
Abstract

       This work presents several new techniques for enhancing
the performance of deterministic test pattern generation for
VLSI circuits. The techniques introduced are called dynamic
decision ordering, conflict driven recursive learning and
conflict learning. An important feature shared by all these
techniques is that they are triggered by the occurrence of a
conflict in the generation of tests. Hence, they are not active
all the time nor for all the faults. This feature allows the ATPG
system that uses these techniques to resolve hard-to-resolve
faults with far fewer backtracks and leaves the system as
efficient as before in the absence of conflicts. We have
incorporated these techniques into a commercial D-algorithm
based ATPG tool. The experimental results on full scan
versions of ITC’99 benchmark circuits demonstrate an
improvement of the ATPG system both in the number of
aborted faults and in test generation time.

1. Introduction

       The high product quality requirement for industrial
designs whose size doubles approximately every eighteen
months has made design-for-test and test generation that
achieve high fault coverage a critical need. During the past
several decades, a great amount of work has been done in the
field of automatic test pattern generation (ATPG). After the D-
algorithm[1] was proposed in the 1960’s, other algorithms
proposed for circuits described at the gate level include
PODEM[3], FAN[5] and SOCRATES[7]. Several techniques
to improve the efficiency of these procedures such as static
and dynamic learning[7], dominators[6], single path
propagation[14] and recursive learning[10] have greatly
enhanced the ability of ATPG procedures to resolve faults in a
circuit. By resolution of a fault we mean that the ATPG
procedure finds a test for a fault or determines that a fault is
untestable; in other words it does not abort on the fault. The
recent paper [18] describes several new techniques to enhance

ATPG for gate level circuits. These techniques were
implemented into a PODEM based ATPG system called
ATOM[18].
       ATPG for a circuit can also be viewed as solving a
Boolean satisfiability (SAT) problem. Initial work for SAT
based procedures was done in [11] and several SAT based test
generation systems have been developed [15,16,17]. A
recently developed SAT based ATPG system called
SPIRIT[20] includes several new techniques to improve the
efficiency of SAT based ATPG procedures.
       Since deterministic test pattern generation is known to be
an NP-complete problem[4], efficient techniques to avoid the
worst case exponential search are of practical importance.
Some techniques such as x-path check[3], static learning[7],
unique sensitization[5] and structural dominator[6] are found
to be universally applicable and hence are used as default
options in almost every ATPG system today. By universally
applicable we mean that these techniques facilitate resolving
any fault in any circuit without negative impact on test
generation time. Other techniques such as dynamic learning[7]
and recursive learning [10] are found to be fault specific or
circuit specific in improving test generation efficiency. That
is, for certain circuits or particular faults in a circuit, these
techniques can help reduce the run time for resolving hard-to-
resolve faults, however, for some other cases these techniques
will degrade the system performance. Since the overall
performance obtained after incorporating such techniques is
hard to predict, some ATPG systems use them as non-default
options and only apply them to a small group of faults such as
the aborted faults from a previous pass of the ATPG run.
       In this paper we propose several new techniques to
improve test generation efficiency. The unique feature of all
the proposed techniques is that they are automatically
triggered only when they are deemed to be helpful to resolve
the currently targeted fault. Thus these techniques can be run
during all passes of an ATPG and they will become active
when they are needed. Experimental results presented on
benchmark circuits demonstrate the high effectiveness of these
procedures.
       The paper is organized in the following way. In section 2
the baseline ATPG system which is enhanced by the proposed
techniques is described. In section 3 we describe the new
techniques proposed in this work. In section 4 we give
experimental results. Section 5 includes conclusions.

Conflict Driven Techniques for Improving
 Deterministic Test Pattern Generation

Chen Wang1 & Sudhakar M. Reddy1,2

Elec. & Comp. Eng. Department
University of Iowa, Iowa City, IA

Irith Pomeranz3

School of Elec. & Comp. Eng.
Purdue University, West Lafayette, IN

Xijiang Lin & Janusz Rajski
Mentor Graphics Corp.

