
A Functional Specification Notation for Co-Design of
Mixed Analog-Digital Systems

Alex Doboli
State University of New York at Stony Brook

Electrical and Computer Engineering Department
Stony Brook, NY, 11794-2350, USA

adoboli@ece.sunysb.edu

Ranga Vemuri
University of Cincinnati

ECECS Department
Cincinnati, OH, 45221-0030, USA

Ranga.Vemuri@uc.edu

Abstract

This paper discusses aBlox - a specification notation for
high-level synthesis of mixed-signal systems. aBlox ad-
dresses three importantaspects of mixed-signal system spec-
ification: (1) description of functionality and (2) perfor-
mance issues and (3) expression of analog-digital interac-
tions. The semantics of aBlox embeds concepts and rules
of a functional computational model, and uses adeclar-
ative style to denote performance elements. The paper
shows some mixed-signal specifications that we developed
in aBlox. Finally, we describe a high-level analog synthesis
experiment that used aBlox specifications as inputs.

1. Introduction

A large variety of modern applications are based on
mixed analog-digital circuits that are fabricated on the same
silicon chip as systems on chip(SoC) [13]. Such circuits
provide information processing and communications capa-
bilities to consumer electronics, industrial automation, re-
tail automation and medical markets. For example, ana-
log circuits interface a mixed-signal system to the exter-
nal world by sensing, receiving, amplifying and filtering
continuous-time analog signals. Typical analog circuits in-
clude low-noise amplifiers, filters, mixers, oscillators etc.
Then, analog-digital converters transform, through a digi-
tization process, the analog signals into digital signals so
that signal-to-noise and distortion ratios are kept within ac-
ceptable ranges. Finally, discrete-time digital signals are
processed using general-purpose processors, DSP-s, ASIC-
s, FPGA-s etc. Hence, because of their inherent complex-
ity, high-level design automation methodologiesand tech-
niquesare highly demanded for managing the design cycle
of mixed-signal systems [13].

High-level mixed-signal synthesis(HMS) takes as input
an abstract high-level specification of the system to be de-
signed, and automatically produces analog and digital hard-
ware that optimizes a large set of constraints i.e. area,
power, speed, precision etc [7] [8] [13]. Successive tasks are
performed during HMS including (1) analog-digital parti-
tioning, (2) architecture generation, (3) performance model
generation and (4) parameter optimization [8] [13]. High-
level specifications describe the behavior (functionality)of a
mixed-signal system without distinguishing the analog and
digital parts or providing any hardware details. Donnay et
al [9], among others, motivates that there are no well estab-
lished specification languages for HMS even though spec-
ification is compulsory for any HMS methodology. Exist-
ing languages i.e. VHDL-AMS [2], Verilog-A [1], MAST
[10] etc are all simulation oriented. There are difficulties in
adapting their semantics for automated synthesis [6]. This
strongly motivates research on synthesis-oriented specifica-
tion for mixed analog-digital systems.

This paper presents a specification notationfor co-design
of mixed analog-digital systems. The notation, called
aBlox, follows a functional descriptions style[12] for ex-
pressing mixed-signal systems. aBlox constructs address
three aspects: (1) description of functionality and (2) per-
formance, and (3) expression of analog-digital interactions.
Following concrete aBlox elements target these elements:

1. aBlox specification ”philosophy” is to explicitly de-
scribe signal processing and flows in the analog and
digital domains. This is important for having similar
description styles for the two domains so that analog-
digital trade-offs i.e. analog-digital partitioning can be
easily explored in the methodology. The challenge is to
define uniform and sound models and specification no-
tation for analog, digital, continuous and discrete-time
signals and computations, and their interactions.

2. aBlox constructs encourage a hierarchical and modular
description of system through higher-order functions

constraints for op amps +
values of external resistors and capacitors

Circuit net-list with minimum area +

Gain Distribution

definition
style

Connection

Ideal
behavior
of system

Update generic performance model for the new net-list +

Optimize circuit parameters using the updated symbolic model

Net-list + gains assigned to circuits

Parameter optimization

Generic performance model

Performance Model Generator

an
d

A
C

 b
eh

av
io

r
Sy

st
em

 a
re

a

Architecture Generator

New architecture for system

aBlox specification of analog system

Figure �� High-level mixed-signal synthesis

(HOF) [12]. HOF-s express structural patterns in a sys-
tem. Patterns enforce a certain interconnection struc-
ture between modules without specifying their nature.
Concrete building blocks are passed as parameters for
every HOF call. HOF-s are very useful as system hi-
erarchy and regularity can be effectively exploited in
improving synthesis quality [7] [8].

