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Abstract

This paper presents an efficient approach to compute the dom-
inant poles for the reduced-order admittance (Y parameter)
matrix of lossy interconnects. Using the global approxima-
tion technique, the efficient frameworks are constructed to
transform the frequency-domain Telegrapher’s equations into
compact linear algebraic equations. The dominant poles and
residues can be extracted by directly solving the linear equa-
tions. The closed-form formulas are derived to compute the
low-order dominant poles. Due to high accuracy of the global
approximation, the extracted poles can accurately represent the
exact admittance matrices in a wide frequency range. By us-
ing the recursive convolution technique, the pole-residue mod-
els can be represented by companion models, which have lin-
ear complexity with respect to the computational time. The
presented modeling approaches are shown to preserve passiv-
ity. Numerical experiments of transient simulation show that
the presented modeling approaches lead to higher efficiency,
while maintaining comparable accuracy.

1 Introduction

For the design of giga-hertz and multimillion-transistor VLSI
systems, accurate and efficient interconnect modeling has as-
sumed an increasingly important status, since long intercon-
nects in such designs dominate the signal integrity, speed of
operation, silicon real estate as well as the power dissipation
of the integrated circuits. Long metal interconnects in such
high-speed ICs are now treated as lossy transmission lines
with distributed RLC parameters and reduced order models are
generally employed for efficient circuit simulation. Asymp-
totic Waveform Evaluation (AWE) is the well-known method
to obtain the reduced-order models of linear networks [1, 2].
It directly calculates the Laplace domain moments of the port
characteristics and obtain the Padé approximation by moment-
matching technique. The poles/residues of the rational approx-
imation are used to describe the reduced-order macromodel.
The algorithms of multipoint moment-matching, like Com-
plex Frequency Hopping (CFH), were developed for indirect
reduced-order modeling [3]. Krylov subspace techniques and
congruence transformations have been successfully applied in
passive model order reduction [4]. An extended technique
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based on Arnoldi’s method with congruence transformations
is presented in the literature [5], in which the PRIMA algo-
rithm was demonstrated as an effective approach to develop
passive reduced-order models.

For individual interconnect modeling, most effort to develop
reduced-order models follow a two-step approach: direct dis-
cretization of the interconnect and the follow-up order reduc-
tion. The first step generally selects many grid points along the
transmission line, which results in a large linear system with
a considerably high order. The second step then applies the
afore-mentioned reduction algorithms to reduce the high order
system to a small one with a reasonably low order. Despite
the simplicity of direct discretization and the applicability of
the reduction algorithms, the two-step approach has, however,
the disadvantage of higher complexity. Furthermore, the re-
duced order models by using this approach may unnecessarily
include some redundant poles, which hinders the modeling ef-
ficiency [6].

For efficient circuit simulation using the modified nodal ap-
proach (MNA), the admittance matrix (Y parameter) model-
ing is preferred, because the current variables can be avoided
in the list of MNA state variables [7]. On the other hand,
the admittance matrices gain advantage over the transfer func-
tions in the sense that the Y-matrix can completely represent
a device while the transfer function cannot. The Y parame-
ter modeling is independent of source/load impedances, while
the transfer function modeling has to adjust the gain of their
responses for the finite load. Although Y-matrix is preferred,
the frequency-domain analytical representations of Y param-
eters are composed of transcendental functions, which cannot
be transformed into the time-domain, and therefore cannot di-
rectly incorporated into the time-domain simulator. As a po-
tential solution, the AWE technique can be used to obtain the
rational approximation of Y parameters [8], but this method
suffers from complex moment-matching process (Padé ap-
proximation) and potential instability.