Wilsonville, OR

________________________
1. Research supported in part by a grant from Mentor

Graphics Corporation, Wilsonville, OR.
2. Research supported in part by NSF grant No. CCR-

0097905 and in part by SRC Grant No. 2001-TJ-949.
3. Research supported in part by NSF grant No. CCR-

0098091 and in part by SRC Grant No. 2001-TJ-950.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0-7803-7607-2/02/$17.00 ©2002 IEEE 



2. Preliminaries

       The baseline ATPG we use is a state of the art ATPG
based on the D-algorithm. It uses many of the known
techniques mentioned above to enhance the ATPG efficiency.
In D-algorithm based ATPG, decisions are made on internal
lines in contrast to PODEM based algorithms in which
decisions are made only on circuit inputs. As is well known,
decisions made on internal lines are of two types. One is for
fault effect propagation also known as D propagation using the
D-calculus notation[1]. The other is to justify a value on a
circuit line. We call these justification decisions.

       In order to describe the new techniques proposed in
Section 3, we next illustrate the notation we use for decision
trees commonly used in all ATPG procedures. Figure 1(a)
shows part of a circuit together with a partial decision tree to
generate a test for the fault line a stuck-at-1 (written as a/1). In
the decision tree, nodes are labeled with the problems that
need to be solved. For example the root node is labeled TG for
test generation, the three leftmost nodes in the second level are
for justifying line values a=0, b=1 and c=1 and hence carry a
label J, and the rightmost node at this level is for propagating
the fault effect or D from e.
       In each node, the number of choices that exist for
achieving the corresponding objective is shown to the right of
a slash. In Figure 1(c) we show the decision tree when the
decision to set a1=0 in order to justify a=0 is made. Note that

out of the two choices for setting a=0, the decision to use a1=0
is indicated in the leftmost node of the second level of the
decision tree by 1/2, which indicates that the first of the two
choices to justify a=0 is taken. The order in which the
justification problems corresponding to the nodes with the
same parent are solved is important in reducing test generation
time. For the sake of discussion in this work, we assume that
this order is from left to right. For example, referring to Figure
1(b), the justification problem a=0 is considered before b=1
which is considered before c=1.

3. New Techniques

        In this section we describe the proposed new techniques to
improve the efficiency of deterministic ATPG procedures.

3.1  Dynamic Decision Ordering
       A decision related to line justification is made when one
among several choices for solving a justification problem is
made or when one among several yet to be solved problems is
chosen for solving. The order in which the available choices or
problems to be solved are tried can be statically determined or
dynamically determined. Typical static ordering techniques
used are random order and orders based on controllability and
observability measures[2,9]. Dynamic ordering techniques
include updating controllability and observability measures
when decisions at other circuit nodes are made while
generating a test for a fault [8]. The technique proposed here
called Dynamic Decision Ordering (DDO) dynamically
changes the order of solving a set of justification problems at
the same level of the decision tree. This is illustrated by the
following example.
       Example 1: To illustrate the dynamic decision ordering
technique, consider the circuit shown in Figure 2. A part of the
decision tree to justify a=0 is shown in Figure 3. Figure 3(a)
illustrates the new justification problems created due to the
decision to set a=0 by justifying a1=0. In order to set a1=0, it is
necessary to set h=0 and e=0. The requirement e=0 leads to
entering three new justification problems b=0, c=0 and d=0
into the decision tree. Let the order in which these justification
problems are solved be as shown in Figure 3(a) (from left to

(a)

a/1

b=1

c=1

d e=Da1

a2

f

g

(b)