3. aBlox provides a coherent notation for linking perfor-
mance constraints and models to the constituting mod-
ules of a program. As a result, a large variety of per-
formances such as speed, area, DC, AC and transient
behavior, noise coupling, power consumptions etc can
be expressed in a uniform manner without introducing
dedicated keywords for each of them. This is important
as components of a mixed-signal system have hetero-
geneous performances requirements. For example, the
analog part of a telephone set includes a receiver and a
transmitter with different noise constraints [7].

4. aBlox notation offers a well defined mechanism for in-
terfacing analog and digital domains.

aBlox notation was successfully used for specifying various
analog applications including telecommunication systems,
filters, and A/D converters. To motivate the usefulness of
aBlox, this paper discusses a high-level synthesis example
that used aBlox specifications as inputs.

This paper has the following structure. Section 2 offers
insight on mixed-signal synthesis and enumerates require-
ments for system specification at a high level. Section 3 dis-
cusses the main aBlox constructs. Section 4 concentrates on
performance model description in aBlox. Section 5 shows a
synthesis experiment, and finally, conclusions are provided.

2. Synthesis and Specification of Mixed-Signal
Systems

Figure 1 depicts the mixed-signal synthesis flow that we
target [7] [8]:

a) Implementation solution 1

block1
block2

earphblock4

block3
local

line earph

block1
block2block4

block3

line

local

b) Implementation solution 2

Figure �� Architectures for telephone receiver

� The Performance Model Generator produces
genericmathematical expressions that formulate how
system performance parameters depend on the param-
eters of the blocks in the system. Then, symbolic per-
formance models for all architectures generated during
synthesis result by updating this generic model.

� The Architecture Generator creates different imple-
mentations for a specification. Specification function-
ality can be achieved by interconnecting basic build-
ing blocks i.e. op amps, resistors, capacitors, and not
necessarily only library circuits i.e. adders, integrators
etc. Figures 2(a) and 2(b) illustrate two distinct archi-
tectures for a telephone receiver module [7].

� Area, AC and transient behavior of each architecture
are determined by the parameter optimization mod-
ule, and used to guide the Architecture Generator. It
finds sizes for external resistors and capacitors and
bounds for op amp parameters i.e. input and output
impedance, gain and dominant pole so that total area
is minimized and the resulting AC and transient behav-
iors of a system are within an error margin from the de-
sired behaviors. To guarantee feasible solutions, each
free parameter was modeled by a feasibility range for
CMOS technology [14] i.e. external resistors are in
range ��� ����k�, op amp gains in range ����� ���� etc.

Different specification styles can be used for describing
mixed-signal systems i.e. declarative style, imperative style,
functional style, object-oriented style etc [12]. Each of the
styles can be useful for different synthesis tasks. For exam-
ple, declarative specifications are popular for describing per-
formance constraints and models for transistor sizing of ana-
log circuits [18]. A declarative specification expresses re-
lationships and constraints among signals or circuit perfor-
mances i.e. voltages, current, unity-gain-frequency, slew-
rate, etc. A declarative specification shows whata system
does and not how it achieves its functionality. Thus, this
style does not provide any insight into producing structural
implementations (hardware architectures) for the system.

We believe that functional specifications at the Signal
Flow Graph(SFG) level [17] permit to systematically syn-
thesize optimized mixed-signal implementations. SFGs in-
dicate the system behavior by showing the signal process-
ing and flow. Similar approaches of SFGs specification no-
tations are proposed by Kopec [15] and Lee et al [16] for
synthesis of digital DSP systems. We present next our con-
crete arguments for adopting a functional specification style
at the level of SFGs:

2

� SFG-s are similar to algorithmic descriptions for digital
synthesis as they explicitly capture signal flow (depen-
dencies) and processing (operations). Keeping similar-
ity between analog and digital specifications is impor-
tant for re-targetable mixed-signal synthesis.

� The effectiveness of analog synthesis dramatically de-
pends on describing lower-level attributes
i.e. frequency, speed, noise. SFG-s are a convenient
abstraction-level for linking such attributes to the lan-
guage constructs of a specification.

� Effective synthesis algorithms can be formulated for
SFG-s [7]. SFG blocks suggest the structure of a sys-
tem. As they represent operations i.e. amplification,
integration, summation etc, SFG blocks are easily map-
pable to the corresponding electronic circuits.