In this paper, the approximation frameworks are constructed
for interconnect modeling by using the global approximation.
The frameworks lead to reduced-order models represented by
the admittance matrices, which capture the low-order dom-
inant poles of Y parameter of interconnects. The contribu-
tions of this paper include: (a) constructing the frameworks of
voltage difference and current difference by using the global
approximations, (b) calculating the dominant poles of Y pa-
rameter from the approximation frameworks and deriving the
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closed-form formula for computing the low-order dominant
poles, and (c) deriving the companion models from the cal-
culated poles/residues. The organization of this paper is as
follows. In Section 2, the admittance matrix of interconnect
modeling is reviewed, the global approximation mechanisms
of voltage difference and current difference are introduced,
and the closed-form formula for computing the first 3 and first
5 dominant poles of Y matrix of interconnects are derived. The
companion model based on the pole-residue model is obtained,
and the passivity of presented modeling approaches are exam-
ined in Section 3. The numerical examples are then shown in
Section 4 and the conclusions are made in Section 5.

2 Y matrix with dominant poles

For simplicity and without loss of generality, we study the sin-
gle interconnect first. Assume that the interconnect has the
normalized length stretching from 0 to 1 along the � axis
(Fig. 1(a)). Let

�
, � , and � represent the normalized dis-

tributed per-unit-length (PUL) resistance, inductance, and ca-
pacitance of the line, respectively. The � -domain Telegrapher’s
equations can be written as:���	� ��
��������� � ���� � ��
���� ��� ��
��������� � �� ��� ��
���! (1)

where
��� ��
��� and � � ��
��� are distributed voltage and dis-

tributed current, respectively; The sign
�
denotes the derivative

with respect to � ; and � � ��"�#���%$ �� � ����&���' 
Ii Io

Vi Vo

Ii Io

Vi VoY

(a) (b)

Figure 1: Single transmission line and its two-port representa-
tion

The single interconnect can be considered as a two-port net-
work as in Fig. 1(b). For convenience, the port variables are
selected as shown. Therefore, in the admittance matrix model,
the current variables are �)( and ���+* and the independent volt-
age variables are

� ( and
� * . Under these definitions, the inter-

connect can be represented by Y parameters:, � (��� *%- � , �/.0. � ��1�/.32 � ���42�. � ��1�4202 � �� - , � (� *%- (2)

where �5.�. � ����6�4202 � ��"�&�87 � ��:9+;=<0> �@? 0AB<0CED8> �@? �/.�2 � ��"�&�42�. � ��������F7 � ��0AB<0CED8> �@?  (3)

and �F7 � �����G � � ��0A)� � �� (4)? �HG � � ���� � �� (5)

are characteristic impedance and normalized propagation con-
stant, respectively. Since that each of the entries of Eqn. 3
contains poles and zeros, applying Padé approximation to the
entries may give a better low-order model. As shown in [7],
the time-domain counterparts of Y parameters show ringing.
Because circuit ringing creates complex pole pair(s) in the
transfer function, at least one pair of conjugate complex poles
is needed to represent the Y parameters with reasonable pre-
cision. Applying Padé approximation/AWE to each entry of
Y parameter can obtain the poles. However, the moment-
generation and moment-matching in AWE are considerably
complex and Padé approximation may result in instability;
Simple and reliable approaches are thus desired.

2.1 Global approximation frames

x

u0   u1          u2       ...        uN-1       uN    uN+1

v1          v2               ...              vN           vN+1

0                                                               1

Figure 2: Approximation framework.

Assuming that the distributed voltage and distributed cur-
rent are smooth, they can be approximately represented by the
following functions�I� ��
�����&J&K(ML 7�N (O� ( ��� ��� � ��
�����PJ6Q(ML 7�R (�� ( � � �� (6)

where the orders S and T may vary with respect to the differ-
ent requirements of approximation. As shown in Fig. 2, seg-
menting the interconnect into UWV sections, each section has
the length of XI�6Y8 Z[A\V . Defining the voltage grid set:])^ 7��6Y_
 ^ ( � � Ua`��cb��X�
�`d��b=
+ + ) !
0Ve
 ^5fhg .i��baj[
 (7)

and the current grid set:])k ( �#U � `��cb�0Xl
0`m�Hb=
+ ) + !
�Vn$#baj[
 (8)

the approximation frameworks for voltage difference and cur-
rent difference are constructed, respectively:��� ^/o\g .a
���m� ��� ^5o 
���"� fpg .qr L .is o r � � � k r 
��� (9)