J
c=1
/ 3

J
b=1
/ 2

J
a=0
/ 2

De

/ 3

TG
a/1

TG
a/1

J
f=0
/ 2

J
g=0
/ 2

J
c=1
/ 3

J
b=1
/ 2

J
a=0
1/2

De

/ 3

(c)
Figure 1. Decision tree of D-algorithm

a1

a=0

a2

b

c

d

d1

d2

e

f=1

g=1

j

h

Figure 2. Example circuit



right). Assume that we choose to solve b=0 and c=0 by taking
the first of the two alternatives to solve each of these
problems. This is indicated by 1/2 in the two leftmost nodes.
Next we attempt to solve d=0 by setting d1=1 which leads to a
conflict as indicated in Figure 3(a). This conflict leads to a
backtrack and we try to solve d=0 by setting d2=1 which also
leads to a conflict as shown in Figure 3(b). Typically the test
generation procedure would undo the decisions made at nodes
c=0 and d=0 of Figure 3(b) and try the second option to set
c=0. It would then again process c=0 and d=0, and determine
that again conflicts occur at d=0. After that, the second choice
of b=0 will be tried and more conflicts will be met since d=0
is unsolvable. Thus the test generator determines that the
requirement a1=0 is not achievable after considering decisions
for solving b=0, c=0 and d=0 several times.
       It can be observed from Figure 2 that the reason for the
non-existence of a solution to set a1=0 is that d cannot be set to
0. Thus, if we order the three sibling nodes (nodes with the
same parent node) at level two in the decision tree as shown in
Figure 3(c) when it is first detected that d=0 cannot be
achieved, then the fact that a1=0 cannot be achieved will be
determined by processing the line justification node d=0 of the
decision tree twice, once to detect that d=0 cannot be achieved
and once after reordering the nodes. It is important to note that
when the sibling nodes in the decision tree are reordered, all
previous decisions on these nodes are undone as shown in
Figure 3(c). The motivation behind such reordering is that
most of the time the conflicts occurring at sibling nodes of the
decision tree are due to independent reasons and hence if a

justification problem cannot be solved then it is unsolvable
independent of the decisions made for the sibling nodes. These
observations lead to the following rule for dynamic decision
ordering.
       Rule 1: In generating a test for a fault, if it is determined
that a line justification problem cannot be solved, move the
corresponding node to be the leftmost node among its siblings
and undo all the decisions made on the siblings.
In the example illustrated by Figure 2, another point can be
observed that leads to Rule 2 for dynamic reordering of
justification problems to be solved in the decision tree. After
reordering using Rule 1 given above and determining that a1=0
cannot be achieved, we would next attempt to solve
justification problem a=0 by setting a2=0. In this case we will
again encounter the d=0 justification problem. It is preferable
to first try to solve d=0 before trying j=0 in order to set a2=0.

To facilitate recognizing that a value on a line was found to be
unjustifiable during the generation of a test for a given fault,
we set a flag bit called R (reorder) associated with this line
and value. We use it in ordering the sibling nodes of this line
if it appears in the decision tree again with the same value.
       Rule 2: If the R flag corresponding to a node is set, place
this node ahead of any sibling node whose R flag is not set.
       The R flag of a line and value is reset if the corresponding
node justification problem is found to have a solution when it
is processed again during the test generation process for the
current target fault. An application of Rule 2 is illustrated in
Figure 4.
       It is important to note that reordering of decision nodes as
given by Rules 1 and 2 is done only when unsolvable
justification problems are encountered in generating a test for
a target fault. When the test is generated or the target fault is
proved to be untestable or aborted, all the decision node orders
are reset to the default order used in the original test
generation procedure and the R flags of all the lines and values
are reset. That is, the dynamic reordering is only temporary
and it is valid only for the test being generated currently (for
one or more target faults).
       It should be mentioned that an earlier proposed method
called non-chronological backtracking [16] would reduce the
number of backtracks more than the dynamic decision
ordering proposed here. However, the cost of capturing and
analysis of data required to achieve non-chronological
backtracking is high and for this reason non-chronological
backtracking is typically not used in ATPG.

Unsolvable last time

J
d=0
/ 2

J
j=0
/ 2

J
a=0
2/2

J
j=0
/ 2

J
d=0
/ 2

J
a=0
2/2

Figure 4. Illustration of dynamic decision ordering Rule 2

(a) (b)

Figure 3. Illustration of dynamic decision ordering Rule 1

J
d=0
1/2

J
c=0
1/2

J
b=0
1/2

J
a=0
1/2

Fail

J
d=0
2/2

J
c=0
1/2

J
b=0
1/2

J
a=0
1/2

Fail
Start over here

J
c=0
/ 2

J
b=0
/ 2

J
d=0
/ 2

J
a=0
1/2

(a) (b) (c)



