
A Code Transformation-Based Methodology for Improving I-Cache
Performance of DSP Applications1

N. Liveris*, N. D. Zervas+, D. Soudris§ and C. E. Goutis

*Northwestern University, Evanston, IL., USA, nikos@ece.nwu.edu
+ALMA Technologies, Athens, Greece, zervas@alma-tech.com

§Dept. of E.C.E., Democritus Univ. of Thrace, 67100 Xanthi, Greece, dsoudris@ee.duth.gr
Dept. of E.C.E., University of Patras, Rio 26500, Greece

1 This work was partially supported by the project IST-2000-30093 EASY of European Commission.

Abstract- This paper focuses on I-cache behaviour
enhancement through the application of high-level
code transformations. Specifically, a flow for the
iterative application of the I-Cache performance
optimizing transformations is proposed. The
procedure of applying transformation is driven by a
set of analytical equations, which receive parameters
related to code and I-cache structure and predict the
number of I-cache misses. Experimental results from
a real-life demonstration application shows that
order of magnitude reductions of the number of I-
cache misses can be achieved by the application of
the proposed methodology.

1 Introduction
I-cache memories are widely used to bridge the
increasing cycle-time gap between fast processing
elements and relatively slow main memories. Although
the use of instruction cache memories generally decreases
the programs’ execution time, some programs fail to use
them effectively. Especially in cases that the usage of
large I-caches is impossible or unaffordable, as in the area
of embedded systems, it has been shown that I-cache
performance dominates on system’s cycle and energy
budget [1,2]. To improve I-cache performance, the use of
mini-caches [3] and modified prefetch mechanism [4] has
been proposed in the past.
Apart from these techniques, high-level code
transformations can be used to improve I-cache
performance. In this paper, two high-level code
transformations are proposed for this purpose, namely the
widely known loop-splitting and function call insertion.
Both transformations aim the optimization of the code
located in the scope of loop nests. Loop splitting
improves locality of instruction memory references, in
cases that the code enclosed by a loop nest is also
distributed after the application of the transformation.

With function insertion, rarely executed code segments
(e.g. code in the scope of a condition) that are contained
in loop nests, are replaced by function calls. In this way,
less capacity misses [5] occur in the I-Cache, since only
the size of the most frequently executed code remains in
the scope of the loop nests. Furthermore, an insight
analysis, which results to the formulation of analytical
equation that can be used to predict the number of I-cache
misses, is presented. This analysis enabled the
development of a systematic methodology for improving

Symbol Definition
N_misses The number of I-cache misses
Block_
size

The size of one block of the instruction
memory cache in number of bytes

Icache_
size

The size of the instruction cache memory in
number of bytes

C_size The code size inside the scope of a
condition in number of bytes. It is the code
size that is executed only if the certain
condition is true and it does not include the
instructions for the logical operation
evaluation and the conditional branching.

Fc_o_cs The code size of a function call in number
of bytes

Fc_o_t The overhead of a function call in time
L_size The code size contained in the scope of a

loop nest in number of bytes. It includes the
instructions that are placed inside the scope
of the loop and the instructions for
implementing the loop (condition checking,
branching, loop iterator incrementing
instructions)

N_iterat The number of iterations of one loop
p_true The ratio of the number of times a condition

is true to the number of times this condition
is checked.

Table 1: Basic Parameters

I-cache performance through the application of high-level
transformation. Specifically, analytical equations are used
to identify the conditions under which the application of a
certain transformation has the desirable results. Based on
that a flow for the iterative application of the I-Cache
performance optimizing transformations is proposed.
Experimental results from a real-life demonstration
application show that order of magnitude reductions of
the number of I-cache misses can be achieved by the
application of the proposed methodology.

2 Loop Nests and I-Cache Misses
This section provides an insight analysis of a direct
mapped I-cache behaviour. The analysis results in a set of
analytical equations for I-cache misses, which are used to
drive the proposed methodology. In Table 1 the basic
analysis’ parameters are defined. It is mentioned here that
with the presented analysis it is assumed that all function
are in lined and that no conditional branches are taken.