� � k o\g . 
���m�t� � k o 
���"� fqr L .5u o r � � � ^ r 
���\
 (10)
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where s ( r ’s and u ( r ’s are the coefficients to be determined by
using the generalized Galerkin’s method [9], with the power
function set � � �5%� ] bW
0��
0� 2  + ) j (from Eqn. 6) being test
functions. For each � , we substitute an appropriate number
of test functions from � � �5�� b to � � �4�� � K into Eqn. 9,
then a set of

� V $ b��� � V $ b� linear equations are obtained,
with

] s o .a
 s o 2W
+ ) + +
 s o��Efpg .�� j being the unknowns. The coef-
ficients can be obtained by solving these linear equations. The
coefficients

] u o . 
 u o 2W
) + + +
 u o\f j can be calculated by the sim-
ilar way.

For simplicity, denote
� (�� ��� ^ (3
0�4!
�`B�&Y_
) + ) !
0V $ b and�!(B�&� � k (0
��5\
0`d��bW
) + + )
0V . From Eqns. 9, 10 and Eqn. 1, we

obtain the voltage difference and current difference approxi-
mations, respectively:�	
 � . � � 7

...� fpg .h� � f
��� �H��� � ���� �	
 � .

...� fpg .
��� (11)�	
 �!2i�t�).

...� fpg .p� � f
� �� �H��� � ���� �	
 � ....� f

� �� (12)

where

�&� �	
 s .�.  ) + s . �Efpg .��. . .s �Mfhg .���.  ) + s �Efpg .�� �Efpg .��
� �� (13)

� � �	
 u .�.  ) + u . f. . .u f .  ) + u fhf
��� (14)

The approximations in Eqns. 11 and 12 are global, because
the voltage or current difference is represented by the values
distributed in the entire domain. The local approximations like
FD method use up to second order polynomials to determine
the coefficients, leading to the accuracy of at best second or-
der. The global approximations in Eqns. 11 and 12 use up
to ( V $ b )-th order power function to determine the approxi-
mation framework, which achieves the best accuracy of V -th
order in this case.

Assuming that
� 7 and

� fhg . are two independent voltage
sources, then the modified node admittance (MNA) equation
of this model can be expressed as:, � ������ � - , � � - ��� , � 7� fhg . - (15)

where � ��� � .B ) + � f�� � (16)� ��� �).B ) + �� fhg . � � (17)

�H� �	
 � b b
. . .

. . .� b b
� �� (18)

� � , Y  + ) Y b  + + YY  + ) Y Y  + + � b - � (19)

The Y-matrix is therefore obtained,

� ��� � , � ������ � -�� . � (20)

If these matrices � and � have very large dimensions,
the computation of inverse matrix will become very difficult.
However, the dimension of the matrices to compute the most
dominant poles are generally small. As shown in the numer-
ical experiments, V �"! can already give considerably accu-
rate results in practical interconnect modeling. Next we will
study the simplest cases.

2.2 3rd order poles

If the value of V in Eqns. 9 and 10 is selected to be 1, then
along the line, three grid points are selected: � 7 � Y , � . �b AaU and � 2 � b . Following the process introduced above, we
take three voltage variables

� 7 � ��� � 7 
��� , � . � ��� � . 
���
and

� 2 � ��� � 2 
��� , and two current variables � . � � � � 7 
���
and � 2 � � � � 2 
��� at the grid points. By applying the global
approximation to compute the current and voltage difference,
we obtain the following approximation frames:, ��� � . 
���m� ��� � 7 
������ �F2=
���m� ��� �/. 
��� - � , s .�. s .32s 2\. s 202 -

, � � � � 7 
���� � � �F2=
��� -
(21)

and � � �42�d� � � �/.+"� u � � � �/.+ (22)

where s .�. , s .�2 , s 2�. , s 2�2 and u are coefficients to be determined
by using fitting functions. Using the generalized Galerkin’s
method [9], we choose

