construct by translation into the
dependent type mechanism for dynamic switching.

We illustrate how temporal interleaving can be viewed as ‘syntactic
sugar’ i.e. a new construct that can be re-expressed in terms of exist-
ing language constructs (rather like a macro). Here is the rule for
translating a two-element sequence:

clk:{t1 -> t2, t3 -> t4}+ ⇒
 clk::Bool -> tick clk ‘mod‘ 2 == 0 => (t1 -> t2) +
 tick clk ‘mod‘ 2 == 1 => (t3 -> t4)

where the symbol ⇒ means “is implemented by translation
into”. This type definition makes use of the function tick
which returns the sequence number of an alternating signal
i.e. it counts ticks on the rising edge. This allows us to pro-
vide syntactic sugar for larger sequences e.g.

clk:{t1 -> t2, t3 -> t4, t5 -> t6}+ ⇒
 clk::Bool -> tick clk ‘mod‘ 3 == 0 => (t1 -> t2) +
 tick clk ‘mod‘ 3 == 1 => (t3 -> t4) +
 tick clk ‘mod’ 3 == 2 => (t5 -> t6)

Compiler tools can exploit the information given in the type
about the sequencing of reconfigurable circuit to implement
optimizations. They can also help check that the definition
body does indeed build a circuit in a way that is faithful to
the given type and thus capturing some design errors at com-
pile time. The type also gives the user of a library of recon-
figurable intellectual property some extra valuable
information about the reconfiguration behaviour of a given
circuit.

4.5 Dynamic Specialization

One optimization technique available to reconfigurable circuits,
which is not available in static implementations, is the ability to
dynamically specialize a circuit when one input varies far less fre-
quently than another input. For example, consider a multiplier
where one input changes every 10,000th tick but the other input
changes every tick. This circuit can be optimised by dynamically
computing a new constant coefficient multiplier circuit (or swap-
ping one in) every 10,000th ticks. Such on-line techniques have
been implemented in the Lava system, Luk’s group [13] and others
[15]. There are also off-line variants too Figure 20. Such techniques
can be used to epitomise reconfigurable intellectual property cores
at run-time using suitable verification technology.

Consider the example of a general multiplier circuit in the left hand
side of Figure 5. At time t=0 the circuit specializes on the circuit
input 13 to produce a constant coefficient multiplier which is
smaller (and ignores the second input). This multiplier is used until
tick 356 when the second input changes to 17 (causing the enabled
clock to the circuit to be held up while a specialized circuit is com-
puted or swapped in) and the fabric is reconfigured with a different
constant coefficient multiplier.

A

B

RC_MUX

mux_sel

Y

X

t = 0

A

t = 1

B

t = 2 t = 3

A
B

Figure 5. Dynamic specialisation

A first attempt at computing a type for such a circuit might produce
something like:

mult :: ((Int8, Int8) -> Int16) + (Int8 -> Int16)

This type reflects the fact that this circuit, at any given moment, can
have the type of a general multiplier (Int8, Int8) -> Int16 or the spe-
cialized constant coefficient multiplier Int8 -> Int8. However,
externally this circuit always has the type of a general multiplier
which suggests the type:

mult :: (Int8, Int8) -> Int16

but this says nothing about the reconfigurable behaviour of the cir-
cuit. Somehow we would like to express the fact this circuit has a
family of types of all the possible reconfigurations:

mult :: (0, Int8) -> Int16 +
 (1, Int8) -> Int16 +
 (2, Int8) -> Int16 +
 ...
 (255, Int8) -> Int16

where the types of constants are denoted by the constants them-
selves. The solution we adopt is to nominate the specializing input
explicitly in the type. This can be seen as syntactic sugar since the
corresponding sum type can always be evaluated for each type that
is finitely enumerable (and only such types are valid for represent-
ing signals). The specialising input is enclosed in angle brackets:

mult :: (Int8, <Int8>) -> Int16

To make the translation tractable, we impose the restriction that
only one specialisation can be specified in a single type signature.
Specialization on multiple inputs can be expressed by nesting defi-
nitions. Furthermore, we restrict the nomination of specialization
signals to primitive types rather than composite types. This helps to
ensure we always have a finite translation into the underlying ‘sum
of types’ feature used to implement the dynamic specialization
type. It is satisfying that we can describe dynamic specialization
without having to introduce any special type notions beyond recon-
figurable type sums.