3.2 Conflict Driven Recursive Learning
       Recursive learning was introduced in [10] to find global
implications. Recursive learning can be used either statically
or dynamically and it can find all the global implications if the
recursion depth is high enough. Since recursive learning
typically requires large computational effort, dynamic
recursive learning to target few hard-to-resolve faults is
typically used in test pattern generation procedures. In [12], it
was suggested that restricting the use of recursive learning to
what was called the active area could reduce run time.
However, even in this work, recursive learning was not
applied to all the faults and was only turned on for small
groups of hard-to-resolve faults. Given the capability of
recursive learning to identify global implications that cannot
be found by other learning techniques such as static learning,
we propose the following method to turn on recursive learning
on every fault that may benefit by its use.
       In the last section we demonstrated that when a
justification problem cannot be solved, it is useful to reorder
the sibling nodes in the decision tree. We also found that if we
turn on dynamic recursive learning only when a line
justification problem is found to be unsolvable, then dynamic
recursive learning can be used as a default option in ATPG.
To accomplish this, we augment the two rules given in the last
section to Rules A1 and A2 (for augmented Rules 1 and 2).
       Rule A1: In generating a test for a fault, if it is
determined that a line justification problem cannot be solved,

move the corresponding node to be the leftmost node among
its siblings and undo all decisions made on the siblings. Before
continuing, perform recursive learning on the moved node.
      Rule A2: If the R flag of a node is set, order this node
among sibling nodes ahead of any node whose R flag is not
set. Before attempting to solve any justification problem,
perform recursive learning for the nodes that have their R flag
set.
       It is important to note that Rules A1 and A2 are triggered
only when a line justification problem is determined to be
unsolvable and is used only for aiding the generation of a test
for the currently targeted fault(s). Thus, the proposed method
uses recursive learning on few nodes and only on the nodes
that are actively analyzed during the generation of a test for
currently targeted faults. Conflict driven recursive learning
can be considered as a dynamic learning procedure applied
only to the signal lines and their values that are determined to

lead to conflicts in the generation of a test for the targeted
fault(s).
       As an example of conflict driven recursive learning,
consider Figure 2. We have seen from the discussion in the
last section that justification problem a=0 is unsolvable as long
as f=1 and g=1 are fixed. In this example, suppose that after
several backtracks and signal implications, we are considering
a=0 for the second time and suppose f=1 and g=1 are still true.
Since a=0 was proved to be unsolvable the first time, the R
flag associated with it is set. By Rule A2, we will place a=0 in
the leftmost position relative to all its siblings and perform
recursive learning for it as shown in Figure 5(a). Since both
a1=0 and a2=0 imply d=0, we learn and imply d=0 and
introduce a new justification problem d=0 into the decision
tree as shown in Figure 5(b). It is worth noticing that d=0 is
not a child of a=0 as in Figure 3, but becomes a sibling of a=0.
Without learning, d=0 in Figure 3 was a child of a=0 since it
was identified as a problem that needed to be solved as a result
of the need to set a=0. The fact that d=0 was learned as an
implication of a=0 promotes d=0 in our implementation to the
level of a sibling of a=0. Thus, it is considered as a problem
that needs to be solved simultaneously with a=0. When d=0 is
proved to be unsolvable, by our reordering Rule A1, d=0 will
be moved prior to a=0 and we will later backtrack to the
parent decision without exhaustively trying all the choices for
setting a=0. Figure 5(c) illustrates this.

3.3 Conflict Learning
       In the process of generating a test for a target fault, when
an implication results in a conflict, the test generation
procedure backtracks. We observe that the value implied on a
line that resulted in a conflict will result in a conflict again if it
is implied again later unless the reason for the conflict is not
present. Until this happens, the values on the lines causing the
conflict can be set to the opposite values which may lead to
many new implications. We call the discovery of these new
implications Conflict Learning. It should be pointed out that
conflict learning was earlier used in improving the efficiency
of SAT solvers [22]. In this context conflict learning yields
new clauses based on the conflict. Conflict learning as used
here is different as discussed next.
       Example 2: The following example illustrates conflict
learning. In the partial circuit shown in Figure 6, a=0 is the
justification problem that is currently targeted. Solving a=0 by