A final requirement for mixed-signal synthesis is that the
specification language clearly distinguishes functional from
performance elements. Otherwise, erroneous situations oc-
cur where synthesized systems emulate the performance as-
pects i.e. a system that calculates the slew-rate even though
slew rate is a performance constraint.

3. aBlox Notation for Synthesis

��� Macro De�nitions

An aBlox program describes interacting analog and dig-
ital domains. These domains can have a hierarchical struc-
ture, if a domain is built of sub-systems, stages, components,
etc. The macroconstruct is the main notation feature for de-
scribing functionality, hierarchy and interfaces. Figure 3 il-
lustrates samples of macro definitions for a two stage 4-th
order filter. The figure suggests how macro definitions and
macro calls are employed for expressing the hierarchy in a
system. A mixed-signal specification must contain a top-
most macro (the macro that is not called by other macros).
The top-most macro is executed forever.

A macro definition includes following five elements:

� Domain descriptorthat indicates the domain of the
macro. It can be continuoustime, digital or none if the
domain is not fixed yet. In the latter case, finding the
macro domain is subject to analog-digital partitioning.

� Inputand output portsdefine the interface of a macro
with the rest of the specification or with the external
environment. Ports of the top-most macro are system
ports with the external environment.

� Generic parametersare used for indicating the generic
elements of a macro i.e. constant values, opera-
tors, block identities and performance attributes. Each
macro call instantiates concrete values for the gener-
ics. Generic parameters are useful for expressing uni-
formityand hierarchy of macro structures. Linear oper-

inputs

outputs

generics
constants a1, a2;

variables
m, n, p;
o is array[2];

out;

end arch;

arch controlable is

o[1] = i1 + m;
o[2] = a2 * p;
n = + o;
p = integ(n);

out = integ(p);

macro stage

i1;

end macro;

arch two_stage_filter is
variables

v;
v = stage.controlable(

1.7251, -1.9374);
i, generics are

1.7251, -1.9374);
end arch;

outputs

inputs
i is voltage;

end macro;

o is voltage;

macro filter is continuous_time

o = stage.controlable(
v, generics are

m = a1 * integ (p);

Figure
� aBlox specification of a filter

ators i.e. addition, integration, etc. can also be gener-
ics for a macro. The two filter stages in Figure 3 are
characterized by different filter constants that are spec-
ified as generics in the program. Operators are passed
as arguments to macro calls for describing stages built
of distinct blocks connected in similar patterns.

� Attribute sectionis allowed only for macro-s of the
continuous-time analog domain. It introduces declar-
ative or equational performance models that are asso-
ciated with a macro, and then used for parameter opti-
mization during synthesis.

� Macro bodyexpresses the functionality described as a
set of statements i.e. assignment statements, if state-
ments, macro-calls and that refer to input ports, output
ports and local variables.

Semantic rules for domain definitions
Rule 1: Each call to a continuoustime macro defines

a distinct macro structure having as inputs and outputs the
variables referred by the call. If more macro calls or opera-
tors take the same variables as inputs then a single structure
is generated but its output is linked to all referring places.

This rule is natural as no macro sharing is feasible for dis-
tinct signals in a continuous-time analog system.

Rule 2: Inside a macro with a continuoustime(digital)
domain descriptor only macros with continuoustime(digi-
tal) or without any domain descriptor can be called. Inside a
macro without a domaindescriptor following cases are cor-
rect: (1) only macros with continuoustimeor without a do-
main descriptor are called or (2) only macros with digital or
without a domain descriptor are called. The top most macro
can call both continuoustimeand digital macros.

This semantic rule prohibits developing hierarchal speci-
fications where a macro (excepting the top-most macro) can
call other macro-s having both time models. Reason is that
transforming analog (digital) functionality and performance
constraints into requirements for the opposite domain is a
very difficult task. This rule is different from simulation-
oriented mixed-signal environments i.e. Ptolemy II [4],
where hierarchical compositions of distinct domains are
possible.

3

... = ... u ... ;

u = ... ; (statement2)

... = ... u ... ;(statement 3)

value of state object at time t-q-time

value of state object at time t

value of state object at time t

a)

(statement1)

Hardware for
instruction 2

instruction 3
Hardware for

Hardware for
instruction 1

u

b)

Figure 	� Semantics of instruction sequence

Semantic rule for mapping variables to ports
Rule 3: Ports of the top-most macro are of electrical

types such as voltage, current or digital as the interface of
the system with its external environment is well defined.
Ports can be annotated with attributes i.e. value ranges, in-
put/output impedances, and frequency ranges.