The analysis focuses on the most critical part of an
application code, namely the code contained in loop
nests. Specifically, three different cases of I-Cache
behaviour are identified according to the relation among
the code size contained in a loop nest and the I-cache
size:
2.1 SizeICachesizeL __ ≤
In this case there are no capacity misses [5] since the
whole code of the loop can be placed in the cache.
Therefore, the only misses that occur are the compulsory
misses during [5] the first iteration of the loop (Fig.1). So,
in this case the number of instruction cache misses is:

sizeBlock
sizeL

sizeBlock
sizeICache

sizeICache
sizeL

missesN
_

_
_
_

_
_

_ =×= (1)

Loops that belong to this category will from now-on
referenced as type-1 loops.

A times
dist = (B[m][n] – img[m][n]);

for (i=0;i<A;i++)

{

…

}

a = data[i];

B[m][n] = a – c_tmp;

c[i] = c_tmp;

a+=step;

data[i – 1] = c[i]*c[i];

Figure 1: I-Cache Misses for SizeICachesizeL __ ≤ .

2.2 sizeICachesizeLsizeICache _2__ ×<<
In this case not only compulsory misses will take place
but also capacity misses will occur (Fig. 2). The number

of compulsory misses from the first iteration will be the
same as in the previous case, namely:

sizeblocksizeL __ . In addition to this, for each of the
next iterations a number of capacity misses will take
place: () sizeBlocksizeiICachesizeL __%_2 × . Thus,
given that the number of iterations of the loop is

iteratN _ , the total number of instruction cache misses
will be:

()×−+= 1_
_

__ iteratN
sizeBlock

sizeL
missesN

sizeBlock
sizeICachesizeL

_
_%_2 × (2)

The loop nests that belong to this category from now-on
referenced as type-2 loops.
2.3 sizeLsizeICache __2 ≤×
In this case the number of compulsory misses of the first
iteration equals the number of capacity misses of each of
the next iterations (Fig. 3). So, the total number of
instruction cache misses is:

××=
sizeICache

sizeL
iteratNmissesN

_

sizeBlock

sizeL
iteratN

sizeBlock
sizeICache

_
__

_
_ ×=× (3)

The loops of this category will from now-on referenced as
type-3 loops.
2.4 Taking into Account Conditional Branches
The number of misses in the presence of conditional
branches is different only in the cases 2.2 and 2.3. Firstly,
let us consider the case that sizeLsizeICache __2 ≤× .
Assume that there is only one conditional branch with
code size sizeC _ , and that the condition has a true value
in truep _ percentage of the total times that it is
checked. In such a case sizeCsizeL __ − is the amount
of the code that is executed in every iteration of the loop
and sizeC _ will be executed iteratNtruep __ × times.
Thus, the number of instruction cache misses during the
execution of the loop will be:

10

9

0

1

2

3
4

5

6

7
8

11

8
9
10
11
4
5
6
7

0
1
2
3
4
5
6
7

 statement2;

 statement3;

 statementN;

for (i=0;i<A;i++)

{

 statement1;

…

}

Figure 2: I-Cache Misses for
sizeICachesizeLsizeICache _2__ ×<<

A times

for (i=0;i<A; i++)

{
a = data [i];

B[m] = a - c_tmp;

dist1 = (B[m] - img[m][n]);

dist += dist1*dist1;

b = data[i] - dist;

c = b-a;

c[i] = c_tmp;

a += step;

data[i-1] = c[i]*c[i];

d = a*a;

c = b-a;

keep = dist;
}

blocks with instructions

instruction cache

Figure 3: I-Cache misses for sizeLsizeICache __2 ≤× .

×= iteraNmissesN __
()

=×
×+−

×
SizeBlock
sizeICache

sizeICache
sizeCtruepsizeCsizL

_
_

_

()
sizeBlock

sizeCtruepsizeCsizeL
iteratN

_

_
×+−

×= (4)

Now, if there are M conditional branches inside the loop,
each one with a different truep _ and a different

sizeC _ , then the number of misses will be:
×= iteratNmissesN __

sizeBlock

sizeCtruepsizeCsizeL
M

i
ii

M

i
i

_

11 










×+





−

×

∑∑
==

 (5)

where isizeC _ and itruep _ are the code size and the
being true percentage of the ith condition.
Generally speaking, the second term of Eq. 5 contains the
size of the code for each separate code part multiplied
with the ratio of the number of times this part is executed
to iteratN _ .
In the second case, where the inequality

- Condition Analysis in the scope
of the transformed loops

- Function Call insertion

Loop splitting based on profiling

Was the code modified

Is the code dominated
by the instruction

Is our code dominated
by the instruction cache

Does the code contain
loops with

Does the code contain
loops with L_size>C_size?