Recursive learn

J
a=0
/ 2

J
Parent

1/2

Added by learning

J
d=0
/ 2

J
Parent

1/2

J
a=0
/ 2

Benefit from reordering

J
a=0
/ 2

J
Parent

1/2

J
d=0
/ 2

(a) (b) (c)
Figure 5. Illustration of Conflict Driven Recursive Learning



setting a1=0 will add the only child justification problem b=0
into the decision tree. In order to solve b=0, we imply b1=1
and then b2=1 and realize that b=0 is not achievable. We
backtrack to a=0 and try to solve it by switching to a2=0. a2=0
itself does not provide many implications but adds the
justification problem a2=0 into the decision tree. At this point,
if we remember the fact that b1=1 and b2=1 lead to a conflict
and imply them now, we will find that they still cause a
conflict. Thus, we learn that we must set b1=0 and b2=0 to
avoid a conflict. These two learned implications further fix
signal b=1, a1=1 and e=0. These new implications not only
increase the number of known signal values but also solve the
justification problem a2=0, which is important since it prevents
potential useless work for solving a2=0 by selecting b=0. It is
important to note that the learned implications b1=0 and b2=0
are valid only because the values of c and d were not changed
after it was first determined that implying b1=1 or b2=1 leads
to conflicts. Thus, these new implications should only be tried
during the time when other signal values do not change
extensively. We capture this temporary nature of the
implications learned through conflict learning by attributing an
age to them as described in detail next.

       We use a small cache called the conflict cache to store
conflicts as shown in Figure 7. Whenever implying a value v
on line l leads to a conflict, we place an entry in the cache.
Each entry in the conflict cache has a line id number, the value
that caused the conflict when implied on the line and the age
of the entry, which is set to zero when the entry is first placed
in the conflict cache. The conflict learning works as follows:
1) After an implication causes a conflict, we fill its

information into the conflict cache. If the cache has an
empty slot, we use it. Otherwise, we replace the oldest
entry according to its age with the new one. Every newly
filled entry has its age set to 0.

2) After each backtrack, we search through the conflict
cache. For every filled entry, we check
a) If the line of an entry, say l, is currently unspecified,

we imply the value v recorded in the cache for l to
see if it results in a conflict. If it does not conflict, we
remove the entry from the cache. However, if it
causes a conflict, we learn that line l should hold the
complement value ~v and we imply value ~v on line
l. It is worth mentioning that if the implication of (l,
~v) fails, we know we have entered a non-solution
area and we quit the search and backtrack to a
previous level.

b) If the line of the entry is currently specified, we age
the entry by one.

3.4 Blockage Learning
       Blockage learning is a technique that we proposed in an
earlier work [21] to identify redundant faults in combinational
logic circuits without explicitly attempting to generate tests.
Blockage learning helps identification of conditions that are
necessary for propagation of fault effects through fan-out
stems. We incorporated blockage learning into the ATPG thus
allowing the use of learned implications during test generation
for all the faults.  Blockage learning is briefly described below
with the help of an example.

       Example 3: In Figure 8, suppose we want to propagate a
fault effect through line b with c=1 and d=1 fixed by previous
decisions. Since b is a stem, we have to make a decision
before we can continue. Suppose we first decide to propagate
the fault effect through b1. Then a1=1 is required which further
implies a=1. However, the implication of a=1, c=1 and d=1
leads to a conflict, so we know that the fault effect cannot be
propagated through b1. Similarly, if we pick b2 to propagate
the fault effect, a2 has to be 1 and hence a=1 and a conflict
occurs again. Blockage learning would have identified the
implication that a must be 1 in order to propagate fault effects
through the stem b [21]. In this example, the decision to
propagate the fault effect through b would imply a=1 which
leads to a conflict and a backtrack would occur immediately.