��� ��
��� � ] bW
���
�� 2 j as fitting func-
tions to determine s .�. , s .�2 in the first line of Eqn. 21, then it
follows: � . � � 7 � s .0. � �$# %�& $ s .�2 � �'# %�( (23)� 2 . � � 27 � s .�. � � 2  �$# %�& $ s .�2 � � 2  �$# %�( (24)

which results in s .�. �)![A+* and s .�2 � b�A+* . Doing the same
operations to the second line of Eqn. 21 results in s 2\. � b�A+*
and s 2�2��,! A-* . Similarly, using � � ��
����� ] b=
��lj as the fitting
functions to determine u in Eqn. 22 leads to�F2i� �87'� u � � # %/. (25)

then u �Hb is obtained.
Eqn. 25 has accuracy order of 0 � � 2  , while Eqns. 23-24

have accuracy order of 0 � �21� . Therefore, the approximation
frame in Eqns.21-22, which are determined by Eqns. 23-25,
has compound order accuracy.

Substituting the coefficients into Eqn. 20, the four entries�/.�. , �/.�2 , �42\. and �42�2 have three common poles:3 .i��� � �3 254 1 � �UW� � � b76�8 bi�9![U �� 2 � 
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Accordingly, the residues of � .�. and � 2�2 are calculated as:

� . � b�
� 254 1 � � !=U��� � 2 � 2 �9![Ua��� 6 �O� 2 �&�9![Ua�h

and the residues of �l.32 and �42�. are calculated as:

� . �H� b�
� 254 1 � � !=U��� � 2 � 2 �9![Ua��� 6 �O� 2 �&�9![Ua�h

2.3 5th order poles

Select the value of V in Eqns. 9 and 10 to be 2, then along
the line, five grid points are selected: � 7 � Y , � . � b�A�� ,� 2 � b�AWU , � 1 � ! A�� and ��� � b . Following the pro-
cess, four voltage variables

� 7 � ��� �F7=
��� , � . � �I� �5.a
��� ,� 2�� �I� � 1 
��� and
� 1 � ��� � � 
��� , and three current variables�). � � � �87[
��� , �!2�� � � �F2=
��� and � 1 � � � � � 
��� are selected.

By applying the global approximation to compute the current
and voltage difference, we obtain the following approximation
frames:�
 �I� � . 
���m� ��� � 7 
����I� � 1 
���m� ��� �5.a
����I� � � 
���m� ��� � 1 
���

�� � �
 s .�. s .32 s . 1s 2\. s 202 s 2 1s 1 . s 1 2 s 1 1
�� �
 � � � � 7 
������	� �F2=
������	� � � 
���

��
(26)

and , � � �42�B�t� � �5.)� � � 1 B�t� � �F2� - � , u .0. u .32u 2�. u 202 -
, � �	� �/. 
���� � � � 1 
��� - (27)

where s ( r and u ( r are coefficients to be determined by using
fitting functions. We choose

�I� ��
��� � ] b=
���
�� 2 
0� 1 j as the
fitting functions to determine s 2\. , s 2�2 and s 2 1 (second line in
Eqn. 26, that is� 1 � � . � s 2�. � �$# % & $ s 202 � �$# %�( $ s 2 1 � �$# %	� (28)� 21 � � 2 . � s 2\. � � 2  �'# %�& $ s 2�2 � � 2  �$# % ( $ s 2 1 � � 2  �'# %
� (29)�211 � �21 . � s 2\. � � 1� �'# %�& $ s 2�2 � � 1� �$# % ( $ s 2 1 � � 1� �'# %
� (30)

which gives rise to s 2�. �Hb�A�� * , s 202 �HbWb AaU�� and s 2 1 �Hb A�� * .
To make the matrix � symmetric, set s .32 � s 2�. and s . 1 �Y . Using the fitting function

��� ��
��� � ] b=
���j to determine
the coefficients of the first line in Eqn. 26, we obtain s .�. �bWb A�� * . In the same way, we obtain s 1 . � Y , s 1 2 � b A�� *
and s 1 1 � bWb A�� * . The above process shows that the global
approximations in Eqn. 26 have the accuracy order of 0 � � 2 
or 0 � � �  .