4.6 Reconfigurable Interconnect

One important class of reconfiguration works by re-routing wires.
In a static circuit such functionality is established by using multi-

plexors to route signals depending on some control inputs. In a
reconfigurable circuit the fabric is reprogrammed when the control
inputs change to establish a direct connection. Of course in a partic-
ular fabric such “hard wires” may still be implemented by wires that
pass through multiplexors but at the user’s abstraction level such
wires appear as a direct connection (which may be routable on a
faster and longer wire than the equivalent multiplexor based
implementation).

In conventional hardware description languages wires (or nets) are
treated separately from “circuits” like AND gates and registers and
the operations available on circuits and nets are quite different.
Often one has far less flexibility to manipulate wires. We argue that
wiring circuits is as valid a circuit as an AND gate! This lets us treat
wiring circuits as first class objects (just like regular circuits) and
wiring expressions have types (and reconfigurable types) just like
regular circuits. By removing the unnecessary special treatment of
nets in hardware description languages we end up with a simpler
and more powerful and systematic treatment of circuits in general.

A consequence of treating wiring as regular circuits is that the
reconfigurable type schemes presented so far are equally applicable
to writing circuits and reconfigurable interconnect. At the most
abstract level the type of reconfigurable interconnect is calculated
by taking the sum type of all the possible interconnections sup-
ported by a particular interconnect.

In specific applications the reconfigurable interconnect can be ana-
lysed to calculate a more specific type. For example if the
reconfigurable interconnect is used to “hard wire” a general data-
path to perform a particular calculation then the type of the hard-
wired circuit is obtained by analysing the types of the components
of the data-path. This type of reconfiguration had been used to spe-
cialize ALU-type data-paths.

4.7 Reconfigurable Components on Buses

Normally when two circuits are composed the connection is imple-
mented by dedicated wires that directly connect together the ports
of the two circuits. Another important type of communication that
occurs between circuits is via a bus which does not provide a dedi-
cated communication channel but which is instead shared with
other circuits by arbitration. Such bus structures are likely to be
common in high-end reprogrammable architectures. Any high level
scheme for describing dynamic reconfiguration should address how
dynamically reconfigurable circuits compose with other circuits
over a bus structure rather than dedicated wires.

For the purposes of this paper we abstract away the details of the
operation of a specific bus architecture. The key features we
acknowledge is the ability to send and receive data over the bus
where there is a possibly infinite delay before a (language level)
data item can be sent and a possibly infinite delay before a data item
can be received.

A system may have more than one type of bus, each with its own
protocol for communication. For example IBM’s CoreConnect IP
bus actually has three bus components with different protocols. We
model a particular type of bus protocols with type constructors
which takes as parameters the type of data being communicated.
For example a circuit M which has an 8-bit integer input and which

t = 0

mult

t = 356

x

y

x

13

kcm13
kcm17

x

17

sends a 16-bit integer on the CoreConnect processor local bus
(PLB) would have the following type:

M :: Int8 -> PLB Int16

Consider another peripheral circuit N which accepts a 16-bit integer
over the peripheral bus called the OPB and has a single bit output:

N :: OPB Int16 -> Bit

Now when we compose these two circuits using serial composition
i.e. M >-> N we would hope the composite circuit will type check
even though the output type of one circuit is not the same as the
input type of the other circuit. The underlying data-item is type con-
sistent i.e, is an Int16. What is different is how the data-item is
communicated. We can exploit the existing class system by using
systematic overloading to define an M and N that can communicate
over any set of buses for which a conversion protocol is known.
Assuming that a class called CoreConnect has been defined with
methods for the buses PLB and OPB to send and receive data, we
can give more suitable types to M and N:

M :: CoreConnect bus => Int8 -> bus Int16
N :: CoreConnect bus => bus Int16 -> Bit

We have now abstracted away the particular bus used in the com-
munication. We can use any bus that belongs to the CoreConnect
class. Similar techniques can be employed in object-oriented lan-
guages like C++ and Java.