Semantic rule for variable scoping
Rule 4: The scope of variables defined inside a macro is

limited to the macro body, only.
This rule guarantees that macro definitions have the

meaning of mathematical functions, thus the property of ref-
erential transparency[12]. This implies that a macro’s func-
tionality (meaning) is not influenced by its connections with
the other macros.

Semantic rule for describing domain interactions
Rule 5: Interdomain interactions happen through macro-

calls, port mappings, and variable/port assignments at the
level of the top-most macro. Explicit conversions from bit
or bitstring to float, and vice-versa can be performed de-
pending on the variable/port types.

Semantics of data objects, expressions and assignments
Rule 6: All variables of continuoustimemacros denote

memory-less objects. These variables can be of three types:
voltage- when they only correspond to voltages in imple-
mentations, current - when they are ”realized” as currents,
and unspecified- when both voltage and current alternatives
are acceptable in an implementation.

Rule 7: Variables of digital macros are either memory or
memory-less objects. Input and output ports of the top-most
macro are memory-elements, always. Memory elements are
indicated by using the keyword static before variable defi-
nitions. Digital variables can be of type bit or bitstring. Bit-
string is an array with either static dimension or a dimension
is described using generics. However, bitstring dimensions
must be computable at compile time.

Rule 8: The two domains have different operators:
� Continuoustime macros can include following arith-

metic operations: addition, subtraction, multiplication
by a constant, and integration. This is a complete op-

erator set for any linear system [17], and it can be im-
plemented with simple electronic circuits [6].

� Digital macrosmight include arithmetic operatorsi.e.
addition, subtraction, multiplication, division and log-
ical operatorsi.e. and, or, negation, etc.

Rule 9: An assignment statement is a connection be-
tween a name (the left part of an assignment) and the anony-
mous function definition (�-expression [12]) introduced by
the right part of the statement. All references to assigned
objects are actually calls to the lambda expression with the
same values for input parameters as in the assignment state-
ment. Memory elements reside only in the top most macro.

Rule 10: Memory-less objects are updated in time zero
after their executing the assignment statement.

Rule 11: Update of memory variables happens after ex-
ecuting the last statement of their defining macro.

Unconstrained assignments in a macro violate the refer-
ential transparency property as they introduce side-effects
[12]. Although side-effects do not pose any problem for dig-
ital synthesis, they are difficult to cope with during analog
synthesis [6]. Thus, we accept assignment statements in our
functional model but we enforce a functional semantics for
being consistent with the rest of the mixed-signal model.

Semantic rule for instruction sequence
Rule 12: A variable of a continuoustimemacro can not

be assigned more than once in a sequence of statements.
If a variable were assigned twice or more times in a se-

quence of statements it means that for a short time same it
has more than one value. Continuous-time variables have
only a single value in our model (we assumed that each dis-
tinct data object has a different name).

Rule 13: Any variable or output port of a continu-
ous timemacro that is referred by a statement must appear
in the left part of an assignment statement.

Thus, continuous-time objects have a value at any time.
Rule 14: Data dependencies among instructions of con-

tinuoustime macros describe signal flows among the pro-
cessing blocks corresponding to the instructions.

For example, consider Figure 4, where object u denotes
a variable of the analog domain. Figure 4(a) depicts a pro-
gram fragment, and Figure 4(b) shows how data dependen-
cies among instructions express the corresponding signal
flows between the processing macros.

Observation: For a continuoustime macro, any se-
quencing (ordering) of a given set of instructions will pro-
duce the same block structure (flow of data is unique).

Semantic rules for if statement
If statements denote a conditional behavior of a system

with multiple modes of behavior. For example, a variable-
gain block has multiple modes of behavior fixed by its dis-
tinct gains. Following are requirements for if statements of
continuoustimemacros.

4

part
Summing

Feedback
path

Direct
path

Direct
path 2

Direct
path k

Direct
path 1

Output
stage

...

...

...

...

......

...

Direct
path 2

Direct
path 1

Direct
path k

...

...

...
...

...

... ...
...

...

a) Feedback structure b) Convergent paths

c) Divergent paths

Output
stage

...

...

...

...

...

...

...

d) Series connection

Figure �� Block structure

Rule 15: If a variable of a continuoustimemacro is as-
signed by one if-branch then it has to be assigned by the
other branch, also.

This is a consequence of the life-time rule for analog ob-
jects, considered to be permanently a-life. If an object were
updated by only one of the branches then, the object will not
have a value when the opposite branch is executed.