Similarly, using � � ��
����� ] b=
���
�� 2 j as the fitting functions
to determine u ( r in Eqn. 27 obtains�F2i� �87�� u .�.�� � # %/. $ u .�2!� � # %	�� 22 � � 27 � u .�. � � 2  � # %-. $ u .32 � � 2  � # %	�

then it follows u .0. � b AaU and u .32 �HY , and similarly u .�. �HY
and u .�2 � b AaU . The global approximations in Eqn. 27 have
the accuracy order of 0 � ��1� .

Substituting the coefficients into Eqn. 20, the five common
poles of the Y matrix are calculated as:3 . ��� � �3 254 1 � �UW� � � b 6 8 bh� ! *�b=b �� 2 � 3 � 4 � � �UW� � � b 6 8 bh� ! *�Z �� 2 � 

The corresponding residues for ��.0. and �4202 are

� . � b�
� 2 4 1 � � ���=Y * A bWb� bWb � � bWb � 2 � 2 �9! *��[��� 6 � b=b � 2 � � ! *��[��
� � 4 ��� � bWb�ZWU=AWZ� Z � � Z � 2 � 2 � ! *�=��� 6 � Z � 2 � � ! *�=��

and the corresponding residues for ��.32 and �42�. are

� .��H� b�
� 2 4 1 � � ���=Y * A bWb� bWb ��� bWb � 2 � 2 �9! *��[��� 6 � b=b � 2 � � ! *��[��
� � 4 � � 6 bWb�ZWU=AWZ� Z � � Z � 2 � 2 � ! *�=��� 6 � Z � 2 � � ! *�=��

Higher order poles ( V�� U ) can be obtained by the sim-
ilar way, in which the number of poles is UaV $ b . How-
ever, as the order goes higher, the closed-form formula for the
poles/residues become more complicated, which loses the sim-
plicity and clarity. Therefore, the low order model is preferred.
If the electrically long interconnect has to be handled, it can be
divided into two or more separate interconnects, each of which
can be modeled by the above low order pole modeling.

3 Companion models and passivity

The pole models can already be directly incorporated into the
HSPICE, and it is significant that the pole-zero model runs
much faster than other models [10]. However, there may be
the trouble in this way that HSPICE cannot be able to find a
DC path, which results in the simulation failure. On the other
hand, companion models are better for transient simulation,
which give the linear complexity with respect to the simulation
time.

There are at least two approaches to transform the pole-
residue models into the companion models. One is to use
the Jordan-canonical form of realization which introduces new
state variables [11], the other is to use the recursive convolu-
tion technique [8]. We choose to use the latter to obtain the
companion models. While the detailed procedure to develop
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the companion model is omitted in this paper, the resulted
model is shown as in Fig. 3.

+

-

+

-

y12e vo(t) y21e vi(t)

y11e y22e
vo(t)vi(t)

ii(t) io(t)i1e (t) i2e (t)

Figure 3: Companion model based on pole-residue modeling.

Passivity is a critical criteria for interconnect modeling. As
stated in classical circuit theory, interconnections of stable sys-
tems may not necessarily be stable; interconnections of pas-
sive circuits are passive and therefore stable. When multiport
models are connected together, the resulting overall circuit can
guarantee to be stable only if each of the multiport models is
passive [5]. In this view, it is extremely important to investi-
gate the passivity of the presented methods. In order to do this,
the following definitions and results are referred to [12].

(a) Necessary and sufficient conditions for a transfer func-
tion S � S matrix � � �� to be passive is that � � �� is positive-
real: (i) each element of � � �� is analytic in � � �� � Y , (ii)� � ���+e� ��� � �� and (iii) ( ���+�� � ��i$�� � �� is non-negative
definite for all � � ���� Y .