We can now build upon this type scheme for bus-based communi-
cation to describe the communication between reconfigurable
circuits. Consider a reconfigurable circuit K that can send either
Int8 or Int16 over a bus depending on how it is reconfigured. Sim-
ilarly imagine a reconfigurable circuit L that can receive either Int8
or Int16 over a bus depending on how it is reconfigured. The circuit
K has a direct (non-bus) input type of either Int3 or Int4. The circuit
L has a direct output type of either Int5 or Int 6. The types of the two
circuits are:

K :: CoreConnect bus =>
 (Int3 -> bus Int8) + (Int4 -> bus Int16)
L :: CoreConnect bus =>
 (bus Int8 -> Int5) + (bus Int16 -> Int6)

Now what is the type of the composition of K and L i.e. K >-> L?
We can systematically apply the rules given earlier for our type
scheme without introducing any new notions and we get a reasona-
ble type for the composition:

K >-> L :: (Int3 -> Int5) + (Int4 -> Int6)
The composite circuit does not connect to any buses on its ports as
this is nicely reflected in the type that has been calculated.

The mechanism for describing loosely coupled communication
over buses also extends to the typing of channel based communica-
tion that is referred to as task-parallel programming of
reconfigurable systems by Weinhardt and Luk [19]. The types

abstract away the exact nature of the communication i.e. shared or
distributed memories. In this case one type system is used to
describe both the hardware and software and this can help to check
the integrity of the co-designed system. However the C-based lan-
guage used in the task-parallel research is not easily amenable to the
type treatment here. To benefit from our type scheme the task-par-
allel scheme would need to be translated into a Lava-esque
framework.

The typing for bus-based communication here does not capture the
full range of communication behaviour available over a bus. The
type system describes the type of information that flows between
two circuits connected to the bus, but it does not describe the ability
of a master circuit on the bus to communicate with any other master
or slave circuit connected to the bus. This type of communication
would require either a further extension to the type system or the
formation of a sum type that collects together the types of all the cir-
cuits on the bus with which the master may wish to communicate.

5. Related Work

The author is not aware of any substantial existing work which tries
to exploit the power of types to describe dynamic reconfiguration.
Few languages provide high level support for expressing dynamic
reconfiguration. Lava is a notable exception and is best placed to
benefit immediately from the work described here.

For types, the closest related work is Cayenne language, which is
the first programming language to implement a dependent type sys-
tem. Originally dependent types were mainly used in proof systems.
We expect the development of experimental hardware description
languages and their type systems to benefit from the on-going work
in the theory of type systems.

Many reconfigurable architectures come with specialised languages
which are often C-based, making them difficult for adapt for strong
typing. The single assignment language DIL used for pipelined
reconfigurable fabrics [4] like RaPiD [7][8] has foundations that
make it suitable for a functional-style type system although it has
been cast in a C style.

6. Limitations and Future Work

One problem with the type system presented here is that it is not
decidable. Given two arbitrary type expressions, it is undecidable
whether they mean the same thing because we no longer have a
canonical (or normal) form for type expressions (as was the case
with the base type system that we started with).

In practice, languages with undecidable type systems can be made
to work using suitable approximations and by “timing out” the type
checking algorithm if it takes too long. Examples of such languages
include Cayenne, Quest and Gofer. As future work, researchers
may wish to seek out a set of extensions that do have normal forms.

The type system presented here does not describe all the possible
types of reconfiguration in a convenient manner. In the most
extreme case dynamic reconfiguration can involve making any
arbitrary change to a circuit. In the general case we cannot discern
any kind of structure or method that can be captured by a meaning-
ful type. General reconfiguration can be described by the system

presented here using an infinite type, which is the sum of all possi-
ble circuits, but this is hardly useful in practice (this corresponds to
an untyped circuit).