END

Yes

code inlining

Does the code contain
loops with L_size>C_size?

- Condition Analysis
- Dead Code Removal
- Funcion Call Insertion

Loop splitting in points where
no overhead will be added

Is the code dominated
by the instruction cache

Does the code
containloops with

L_size>C_size?

No

Yes

Yes

Yes

No

No

No

Yes
Yes

Yes

Yes

Yes

No

No

No

No

step 1

step 2

step 3

step 4

step 6

step 5

misses?

Is the code dominated
by the instruction cache

misses?
No

in this iteration?

misses?

L_size>C_size?

cache misses?

Figure 4: The proposed methodology flow.

sizeICachesizeLsizeICache _2__ ×<< is valid,
things are much more complicated, since the number of
misses also depends on the position of the conditional
branch inside the loop. If the condition and its scope are
placed in the blocks of the cache, for which only
compulsory misses occur, then the number of instruction
cache misses is the same as in the case where no
conditions are contained in the loop. In order for the
condition to be placed in one of these blocks, the
following inequalities have to be valid: 1. (code size from
the beginning of the condition to the end of the loop) ≤
ICache_size, 2. (code size from the beginning of the loop
to the end of the condition) ≤ ICache_size.
On the other hand, the number of instruction cache misses
is reduced when the condition is placed in a block, for
which capacity misses occur. In this case the number of
instruction cache misses is:

=missesN _

+=
sizeBlock

sizeICachesizeLtruepiteratN
_

)_%_(__2

() ()()
sizeBlock

sizeCsizeICachesizeLtruepiteratN
_

__%__1_2 −−
(6)

3 The Proposed Methodology
In this section the proposed methodology (Fig. 4) is
described. The first step of the proposed methodology
aims to determine whether the instruction cache misses
play an important role in the total CPU time of the code.
It is known that [6]:

(cyclesclockCPUtimeexecCPU ____ =
) cycleClockcyclesstallMemory ___ ×+ (7)

The number of memory stall cycles depends on both the
number of misses and the cost per miss, which is called
the miss penalty:

(+= missesICacheNcyclesstallMemory ____
) penaltyMissmissesDCacheN ___ ×+ (8)

The total execution time that is caused from the memory
accesses (hits and misses) can also be calculated:

Total execution time due to memory accesses =
N_ICache_hits × cost of a hit (f1) + N_ICache_misses ×
cost of a miss (f2) + N_DCache_ hits × cost of a hit (f3) +
N_DCache_misses × cost of a miss (f4)

From these 4 factors, that are added to form the total
execution time due to memory accesses, only the second
may be dramatically decreased by the application of the
proposed methodology. The others will remain the same
or will be slightly changed. Therefore, it is very important
at the first step to examine whether the number of
instruction cache misses is large enough to justify the
application of the methodology. At this first step an
approximation of the upper bound of the gain, which may

be obtained by applying the methodology, can be even
calculated using Amdahl’s law:

×= oldnew timeExecutiontimeExecution __

 () 







+−×

enhanced

enhanced
enhanced Speedup

Fraction
Fraction1 (9)

where: Fractionenhanced = (f2) /(total number of execution
time due to memory accesses) and the expected
Speedupenhanced ≤ 100.

So, the steps of the proposed methodology, which
evaluate whether the code execution time is dominated by
the performance of the instruction cache, are actually
evaluations of equation (7) for which the number of
instructions cache misses are taken into account.
As a second step the code of the functions, which are
called inside the scope of the most critical loop nests, are
in-lined. This can be considered as a pre-processing step
that is necessary in order to reveal the structure of the
code. The identification of the critical loop nests imposes
the detection of the loops that have the largest number of
iterations and the measurement of the code size enclosed
by these loops nest. This process can be done statically
for the loop nests that have manifest conditions and their
number of iterations is known at compile time. However,
for the loop nests with data-dependent conditions the
mean number of iterations can be derived with profiling.
If the code size of some loop nests is bigger than the size
of the instruction cache, then there is a great chance that
our code can be heavily optimized by this methodology.
In this case the third step should be applied.
At the third step of the proposed methodology condition
analysis takes place. Condition analysis aims to determine
the values of truep _ and sizeC _ for all code segments
that are conditionally executed. In this way, “dead code”
is detected and opportunities for function call insertion
are revealed. Specifically, after the functions are in lined,
many conditions will be brought in different contexts,
where a part of them may never be true. Therefore, the
conditions, for which it can be derived at compile time
that they never become true, are removed. By removing
these conditions with the code inside their scope, a big
decline in the code size of the scope of loops may be
achieved without the addition of any kind of overhead.
Another benefit from “dead code” removal is that the
number of statements will be decreased and so the
complexity of applying the next steps will also be
reduced. Furthermore, given the values of truep _ and