Figure 8 Example of Blockage Learning

c=1
ab

d=1
a1

a2

b1

b2

For every stem a {
    Imply (a,0);
    For every blocked stem b {
        Learn that fault effect thru b requires a=1;
    }
    Imply (a,1);
    For every blocked stem b {
        Learn that fault effect thru b requires a=0;
    }
}
Figure 9. Pseudo Code of Blockage Learning

b

b1

b2

c=1

d=1

a=0a1

a2

e
Figure 6. Conflict Learning Example

Slot 1

Slot 2

Slot 3

Slot n-1

Slot n

Line

Value

Age

Figure 7. Conflict Cache



       Blockage learning is done in a preprocessing step
concurrently with static learning in the ATPG. Its pseudo code
is shown in Figure 9. It is worth mentioning that blockage
learning is different from the improved unique sensitization
technique that was proposed in SOCRATES[7].

4. Experimental Results

      We implemented the three conflict driven techniques as
well as the blockage learning procedure described in the last
section on top of a D-algorithm based commercial ATPG tool.
We ran the modified ATPG tool on the larger ITC’99
benchmark circuits [19] and several industrial designs. The
current version of these ITC benchmark circuits are known to
have many hard-to-resolve faults. The run times reported are
obtained on a Sun Blade-2000 workstation.
       In Table I we give the results of running the original
ATPG, the ATPG with each proposed technique added and
with all the proposed techniques added to the ATPG. Each
pair of columns after the first two columns of Table I gives the
run time in seconds and the number of faults aborted by the
procedure listed in the first row. After the circuit name we
give the number of collapsed faults in thousands for each
circuit under test. It can be seen that the industry designs C1-
C4 contain more faults than ITC’99 benchmark circuits, and
C3 and C4 have more than 1 million faults. The pair of
columns after the fault count shows the performance of the
original ATPG tool. Pairs of columns after that are results
obtained when the technique(s) indicated in the first row are
added to the ATPG. Here DDO stands for dynamic decision
ordering, CL for conflict learning, CDRL stands for conflict
driven recursive learning and BL is blockage learning. The

backtrack limit for all the procedures in Table I is set to 100.
Table 1 shows that the use of all the proposed techniques
results in significantly reduced numbers of aborted faults
without effecting the run time much. This data shows that the
proposed techniques can be used as default options in the
ATPG since the run time does not increase.
    In Table II, we give the results when we used the original
ATPG and the ATPG with the addition of all four techniques
(DDO, CL, CDRL and BL) in up to three passes to achieve
zero aborted faults. The passes differ in the backtrack limit
used and the recursive learning depth. In the first pass, the
backtrack limit is 100 and 1-level recursive learning is used. In
the second pass, the backtrack limit is 3,000, 3-level recursive
learning is used, and only the aborted faults from pass 1 are
targeted. In the third pass, the backtrack limit is kept at 3,000
and 4-level recursive learning is used to resolve the faults that
are aborted after the second pass. In the first four rows we give
the results for the original ATPG. The fourth row labeled
“total” gives the total run time for all three passes of the
ATPG and the number of aborted faults at the end of the third
pass. In the next four rows of Table II, we give the results
when all four techniques (DDO, CL, CDRL and BL) are used
on top of the original tool. It can be seen from the two “total”
rows (for the original and the augmented ATPG) that all the
faults in ITC’99 benchmark circuits are resolved when the
proposed techniques are incorporated into the ATPG. The
original ATPG aborts on some faults even though it uses much
larger run times. For most circuits, the run times with the
proposed techniques are smaller by an order of magnitude.
This data shows that the proposed techniques help resolve
hard-to-resolve faults using considerably shorter run times
compared to the original tool.
       The last row of Table II gives the results of a SAT based