Rule 16: An analog domain object assigned inside an if
statement cannot be assigned outside the if statement, also.

This is a consequence of Rule 12 for instruction sequenc-
ing. The rule also accommodates well a functional specifi-
cation style where all object assignments are inside the same
scope (the scope of the if statement in this case).

Rule 17: For the analog domain, conditions of if state-
ments refer only to digital input ports of the macro.

There are two reasons for this rule:
� For mixed-signal applications, functioning modes of

the analog domain are selected by signals coming from
the outside of the continuous-time domain [13].

� To avoid repeated ”switching” of if statements at each
”unit” of time. The semantics of digital objects pro-
hibits repeated switching of the same instruction.

��� Higher�order functions

System hierarchy and regularity are very important for
effective mixed-signal synthesis [7] [8]. Hierarchy and reg-
ularity make system specifications simpler and more read-
able, and they simplify synthesis tasks i.e. performance
model generation and parameter optimization. aBlox macro
definitions and macro calls can describe hierarchical speci-
fications. For example, the two stage filter in Figure 3 is de-
scribed hierarchically. Both stages are in controllable form,
and they contain blocks with similar kind of functionality.

Similar block structures can occur in a system so that
these structures involve different blocks. Such situations in-
troduce structural regularity that can be exploited for synthe-
sis. aBlox notation permits definition of higher-order func-
tions (HOF) to allow full re-use of structural regularities.

a) feedback_structure construct

. . .

b) convergent_paths construct

. . .

c) divergent_paths construct

. . .

feedback_structure is

summing part is

end feedback_structure;

inputs ...
outputs ...

end summing part;

. . .

. . .

direct path is

end direct path;

feedback path is

end feedback path;

convergent_paths is

end convergent_paths;

. . .

. . .

inputs ...
outputs ...
direct path 1 is

end direct path 1;
direct path k is

end direct path k;

output stage is

end output stage;

divergent_paths is

end divergent_paths;

. . .

. . .

inputs ...
outputs ...

input stage is

end input stage;
direct path 1 is

end direct path 1;
direct path k is

end direct path k;

d) series_blocks construct

. . .

. . .

series_blocks is

end series_blocks;

inputs ...
outputs ...

aBlox instructions
for indicating

block connections;

Figure �� aBlox instructions for block structure

HOF-s are macro-s that have other macro-s as their generic
parameters. Then, structural regularities are expressed as in-
terconnections of generic blocks.

Rule 18: A higher-order function is a macro definition
that includes in its genericssection signaturesfor all generic
blocks involved in expressing the HOF body structure. A
signature enumerates the number and type of inputs and out-
puts of a generic block without indicating its functionality.
Each call to an HOF replicates the regular block structure
of the HOF body, while replacing the generic blocks by the
actual parameters of the call.

Special HOF-s called feedbackstructure,
convergentpaths, divergentpathsand seriesblockswere
introduced to increase the readability of aBlox programs by
providing dedicated constructs for very popular block struc-
tures. Figure 5 illustrates these block structures. Figure 6
depicts the syntax of the four aBlox constructs. These con-
structs are not orthogonal as their behavior can be achieved
with the already existing aBlox instructions.

4. Description of performance models

In the process of exploring different notations for mixed-
signal synthesis, we found that a declarative description
style can be very useful in the context of functional speci-
fications. Following reasons motivate our conclusion:
� Macro-s can define structures with heterogeneous de-

sign/performance constraints. These constraints can be
expressed in a declarative style, and annotated to the
macros. In Figure 3, the two stages of the filter can have
different noise and bandwidth constraints.

� Application-specific performance models are required
for synthesis. An ”ideal” mixed-signal synthesis tool
would automatically infer all required performance

5

models. We already automated linear performance
model generation. Nevertheless, there is currently no
solution for automated generation of non-linear perfor-
mance models. To overcome this limitation, aBlox no-
tation permits explicit definition, in a declarative style,
of all missing performance models.

We stress that declarations do not express system functional-
ity, thus they are not mapped to hardware. They are thought
as performance requirements and models for macro imple-
mentations. In our synthesis methodology, they are useful
for parameter optimization.

aBlox notation has a flexible mechanism of performance
model/ constraints definition based on the principle that a
language must offer the possibility of describing new enti-
ties based on primitive constructs. This avoids an explosion
of dedicated keywords for the many performance elements
describing analog systems i.e. rise-time, fall-time, settle-
time, slew-rate, sensitivity, unity-gain frequency etc [14].

