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Abstract 

Approaches to achieve low-power and high-speed VLSI's are 
described with the emphasis on techniques across multiple 
technology and design levels.  To suppress the leakage current 
in a standby mode, Boosted Gate MOS (BGMOS) is effective, 
which is based on cooperation between technology level and 
circuit level.  To reduce the power in an active mode, VDD-
hopping and VTH-hopping are promising, which are cooperative 
approaches between circuit and software.  Power consumed in 
interconnect system can be reduced by a cooperative approach 
between application and layout as in bus shuffling. Other low-
power design approaches are also discussed. 

1. Introduction 
Power consumption of VLSI's is ever increasing and various 

effective techniques to mitigate the power problem have been 
proposed at a level of system, algorithm, software, CAD, circuit, 
technology and assembly.  There is, however, a new trend in 
low-power designs to exploit cooperation across multiple 
technology and design levels .  To support the new paradigm, 
EDA tools are required.  In Fig.1, some of the cooperative 
schemes are tabulated. 

2. Cooperation between technology and 
circuit: BGMOS 

In order to mitigate the leakage problem in a standby mode, 
it is effective to insert a non-leaking power switch in series to a 
leaky yet high-speed logic gate block made of low-VTH 
MOSFET's (BGMOS in Fig.2, [1]).  The basic idea is the same 
as MTCMOS [19] but MTCMOS becomes slow when VDD gets 
less than 1V and stops operating when VDD gets less than 0.5V.  
In BGMOS, the non-leaking power switch is  realized by a high-
VTH (0.6V for example) MOSFET but the gate of the switch is 
driven up to higher voltage than VDD to ensure high drivability.  
The gate oxide thickness of the power switch should be thicker 
than normal transistors to cope with the higher gate voltage. 

To realize the scheme, the technology side provides a thicker 
oxide transistor, while the design side thinks about using the 
different type of transistors and thus the scheme can be called 
cooperation between a technology level and a circuit level. 

Design tools are needed to handle various types of transistors 
for low power. MOSFET's tuned for the higher voltage is also 
helpful in SRAM, I/O and analog designs as shown in Fig.2. 

3. Cooperation between circuit and software: 
VDD hopping and VTH  hopping 

In an active mode, changing VDD and VTH in time in 
accordance with required performance is effective for power 
reduction.  If VDD is lowered or VTH is increased, the power 
decreases but speed is degraded as shown in Fig.3.  The 
difficulty is to find the timing to lower the speed.  Only 
software knows when it is possible to decrease the processor 
performance without sacrificing the system performance. 
Hardware provides a method to change VDD and/or VTH.  The 
scheme is shown to be effective even for real-time multimedia 
applications. 

In VDD-hopping, VDD is changed according to software’s 
decision [14, 6] (see Fig.4).  The scheme has been applied to a 
MPEG4 codec system and the power of the processor has been 
reduced to one fourth of the conventional fixed VDD processor 
in the measurement.  The video codec system guarantees real-
time operation for any data input but the highest performance is 
needed only for 6% of time. 

The algorithm to adaptively change VDD depending on the 
workload is of importance. Since the workload depends strongly 
on data, the control should be dynamic in run-time, and should 
not be static in a compile-time. By chopping a real-time task 
into slices, and by monitoring current time and deadline for a 
slice, we can successfully control VDD to reduce power.  There 
is a software feedback loop. 

It is to be noted that VDD hopping algorithm works fine for 
every multimedia application we tried including MPEG2 and 
VSELP although the switching time between voltage levels 
requires 0.2ms which is considered to be extraordinary long in 
terms of processor clock period.  This long transition time is due 
to the charging and discharging of huge capacitance on VDD 
nodes on the board and in the LSI.   In a multimedia application, 
however, the real-time feature is  for humans and human is slow.  
This is the reason why the VDD hopping works fine in spite of 
the long transition time between voltage levels.  The other point 
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of interest is that the number of voltage levels can be as low as 
two as is shown in Fig.5. 

The VDD hopping scheme can also be applied to multi-
tasking real-time operating system [20] (see Fig.6).  Since OS 
has  higher-level information on available time slot that can be 
assigned to an application, higher efficiency can be realized 
compared with application-only case as shown in Fig.16. One 
example we tried is modified power-conscious µ-ITRON OS 
running FFT and MPEG4 at the same time and the observed 
power reduction was 75% while the power saving for FFT alone 
was only 50%. 

When subthreshold leakage becomes dominant in the future 
as shown in Fig.7, the same software control mechanism can be 
used in VTH hopping scheme where VTH is changed in time in 
accordance with the required performance [5] (see Figs.8-9).  
About 80% power reduction is possible for a multimedia real-
time application. 

4. Cooperation between application and 
layout: Bus shuffling 

Power consumed in interconnects is another issue.  Recent 
interconnect consumes power by the coupling capacitance.  Bus 
shuffling which reduces the power consumed by the coupling 
capacitance is an approach for low-power through cooperation 
between application level and layout.  Bus layout is just 
shuffled without any encoder and decoder but the scheme 
achieves about 40% power reduction [2] (see Figs.10-11). 

5. Other approaches 
Another important low-power consideration is on I/O’s.  3D 

integration using System in Package (SiP) will be effective in 
reducing the I/O power. In designing  SiP, co-design between an 
LSI itself and an assembly structure will be needed.  Voltage 
drop across power lines due to high current expected in low-
VDD regime can also be mitigated by the use of the thicker metal 
layer on an interposer and area pads of an LSI (see Fig. 12-14).  
Design tools for the SiP are to be investigated. 

In the future, when device is scaled further, power 
consumption of LSI’s tend to increase due to the leakage 
increase including sub-threshold, gate tunneling, and junction 
leakage.  One important way to mitigate active leakage problem 
is to adopt memory-rich architectures [7] (see Figs.15). 

Some of the approaches for low-power LSI’s in the active 
leakage dominant regime are summarized in Fig.16. 
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Fig.1 Controlling VDD and VTH for low power 
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Fig.2 Boosted Gate MOS (BGMOS) and low-voltage VLSI  
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Fig.3 Power & Delay Dependence on VDD & VTH 
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Fig.4 Application slicing and software feedback loop in VDD hopping 
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Fig.5 VDD hopping reduces power in multimedia applications 
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Fig.6 Power Conscious OS & Application Slicing 

Estimated based on ITRS2001(International Technology Roadmap for Semiconductors) 
parameters.  VTH is extracted from on- and off- current. Power is at 100ºC.
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Fig.7 Increasing leakage power 
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Fig.8 Schematic of VTH-hopping 
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Fig.11 Power reduction by bus shuffling  
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Fig.12 System in Package 
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Fig.14 Reduction of I/O power by superconnect 
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Fig.15 Demand for memory-rich architecture 
 

Active Dynamic Active Leakage Standby Memory
Multipe VTH Dual-VTH[15],LBD[3] MTCMOS[19] Dual-VTH[12]
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Variable VDD VDD hopping[14] VDD hopping[14] RRDV[9]
VGS Rev. Bias LBSF[4] SCCMOS[13] SSICMOS[16]
Variable af Gated clock
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LBSF: Leakage Bypass with Stack Forcing
LBD: Leakage-Biased Domino Circuits 
MTCMOS: Multi -Threshold CMOS
VTCMOS: Variable Threshold CMOS
BGMOS: Boosted Gate MOS
SCCMOS: Super-Cut-Off CMOS
DLC: Dynamic Leakage Control
RRDV: Row by Row Dynamic Voltage Control
SSICMOS: Switched-Source-Impedance CMOS  

Fig.16 Detailed table for low-power techniques 
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