sizeC _ for the code segments that are conditionally
executed, it can be derived the replacement of which of
them with a function call will lead to reduction of the
number of I-cache misses. Specifically, if a condition is
found with a small truep _ , then its scope is replaced
with a function call, as in Fig. 5. In such a case, the code
size enclosed by the outer loop is:

()csofcsizeCsizeLsizeL oldnew _____ −−= (10)
where csofc __ is the code size overhead due to the
added function call.
Now, let us assume that the inequalities: A1)

sizeICachesizeLsizeICache _2__ ×<< , A2)(code

size from the beginning of the condition to the end of the
loop) ≤ ICache_size, A3)(code size from the beginning of
the loop to the end of the condition) ≤ ICache_size are
valid (Fig. 5).
Under these assumptions, the number of capacity misses
before function call insertion is applied is:

×−=−)1_(2_)(iteratNmissesN oldcapacity

 sizeBlocksizeICachesizeL old __%_× (11)
After the transformation, sizeL _ is reduced and the
number of capacity misses, when the condition is not true,
is:

=−newcapacitymissesN)(_

() =−=
sizeBlock

sizeICachesizeL
iteratN new

_
%

1_2

()×−= 1_2 iteratN

()()
sizeBlock

sizeICachecsofcsizeCsizeL old
_

_%____ −−
× (12)

Therefore, the number of instruction cache misses, when
the condition is not true, is reduced by:

() =∆ missesN _

() ()()
sizeBlock

sizeICachecsofcsizeCiteratN
_

_%___1_2 −−
(13)

However, by inserting this function call a certain
overhead is added to the code. This overhead is added
every time the condition becomes true and the function is
called. We will note the overhead in execution time due
to a function call as fc_o_t. So, the criterion for applying
this transformation is:
() () ×>×∆×− trueppenaltyMissmissesNtruep ____1

tofciteratN ___ ×× (14)
On the left side of this inequality is what the obtained
gain in time by this transformation and on the right side is
the paid penalty. In other words, in the proposed
methodology the third step is completed with the
application of this transformation in every part of the
code, where the three assumptions (A1- A3) and the
inequality (12) are valid. The application of this
transformation is proposed during the third step, because
it leads to a reduction of the code size and hence to a
reduction of the complexity for the subsequent steps.
The fourth step of the methodology is loop splitting in the
parts of the code where no overhead will be added. The
aim of this step is to split a type 2 or type 3 loop to two
different loops, from which at least one will be a type 1
loop. And in this fourth step the loop splitting should be

done in parts of the code where no overhead will be
introduced. That means that there should not be many
data-dependencies between the two new loops and
therefore it won’t be necessary to introduce a new array,
which will carry the intermediate results from the first
loop to the second. Then the only overhead that will be
added to the code is the additional loop instructions.
Therefore, we can write the following equation:

=+ overheadnsinstructioloopsizeL old ___
 2_1_ newnew sizeLsizeL += (15)

But now at least one of the two new loops is a type 1
loop. For example, if the loop is split into one type 3 and
one type1 loop, no capacity misses will occur during the
execution of the second loop. So the number of
instruction cache misses that take place in the
transformed code will be:

sizeBlock
sizeL

sizeBlock
sizeLiteratN

missesN new _
2_

_
1___ +×= (16)

for (i=0;i<A;i++)
{

if (dat[i]==value)
 {

statement1;
statement2;
statement3;

…
statementN;

 }

}
…

…

for (i=0;i<A;i++)
{

…
if (dat[i]==value)
{

function(…);
}

…
}

before the transformation:

after the transformation:

8
9
2
3
4
5
6
7

0
1
2
3
4
5
6
7

8
9

10
11
4
5
6
7

0
1
2
3
4
5
6
7

Figure 5: The effect of function call insertion

The second term is the number of the compulsory misses
due to the execution of L2. For simplicity we assume
again that no conditional branches are included inside the
scope of the loops. With the initial form of the code the
number of instruction cache misses was:

sizeblock
sizeLiteratN

missesN old _
__

_
×

= (17)