(b) An S -port network is passive if and only if its admittance
matrix � � �� is positive-real.

(c) If � � �� is positive-real, then � � . � �� is positive-real, if
existed.

(d) If � � �� is positive-real and � is real, then � � � � ���� is
positive-real.

Substituting the different matrices � and � (as calculated
in Section 2) into Eqn. 20 results in the Y matrices of the pre-
sented modeling approaches. Each of the Y matrices can be
shown to be positive-real by the above lemmas, therefore the
presented approaches maintain passivity.

The low order pole modeling can be straightforwardly ex-
tended to handle the multi-conductor transmission line (MTL).
If an MTL contains T coupled interconnects, then the Y ma-
trix represent a UaT -port device, and the number of poles will
increase by T times.

4 Numerical experiments

The first example is a single transmission line having the fol-
lowing PUL parameters: ��� U	��
iS� A�T , N � b
��� 3�� A�T and� � b�� !���A T . The interconnect length is � N T . By using the
closed-form formula, the poles of the Y matrix are obtained,
featuring 3rd, 5th and 7th orders. As comparison, the intercon-
nect is segmented to 10 sections of lumped elements, which
results in a Y matrix with 21 poles, as shown in Fig. 4.

Fig. 4 shows that all the poles are located on the negative
half plane. The first poles calculated by the four approaches
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Figure 4: 3rd order, 5th order, 7th order poles and 21st order
pole modeling.

are the same reals, the other conjugate pole pairs with same
order differ to variant extent. Physically, the first poles (or
pole pairs) are the most dominant poles, because they domi-
nate the properties of the circuits. Further frequency analysis
demonstrates that a small number of poles obtained from the
presented methods retain high accuracy in a wide frequency
range. Let the interconnect be excited by a pulse input with a
internal inductance of b�Y S� , and assume the load is a resis-
tance of ZWY�� . With the presented models being incorporated
into HSPICE, the transient responses are calculated as shown
in Fig. 5.
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Figure 5: Transient responses of single transmission line.

The second example is a large linear network to further
test the efficiency of the presented methods. The network is
formed by cascading five identical cells, which are taken from
[2]. Each of the cells includes seven different interconnects.
The entire circuit has 35 interconnects and 92 nodes. The
input excitations is a trapezoidal pulse with Y8 Eb S�� rise/fall
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time and magnitude 1 V. We incorporate the companion mod-
els derived from the 3rd order pole and 5th order pole models
into HSPICE frame, respectively. The transient waveforms are
shown in Fig. 6, compared with the result of HSPICE discrete
model. All the results agree so well that the difference is neg-
ligible.
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Figure 6: Transient responses of network containing 35 inter-
connects.

The performance data in solving the whole circuit of this
example by the dominant pole modeling and by HSPICE are
compared in Table 1. The presented methods are thrice faster
than the U models of HSPICE.

Table 1: Comparison of pole modeling performance.

item 3rd order 5th order HSPICE

Total memory (kB) 461 486 1180
Transient time (s) 0.72 0.86 2.43
Total CPU time (s) 1.44 1.40 4.30

5 Conclusions

The formulas to compute the low-order dominant poles for
Y-matrix of interconnects are derived, and the companion
models based on the reduced-order Y-matrix are obtained.
By using the global approximation, the discrete approxima-
tion frameworks are constructed to transform the frequency-
domain Telegrapher’s equations into compact linear algebraic
equations. Solving the linear equations, the closed-form for-
mulas are obtained to calculate the low-order dominant poles.
Due to high accuracy of the global approximation, the ex-
tracted poles can accurately represent the exact admittance
matrices in a wide frequency range. By using the recursive
convolution technique, the pole-residue models can be trans-
formed into companion models, which have linear complexity

with respect to the computational time. The presented mod-
eling approaches are shown to preserve passivity. Numerical
experiments of transient simulation demonstrate that the pre-
sented modeling approaches lead to higher efficiency, while
maintaining comparable accuracy.
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