However there are many important and useful types of reconfigura-
tion abstractions presented in the literature and the work here has
attempted to relate the types of several different reconfiguration
techniques using a single scheme. This discipline also helps to com-
pare and contrast different types of reconfiguration in a systematic
way.

Wormhole routing as described by Bittner and Athanas [3] is a
useful reconfiguration technique which is not easily captured by our
type system. This is because the nature of the reconfiguration is not
naturally expressible as a choice between alternatives. However we
speculate that dependent types can be exploited yet again to pro-
duce a system for describing wormhole reconfiguration (as
supporting by the Colt architecture) because the way a unit is recon-
figured depends on data which is passed along in a stream which
appears as a data input to the circuit. Since a data item determines
the type (after reconfiguration) then dependent types should be
powerful enough to capture this mechanism. Our type scheme does
not present a suitable way to compose such types.

The type scheme presented here is statically checkable to ensure
that at run-time there are no type errors. Although this restriction
buys security, the cost is that some interesting circuits which have
dynamically-typed behaviour cannot be type checked and are
rejected by our system. We make this choice because in general we
can not assume that there is a run-time type checker available to
check the communication between reconfigurable circuits. In the
special case where there is a closely coupled microprocessor avail-
able or when it is possible to compile the dynamic type checking
algorithm into gates, it may be interesting to explore dynamically
typed extensions to the type scheme that we have presented here.
However, by using dependent types we have realised some of the
advantages of dynamic types whilst still retaining static type check-
ing and run-time type security.

7. Conclusions

We have described several theoretical experiments here which
show how powerful type systems can be applied to the description
of certain kinds of reconfigurable circuits. These concepts can be
re-applied to the design of mainstream languages that need to be
modified to support high level language constructs for expressing
dynamic reconfiguration. This in turn is essential if reconfigurable
applications are to emerge from the university and research lab
ghetto and gain acceptance by non-specialists in dynamic
reconfiguration.

One useful aspect of the way we have designed the type extensions
presented here is that it is always apparent if a circuit is reconfigura-
ble (or contains reconfigurable components). This is established by
the presence of at least one “+’ symbol in the type or angle brackets.
This helps to identify which portions of a circuit are static and
which portions are reconfigurable.

At the heart of our characterisation is the observation of choice. For
static circuits the choice is over space (e.g. selecting via a multi-
plexor between two circuits). For reconfigurable circuits the choice

is over time (e.g. swapping one circuit out and replacing it by
another circuit).

This work has tried to add as little as possible to an existing type
scheme and then tried to see just how many different types of
dynamic reconfiguration we can describe and classify. Adding the
notion of a reconfiguration sum type allows us to express many
useful kinds of reconfiguration including dynamic replacement,
dynamic selection, dynamic specialization, and loosely-coupled
communication between reconfigurable components.

An implemention of a system that supports the reconfiguration
interface specification method presented here is under construction.
This system will allow us to evaluate how feasible this method is for
specifying large reconfigurable platform-based systems. A key ben-
efit over existing systems will be the ability to perform interface
synthesis by generating apporpriate bus-interface logic for
reconfigurable components.

There are many types of reconfiguration that are not amenable to a
satisfactory description with our scheme. Much more work needs to
be done to help use types to check and compose dynamically recon-
figurable systems. This paper represents the first steps in that
direction.

References
[1] Lennart Augustsson. Cayenne: a language with dependent

types. In Proceedings of the 3rd ACM SIGPLAN Internation-
al Conference on Functional Programming, pages 239-250,
1998.

[2] Peter Bellows and Brad Hutchings. JHDL - An HDL for
Reconfigurable Systems. FCCM’98. IEEE Computer Society.
1998.

[3] R.A. Bittner and P.M. Athanas, Wormhole Run-time Recon-
figuration. In Proc. 5th Int'l. Symp. on Field Programmable
Gate Arrays, Monterey, California, 1997.