Original Tool D.D.O. C.D.R.L. C.L. B.L. All
CUT

# Fault
(k) Time # Ab. Time # Ab. Time # Ab. Time # Ab. Time # Ab. Time # Ab.

B14s 12.8 8.4 8 7.7 8 8.4 2 8.5 10 7.7 12 8.7 4
B15s 23.5 35.5 120 34.4 104 34.7 105 38.1 66 28.4 13 30.5 4
B17s 65.5 87.6 339 83.3 294 100.6 348 99.1 136 83.4 12 83.2 9
B18s 188.5 344 796 307.3 732 361 763 338.3 682 486 271 335 22
B20s 25.3 14.6 21 13.5 8 15.3 6 14.8 12 12.6 20 12.9 2
B21s 26.6 12.1 18 12.2 12 13.7 8 12.1 17 11.7 15 12.8 8
B22s 40.3 19.5 20 18.6 12 19.2 6 18.9 14 18.3 23 19.5 7
C1 189.9 191.3 103 182.2 29 188.4 25 183.9 34 197.6 103 208.4 20
C2 215.5 87.9 273 66.1 10 74.4 2 62.8 25 94.9 269 71.7 5
C3 1,146 1,639 1,031 1,613 537 1,776 462 1,780 667 1,877 971 1,690 280
C4 1,846 8,427 390 7,609 169 7,324 183 7,471 214 8,132 333 7,267 120

Table I. Performance of the original ATPG tool and different techniques (Backtrack Limit is 100 in all cases)

B14s B15s B17s B18s B20s B21s B22s
CUT

time abo. time abo. Time Abo. time abo time abo. time abo. Time abo.
P 1 49 6 92 111 220 343 595 759 115 4 87 8 144 8
P 2 504 3 70 2 1884 167 4276 411 130 3 422 5 390 5
P 3 1147 3 59 2 3102 164 6963 411 282 3 414 2 673 4

Ori.
tool

Total 1700 3 221 2 5206 164 11834 411 527 3 923 2 1207 4
P 1 8.7 4 30.5 4 83.2 9 335 22 12.9 2 12.8 8 19.5 7
P 2 8.8 0 20.1 0 21.8 0 83.2 4 7.2 0 27.8 0 25.1 0
P 3 0 0 0 0 0 0 28.1 0 0 0 0 0 0 0

With
all

tech.
Total 17.5 0 50.6 0 105 0 446 0 20.1 0 48.6 0 44.6 0

SPIRIT[20] 52 0 554 0 1610 0 5996 0 122 0 141 0 267 0
Table II. Performance of different procedures achieving 100% ATPG efficiency



ATPG – SPIRIT[20] working on the same set of benchmark
circuits. The run times reported are on a PC with Pentium III-
450 CPU using the Linux operating system. SPIRIT also does
not abort on any faults in these circuits. Comparing the run
times of the ATPG with the proposed techniques and SPRIT,
we notice that the run times of the proposed ATPG are much
shorter even though accurate comparisons are not possible
since they were run on different machines.
       In Table III, we give the results of using all the proposed
techniques to resolve all the faults in the selected industrial
designs. For the industrial circuits used in our experiment, the
proposed techniques resolved all the faults and reduced the run
times.

       In Table IV, we give the results of running two other test
generation programs on some of the circuits. The first row
shows the performance of the ATPG system called
ATOM[18]. ATOM is based on the PODEM algorithm. The
run times for ATOM were obtained on a PC with Athlon
900Mhz CPU using the Linux operating system. The second
row in Table III shows the performance of the
ATALANTA[13] system. This system is based on FAN.
ATALANTA was run on the same workstation as the
proposed ATPG procedure. It can be seen that both ATOM
and ATALANTA require much higher run times and also
abort on several faults. Since the run times are high, we did
not run these ATPG procedures on the larger circuits (B17s-
B22s).

5. Conclusions

       Three techniques to improve the efficiency of
deterministic ATPG procedures were proposed. These
techniques, called dynamic decision ordering, conflict driven
recursive learning and conflict learning, were shown to reduce
the run time of a D-algorithm based commercial ATPG by an
order of magnitude when run on benchmark circuits.

6. Acknowledgement

       We thank Mr. Xiaoming Yu of the Department of
Electrical and Computer Engineering, University of Illinois,
Urbana-Champaign, for providing us the results of running the
ATPG program ATOM.