 From Eq. 14 and 15, it can be derived that, since L_size
> L_size1 and N_iterat >> 1, the number of instruction
cache misses is significantly reduced.
As a next stage of the methodology the process of
measuring the code size inside the loops is repeated. If
some loops are transformed in step 4, the code size inside
the scope of the transformed loops has to be measured.
The aim of this step is actually to determine whether there
are still loops with code size bigger than the size of the

cache (type 2 and type 3 loops). If such loops exist, it
makes sense to continue our process and try to optimize
them as well. Otherwise, the application of the
methodology has to be terminated.
In step 5 the transformations that were introduced in the
third step, has to be applied again, but this time on the
transformed loops. As mentioned above, after loop
splitting the code size inside some loops may be changed.
That means, that there is a possibility that one assumption
of the A1 – A3 has become valid due to the
transformations in a part of the code where it was not
valid before. This will enable the application of the
replacing transformation on the scope of the conditional
branch. That is the reason, that this process is proposed as
the sixth step after the loop transformations of step 4.

In step 6 loop splitting will be done with the same
purpose as in step 4 (type 2 or type 3 loops to type 2 or
type 3 with reduced code plus type 1 loop). At this point
there are not going to exist other code parts where loop
splitting can be done without the addition of a serious
overhead to the data memory. That is why every decision
taken at this step has to be based on results from
profiling. With the help of profiling or even better with
the help of a simulator the achieved gain and the paid
penalty will be determined for every transformation. This
is of course a much more complex procedure than the one
followed at step 4, since it involves profiling. Moreover,
it is probably the least promising step because it
introduces additional overhead in data memory and that is
the reason that it should be applied after all the other six
steps are completed.
If the code is modified at the seventh step, going back to
step 5 is necessary. The application of these last three
steps has to be done iteratively, until no more
transformations should be applied. Then the application
of the proposed methodology is terminated.
It is very important to state that after every transformation
done on the code at every step, the number of instruction
cache misses has to be measured again. If this number
falls off at a great percentage, there is a chance that the
total cost coming from the instruction cache misses may
become less than one of the other factors of this equation.
At this case the proposed methodology was successfully
applied, since the biggest factor in cost was reduced so
much that it became unimportant compared with the other
factors. The methodology has to be terminated and other
transformations should be applied that will reduce the
cost from the other factors.

4 Applying the Methodology in an Real-Life
Application

In this section the proposed methodology will be used to
transform the code of a real life application, namely the
row-column 1D Discrete Wavelet Transform assuming an
input length equal 4096 and 5 levels of decomposition.
The original specification of this algorithm was 255 lines

of C code. A DLX [6] processor with an instruction cache
of 512 Bytes and a data cache of 512 Bytes, each of
which with block size equal to16 Bytes, has been used as
execution platform. For translating the code the DLX
compiler dlxcc has been used. In addition to this tool, the
DLX simulator dlx sim and the cache simulator dinero [7]
were used for taking the measurements that will be
presented in this section.
As a first step the execution of the initial form of the code
is simulated. The results can be seen in table 2. The
number of instruction cache misses is almost 15 times
larger than the number of data cache misses and
approximately 25% of all the instruction memory fetches.
Therefore, it makes sense to try to optimize this code by
using the proposed methodology. At the second step we
inline the code of the used functions inside the loops.
After in-lining it can be derived that there are loops with
much bigger code size than the size of the instruction
cache and which have a large number of iterations. So, by
applying the third step, many conditions has are detected,
for which it can be derived that they will never be true
during the execution of the program. Consequently, these
if-constructs together with the code, which is placed
inside the scope of these conditions, are removed. As a
next stage, condition analysis follows. In this code there
are no conditions left with small p_true and large code
size, for which the transformation of replacing their scope
with a function is justified. From table 2 it can be derived
that the number of fetches to instruction memory has been
seriously reduced by the application of this step. The
reason for that is that the conditions, which were
removed, were placed in the scope of the most critical
loops. Therefore, they were executed many times and
their removal has lead to large savings in instruction
memory accesses. The number of instruction cache
misses has also fallen off. This fact is expected, since
from this transformation the code size in the loops is
reduced and fewer capacity misses occur. Moreover, the
number of accesses to data memory fell off, because
every condition checking involved accesses to data
memory for two operands at least. The number of data
cache misses is not seriously affected. Since loops with
bigger code size than the cache size still exist in our
program, it makes sense to proceed to the next stage of
the proposed methodology.
In step 4 loop splitting without the introduction of an
overhead will be applied on the code. The process begins
with the loop with the largest code size and the biggest
number of iterations. This loop is transformed from one
type 2 into three type 1 loops. As it can be seen in table 2,
the number of instruction misses is now dramatically
decreased. With this transformation almost 93% of the
instruction cache misses do not occur anymore. This
result should be expected, since capacity misses, which
were the large majority of the misses, do not occur
anymore in this part of the code. Only compulsory misses