[4] Mihai Budiu and Seth Copen Goldstein. Fast Compilation for
Pipelined Reconfigurable Fabrics. FPGA’99. ACM Press.
1999.

[5] Luca Cardelli and Andrew Gordon. Types for mobile ambi-
ents. In Conference Record of the ACM Symposium on Prin-
ciples of Programming Languages, San Antonio, January
1999. ACM Press. 1999.

[6] Apostolos Dollas, Dionisios Pnevmatikatos, Nikolaos Asla-
nides, Stamatios Kavvadias, Euripides Sotiriades, Sotirios
Zogopoulos, Kyprianos Papdemetriou, Nikolaos Chrysos,
Konstantinos Harteros, Emanouil Antonidakis, Nikolaos Pet-
rakis. Architecture and Application of PLATO, a Reconfig-
urable Active Network Platform. FCCM’01. IEEE Computer
Society. 2001.

[7] C. Ebeling, D. C. Cronquist and P. Franklin. RaPiD - recon-
figurable pipelined datapath. In the 6th International Work-
shop on Field-Programmable Logic and Compilers. LNCS.
Springer Verlag. 1996.

[8] C. Ebeling, D. C. Cronquist, P. Franklin and S. Berg. Map-
ping applications to the rapid configurable architecture. FC-
CM’97. IEEE Computer Society. 1997.

[9] Simon D. Haynes and Peter Y. K. Cheung. A Reconfigurable
Multiplier Array For Video Image Processing Tasks, Suitable

for Embedding In An FPGA Structure. FCCM’98. IEEE
Computer Society. 1998.

[10] Brad Hutchings, Peter Bellows, Joseph Hawkings, Scott
Hemmert, Brent Nelson, Mike Rytting. A CAD Suite for
High-Performance FPGA Design. FCCM’99. IEEE Compu-
ter Society. 1999.

[11] IEEE Std. 1076-1987. IEEE Standard VHDL Reference Man-
ual. 1997.IEEE Computer Society. 1999

[12] Wayne Luk, Nabeel Shirzi and Peter Y. K. Cheung. Model-
ling and Optimising Run-Time Reconfigurable Systems. IEEE
Symposium on FPGAs for Custom Computing Machines ‘96.
Eds. K.L. Pocek and J.M. Arnold IEEE Computer Society
Press, 1996.

[13] Wayne Luk, Nabeel Shirazi and Peter Y. K. Cheung. Compi-
lation Tools for Run-Time Reconfigurable Designs. FC-
CM’97. IEEE Computer Society. 1997.

[14] W. Luk and S. McKeever. Pebble: a language for parameter-
ised and reconfigurable hardware design. Field-Program-
mable Logic and Applications. LNCS 1482. Springer-Verlag.
1998.

[15] John MacBeth and Patrick Lysaght. Dynamically Reconfig-
urable Cores. FPL 2001. LNCS 2147. Springer-Verlag. 2001.

[16] S. McMillan and S. Guccione. Partial Run-Time Reconfigu-
ration Using JRTR. Proceedings of the 10th International
Workshop on Field-Programmable Logic and Applications,
LNCS 1896, 2000.

[17] Herman Schmit. Incremental Reconfiguration for Pipelined
Applications. FCCM’97. IEEE Computer Society. 1997.

[18] Chakkapas Visavakul, Peter Y. K. Cheung, Wayne Luk. A
Digit-Serial Structure for Reconfigurable Multipliers. Field-
Programmable Logic and Applications. Belfast, UK. Spring-
er-Verlag. 2001.

[19] Markus Weinhardt and Wayne Luk. Task-Parallel Program-
ming of Reconfigurable Systems. Field-Programmable Logic
and Applications. Belfast, UK. Springer-Verlag. 2001

[20] Michael J. Wirthlin and Brian McMurtrey. Efficient Constant
Coefficient Multiplication Using Advanced FPGA Architec-
tures. Field-Programmable Logic and Applications. Belfast,
UK. Springer-Verlag. 2001.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