Rule 19: Declarative descriptions are expressed us-
ing four constructs: (1) primitive constructs, (2) predicate
definitions, (3) attributes definitions and (4) model defini-
tions. Declarative constructions can be global or local to
aBlox macros. Global declarations are defined using an
attribute packageconstruct. Then, global declarations are
made visible to a macro by importingits definitions in the at-
tribute section of the macro. Local declarations are defined
using the attributesconstruct. Finally, attributes can refer to
generic elements that are instantiated by macro-calls.

For example, it is not necessary to redefine slew-rate for
all macros in a specification. Slew-rate can be described
in an attribute packagesection, and then imported in all
macros that require slew-rate definitions.

Rule 20: Primitive constructsinclude

1. Signal characteristics such as voltage, current, phase
and frequency are denoted using the dotconstruct. The
subsequent example refers to a dot construct.

2. Following predicates are defined for signals: min for
indicating the minimum value of a signal, max for
the maximum signal value, currentfor the momentary
value of a signal, and final for the final signal value
(value at time infinite). Using predicate in, it can be
tested that a signal value pertains to a given range.

3. Time aspects: Keywords StartTimeand EndTimede-
note time moments for start and end of execution. Con-
struct Time.(event at i)indicates the time moment when
the i-th occurrence of event eventhappens. The hap-
pening of the event is indicated by predicate eventbe-
ing true. Construct a.voltage(event at i)denotes the
voltage of signal a at the i-th occurrence of event event.
Similar constructs exist in aBlox for currents, phase
and frequency.

4. Frequency aspects: Construct Frequency.(event at i)
indicates the frequency for the i-th occurrence of event
event. Keyword DC denotes a frequency of 0 Hz.

5762635632.73
s + 867278.87198 s + 3673094582.192

* 10.0

+

s + 10435.99258 s + 189725959.8242
2.2435 s2

2

2

s + 25475.066 s + 189725959.824
1.15051 s

Stage 2

Stage 1
Stage 3

Figure �� Block structure of optimized filter

For example, the construct v.voltagedenotes the voltage
facet of signal v. The settle-time of a circuit is the time mo-
ment for which the value of its output signal stays in a given
range. The condition that the voltage facet of signal a is
within a 2% error margin from its final output value is de-
fined as the aBlox predicate

a.voltage in [0.98 * final (a.voltage), 1.02 * final
(a.voltage)].

The 3-db bandwidth of a system is defined in aBlox as
define Bandwidth = Frequency. ((output.voltage - out-

put.voltage (DC)� 3dB) at 1)
Rule 21: Predicatesare formed using (1) arithmetic op-

erators i.e. ���� �� �, (2) relational operators i.e. ����� �
���� �����, and (3) the derivative operator derivatefor
indicatingsensitivitiesor rates of change over time i.e. slew-
rate. Predicates refer to primitive constructs or attribute def-
initions.

Rule 22: An attribute definitionassociates a name with
a predicate.

An example is the previous definition of attribute Band-
width.

Rule 23: Model definitionsintroduce a set of equations
that are simultaneously solved during synthesis for obtain-
ing the performance values.

Model definitions are useful to indicate behavioral per-
formance models. For example, we described in aBlox the
behavioral model of a PLL system as indicated by Vassiliou
et al [19]:

derivate (phase (Vi.voltage), Time) == 2 * Pi * fr equency
(Vi.voltage);
derivate (Vc.voltage, Time) == 1 / C2 * Ipeff.current -
1/(R*C2) * Vc.voltage + 1/(RC2) * Vx.voltage;
derivate (Vx.voltage, Time) == 1/(R * C2) * Vc.voltage -
1/(R * C) * Vx.voltage;
derivate (phase (Vj.voltage), Time) == 2 * Pi * nd * (Fo +
ko * Vc.voltage);

Model definitions are simulation oriented. aBlox does
not state how model definitions are solved. This concept is
similar to simultaneousstatements [2] in VHDL-AMS.