take place while the three new loops are executed. Due to
the inserted instructions for the separate loop execution
the number of fetches from instruction memory and the
number of accesses to the data memory are increased, but
less than 10%. The number of data cache misses is also
increased by 5%. To sum up, the total number of accesses
to instruction and data memory was increased by 161,400
and the total number of misses was reduced by 105,395.

8
9

10
11
4
5
6
7

0
1
2
3
4
5
6
7

for (i=0;i<A;i++)
{

 …

 if (dat[i]==value)
 {
 statement1;
 statement2;

 statement3;
 …
 statementN;
 }

 …

}

8
9
2
3
4
5
6
7

0
1
2
3
4
5
6
7

for (i=0;i<A;i++)
{

 …
 if (dat[i]==value)
 {
 function(…);
 }

 …
}

before the transformation:

after the transformation:

 Figure 5: The effect of function call insertion.

At this step, the number of instruction cache misses is
much smaller than the number of data cache misses. For
that reason, the proposed methodology has to be
terminated at this point.
5 Conclusions – Future Work
In this paper, a flow for the iterative application of the I-
Cache performance optimizing transformations has been
proposed. The procedure of applying transformation is
driven by a set of analytical equations, which receive
parameters related to code and I-cache structure and
predict the number of I-cache misses. Experimental

results from a real-life demonstration application showed
that order of magnitude reductions of the number of I-
cache misses can be achieved by the application of the
proposed methodology. Since with the proposed
methodology, decisions are made using analytical
equations which parameters that can be acquired at
compile time, future work will be targeted towards the
automated application of the proposed methodology.

References
[1] N. D. Zervas, K. Masselos, C.E. Goutis, "Date Reuse

Exploration for Low Power Realization of Multimedia
Applications on Embedded Cores", in the Proc. of 1999
IEEE International Workshop on Power And Timing
Modeling, Optimization and Simulation (PATMOS'99),
pp. 71-80, Oct, 1999.

[2] M. Dasygenis, et al. “Data and instruction memory
exploration of embedded systems for multimedia
applications”, accepted for publication in 2001 IEEE
Computer Society Annual Workshop on VLSI (WVLSI),
Orlando Florida, USA, April 2001.

[3] N. E. Bellas, I. N. Hajj and C. D. Polychronopoulos,
“Using dynamic cache management techniques to reduce
energy in general purpose processors”, IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 8, No. 6, pp. 693 - 708 December 2000.

[4] H. C. Young, E. J. Shekita, “An intelligent I-cache
prefetch mechanism”, in 1993 IEEE International
Conference on Computer Design (ICCD’93), pp. 44 – 49,
Oct. 1993.

[5] S. A. Przybylski, CACHE AND MEMORY
HIERARCHY DESIGN – A Performance Directed
Approach, Morgan Kaufman Publishers, 1990.

[6] J. L. Hennessy and D. A. Patterson, Computer
Architecture – A Quantitative Approach, Morgan
Kaufman Publishers, second edition, 1996.

[7] Alvin R. Lebeck, David A. Wood, “Cache Profiling and
the SPEC Benchmarks: A Case Study”, IEEE Computer,
vol. 27, No. 10, pp. 15-26, 1994.

#I-Mem.

Accesses

#D-Mem.
Accesses

Total Number
of Accesses

#I-Cache
Misses

#D-Cache
Misses

Total Number of
Misses

Original code 2,229,916 631,918 2,931,834 568,320 38,330 606,650

After step 3 1,424,722 489,916 1,914,638 115,598 40,746 156,344

After step 4 1,547,698 528,340 2,076,038 8,275 42,674 50,949

Table 2: Experimental Results.

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