7. References

[1] J. P. Roth, “Diagnosis of Automata Failures: A Calculus & a
Method,” IBM J. Res. Develop., vol. 10, Jul 1966, pp. 278-291

[2] L. M. Goldstein and E. L. Thigen, “SCOAP: Sandia
Controllability/Observability Analysis Program,” Proc. DAC,
June 1980, pp. 190-196

[3] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests
for Combinational Logic Circuits,” IEEE Trans. on Computers,
March 1981, pp.215-222

[4] H. Fujiwara and S. Toida, “The Complexity of Fault Detection
Problems for Combinational Logic Circuits”, IEEE Trans. on
Computers, June 1982, pp. 555-560

[5] H. Fujiwara and T. Shimono, “On the Acceleration of Test
Generation Algorithms,” IEEE Trans. on Computers, Dec. 1983,
pp. 1137-1144

[6] T. Kirkland and R. Mercer, “A Topological Search Algorithm
for ATPG,” Proc.  DAC, 1987, pp. 502-508

[7] M. Schulz, E. Trischler, and T. Sarfert, “SOCRATES: A Highly
Efficient Automatic Test Pattern Generation System,” Proc. of
ITC, 1987, pp. 1016-1026

[8] A. Ivanov and V. K. Agarwal, “Dynamic Testability Measures
for ATPG”, IEEE Trans. on CAD, May 1988, pp. 598-608

[9] M. Abramovici, M. A. Breuer and A. D. Friedman, “Digital
Systems Testing and Testable Design”, IEEE Press, 1990

[10] W. Kunz and D. K. Pradhan, “Recursive Learning: An
Attractive Alternative to the Decision Tree for Test Generation
in Digital Circuits,” Proc. of ITC, 1992, pp. 816-825

[11] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability,” IEEE Trans. on CADJan. 1992, pp. 4-15

[12] W. Kunz and D. K. Pradhan, “Accelerated Dynamic Learning
for Test Pattern Generation in Combinational Circuits,” IEEE
Tran on CAD, May 1993, pp. 684-693

[13] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns for
Combinational Circuits”, Technical Report No. 12_93, Dept of
Electrical Eng., Virgina Polytechnic Institute and State
Unviersity

[14] M. Henftling, H. Wittmann and K. Antreich, “A Single-Path-
Oriented Fault-Effect Propagation in Digital Circuits
Considering Multiple-Path Sensitization,” Proc. of ICCAD,
1995, pp. 304-309

[15] P. Stephan, R. K. Brayton and A.L. Sagiovanni-Vincentelli,
“Combinational Test Generation Using Satisfiability”, IEEE
Trans. on CAD, September 1996, pp. 1167-1176

[16] J. P. M. Silva and K. A. Sakallah, “GRASP -- A new search
algorithm for satisfiability,” Proc. of ICCAD, 1996, pp. 20-227

[17] J. P. M. Silva and K. A. Sakallah, “Robust Search Algorithms
for Test Pattern Generation”, Proc. of FTCS, June 1997, pp.
152-161

[18] I. Hamzaoglu and J. H. Patel, “New Techniques for
Deterministic Test Pattern Generation”, Proc. of VTS, 1998, pp.
446-452

[19] S. Davidson, “ITC’99 Benchmark Circuits – Preliminary
Results,” Proc. of International Test Conference, 1999, pp. 1125
(Gate level description: http://www.cad.polito.it)

[20] E. Gizdarski and H. Fujiwara, “SPIRIT: A Highly Robust
Combinational Test Generation Algorithm,” 19th IEEE Proc. on
VTS, 2001, pp 346-351

[21] C. Wang, I. Pomeranz and S. M. Reddy, “REDI: An Efficient
Fault Oriented Procedure to Identify Redundant Faults in
Combinational Logic Circuits,” Proc. of ICCAD, 2001, pp. 370-
374

[22] L. Zhang, C.F. Madigan, M. H. Moskewicz and S. Malik,
“Efficient Conflict Driven Learning in a Boolean Satisfiability
Solver,” Proc. of ICCAD, 2001, pp. 279-285

Original Tool With All Tech.
CUT

Time (s) # abort Time (s) # abort
C1 2,736 3 1,182 0
C2 1,598 9 68.8 0
C3 26,218 83 3,654 0
C4 12,879 4 8,719 0

Table III. Achieving zero aborted faults in industrial designs

B14s B15s
CUT

Time (s) # abort Time (s) # abort
ATOM[18] 24,737 117 24,604 418

ATALANTA[13] 830 227 7,331 613
Table IV. Results from two other ATPGs


	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index