5. Case Study

This section discusses a case study that arguments the
feasibility of aBlox notation for conducting high-level ana-
log synthesis. The considered application is the optimized
filter of the Eartalk system [11]. Figure 7 presents the block

6

macro filter is continous_time
inputs v_in is voltage with range 0-1.0 V;
outputs v_out is voltage with range 0-1.5 V

with impedance 280.0 Ohms;
attributes

bandwidth is range 10000-80000 Hz;
arch optimized_filter is

variables s11, s12, s13, s14, s15, s21, s22, s23,

s24, s25, s31, s32, s33, s34, s35, v_out1, v_out2,
v_out3;

-- Stage3: filter output

end macro;
end arch;

s34 = v_in - 0.00367309458219 * s31;
s33 = s34 - 0.08627087198 * s32;
s32 = integ (s33);

v_out = v_out3 + 10.0 * v_out1 + v_out2;
v_out1 = s15 + 0.0023413149353 * s12 + 2.2435 * v_in;
s15 = 0.000425650190865144 * s11;
s11 = integ (s12);
s12 = integ (s13);
s13 = s14 - 0.01043599258 * s12;
s14 = v_in - 0.000189725959824 * s11;
-- Stage2: fourth order filter
v_out2 = s25 + 0.038480341944 * s22 + 1.51051 * v_in;
s25 = 0.00028658295957375 * s21;
s21 = integ (s22);
s22 = integ (s23);
s23 = s24 - 0.025475066 * s22;
s24 = v_in - 0.000189725959824 * s21;
-- Stage 1: second order filter
v_out3 = 0.00576263563273 * s31;
s31 = integ (s32);

Figure �� aBlox specification of the optimized filter

structure of the filter that consists of three parts [11]: (1)
Stage 1is a low frequency band filter for transmitting a por-
tion of the spoken signal, (2) Stage 2is a high-frequency
band filter for transmitting a second portion of the spoken
signal, and (3) Stage 3combines the sound signals from the
two portions (filters). We discuss the aBlox specification of
the filter, and then present our simulation results for the filter
design at the system, transistor and layout levels.

Figure 8 shows the aBlox program for the optimized fil-
ter. Signal v in is an input voltage with its values lim-
ited to the range 0-1.0 V. Signal v out is an output volt-
age with its values limited to the range 0-1.5 V, and driving
an impedance of 280 Ohms. The attributes sections defines
constraints for the filter: noise should be less than 80dB and
filter bandwidth is 10-80 KHz. The macro body expresses
the three stages of the filter. Each stage is described as a set
of instructions involving addition, subtraction, multiplica-
tion with constants and integration operations. This defines
the operation kinds of the building blocks in the analog ar-
chitectures. The signal flow among blocks is a resultant of
the data dependencies introduced by the instructions. Note
that the instruction sequence did not have any influence on
the structure of the signal flow.

Figure 9 depicts three of the 16 distinct architectures, au-
tomatically produced for Stage 1. Similar architectures were
created for Stage 2and Stage 3.

For each architecture, automated performance optimiza-
tion (PO) ended the high-level analog synthesis step. Opti-

Architecture 1

Architecture 5 Architecture 10

Figure �� Architecture samples for filter stages

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

O
ut

pu
t

frequency (Hz)

SPICE simulation after op amp synthesis

SPICE
Optimized with HLS

Ideal

Figure ���System and transistor level simulationof
Stage1

mization criteria were that the error of real AC behavior is
within 50% from ideal AC behavior, and that filter area is
minimized. The resultant of PO step was fixing constraints
for op amp gains, unity-gain-frequency (UGF), output and
input impedances and finding values for external resistors
and capacitors. We decided to use Architecture-10for Stage
1 as it had the smallest area, and its error was larger only
by an insignificant amount as compared to Architecture-1,
which provided the smallest output error. Similarly, we used
Architecture-5for the first block of Stage 2as it had the
smallest area, and its output error was acceptably large. Fi-
nally, we considered Architecture-1for the second block of
Stage 2as it was the only one with a small output error.

The next step was circuit synthesis. Op amp constraint
for gain, dominant pole, input and output impedance (found
during PO) were input to a circuit synthesis tool [5] that
sized op amp transistors. SPICE files for synthesized op
amps were used to complete the filter description at the tran-
sistor level. Each of the SPICE models was simulated and
resulting plots for Stage 1are shown in Figure 10. Similar
plots were obtained for Stage 2. Simulation results show a
good similitude between ideal AC behavior, predicted AC
behavior after analog HLS and SPICE simulation after op
amp synthesis.

7

-5

0

5

10

15

20

25

30

1 10 100 1000 10000 100000 1e+06

O
ut

pu
t (

V
)

Frequency (Hz)

SPICE simulation at ideal, transistor and layout level

Transistor level
Ideal level

Layout level

Figure ��� SPICE simulation of optimized filter at
transistor and layout levels

The last step was layout synthesis. The SPICE descrip-
tion of the filter was given as input to KOAN/ANAGRAM
placement and routing tools [3]. Parasitic capacitances were
extracted from the produced layout and then simulated with
SPICE. SPICE simulations are provided in Figures 11. Sim-
ulation results motivate that AC behavior of the filter af-
ter layout generation satisfies imposed performance con-
straints. Also, we concluded that for the optimized filter
there is a good resemblance between AC behaviors evalu-
ated at the system, transistor and layout levels.

6. Conclusions

This paper discusses specification issues for synthesis
of mixed-signal and analog systems by defining the aBlox
specification notation. aBlox provides constructs for ex-
pressing system functionality and structure, interactions
among the analog and digital domains and performance
models and constraints. The soundness of the notation se-
mantics was achieved by basing it on a computational model
for mixed-signal systems. The analog component of aBlox
already serves as a specification notation for our existing
top-down synthesis methodology. The described research
is also important because it enables identifications of cases
when functionality can be moved across analog and digital
domains so that the semantics of a system is the same. Fi-
nally, some of the aBlox rules can be applied as guidelines
for VHDL-AMS or Verilog-A specifications.

References

[1] “Verilog-A Language Reference Manual - Analog Ex-
tensions to Verilog HDL Version 1.0”, IEEE, 1996.

[2] “IEEE Standard VHDL Language Reference Manual”,
IEEE Std.1076.1.

[3] J. Cohn et al, “KOAN/ANAGRAM II: New Tools for
Device-Level Analog Placement and Routing”, IEEE
JSSC, Vol. 26, No. 3, March 1991.

[4] J. Davis et al, “Heterogeneous Concurrent Modeling
and Design in Java”, Technical Memorandum UCB/ERL
M01/12, UC Berkeley, 2001.

[5] N. Dhanwada et al, “Hierarchical Constraint Transfor-
mation using Directed Interval Search for Analog System
Synthesis”, Proc. of DATE, 1999.

[6] A. Doboli et al, “A VHDL-AMS Compiler and Ar-
chitecture Generator for Behavioral Synthesis of Analog
Systems”, Proceedings of DATE’99, 1999, pp.338-345.

[7] A. Doboli et al, “Behavioral Synthesis of Analog Sys-
tems using Two-Layered Design Space Exploration”,
Proc. of the 36th DAC, 1999, pp.951-957.

[8] A. Doboli, “Specification and Design-Space Explo-
ration for High-Level Synthesis of Analog and Mixed-
Signal Systems”, Ph.D. Thesis, University of Cincinnati,
2000.

[9] S. Donnay et al, “Using Top-Down CAD Tools for
Mixed Analog/Digital ASICs”, Analog Integrated Cir-
cuits and Signal Processing, Kluwer, 1996, pp.101-117.

[10] P. Duran, “A Practical Guide to Analog Behavioral
Modeling for IC System Design”, 1998.

[11] J. Franks et al, “Ear Based Hearing Protector/ Commu-
nication System”, United States Patent, Patent Number
5,426,719, June 20 1995.

[12] C. Ghezzi, M. Jazayeri, “Programming Language
Concepts”, John Wiley & Sons, 1998.

[13] G. Gielen, R. Rutenbar, “Computer-Aided Design of
Analog and Mixed-Signal Integrated Circuits”, Proceed-
ings of the IEEE, December 2000, pp. 1825-1852.

[14] R. Gregorian, G. Temes, “Analog MOS Integrated Cir-
cuits for Signal Processing”, John Wiley & Sons, 1986.

[15] G. Kopec, “Signal Representations for Numerical Pro-
cessing”, in Symbolic and Knowledge-Based Signal Pro-
cessing, Prentice Hall, 1992.

[16] E. Lee et al, “GABRIEL: A Design Environment for
DSP”, IEEE Trans. on Acoustics, Speech, Signal Pro-
cessing, ASSP-37, vol. 37, no. 11, 1989, pp. 1751-1762.

[17] K. Ogata, “Modern Control Engineering”, Prentice-
Hall, 1990.

[18] K. Swings, W. Sansen, “Ariadne, a Constraint-based
Approach to Computer-aided Synthesis and Modeling
of Analog Integrated Circuits”, Analog Integrated Cir-
cuits and Signal Processing Journal, Kluwer, May 1993,
pp.197-215.

[19] I. Vassiliou et al, “A Video Driver System De-
signed Using Top-Down, Constraint-Driven Methodol-
ogy”, Proc. of ICCAD, pp.463-468, 1996.

8

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

