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Abstract
The relative tolerances for interconnect and device parameter

variations have not scaled with feature sizes which have brought
about significant performance variability. As we scale toward
10nm technologies, this problem will only worsen. New circuit
families and design methodologies will emerge to facilitate con-
struction of reliable systems from unreliable nanometer scale
components. Such methodologies require new models of perfor-
mance which accurately capture the manufacturing realities. 

Recently, one step toward this goal was made via a new vari-
ational reduced order interconnect model that efficiently cap-
tures large scale fluctuations in global parameter values. Using
variational calculus the linear interconnect systems are repre-
sented by analytical models that include the global variational
parameters explicitly. In this work we present a framework which
extends the previous work to a linear-centric simulation method-
ology with accurate nonlinear device models and their fluctua-
tions. The framework is applied to generate path delay
distributions under nonlinear and linear parameter fluctuations.

1.  Introduction
With decreasing MOS transistor geometries for DSM (Deep

Submicron) technologies, the influence of fluctuations in process
parameters during manufacturing becomes increasingly
important since process tolerances are not proportionally scaled
with geometries. Typically, the effect of process variations are
captured by a set of worst-case device model parameters and the
circuit performance is evaluated at these worst-case corners.
However, the dominant interconnect in DSM technologies
complicates the feasibility of a worst-case corner method by
increasing the dimensionality of the problem. Moreover, the
worst-case corner methods are known to create overly
pessimistic results and in sub-optimal designs. To synthesize
reliable fabrics with tomorrow's fabrication technologies requires
new models and analyses that account for variations in transistors

and interconnect. For future designs, new models are required to
capture the parameter fluctuations and manufacturing realities.
The nominal and extreme performance evaluations need to be
replaced by statistical frameworks that evaluate the stochastic
nature of the system performance more accurately.

In this work, we develop an efficient framework to assess
more realistic performance distributions and extreme case
scenarios. We demonstrate our methodology by incorporating
variational interconnect models into transistor-level simulation
with accurate nonlinear device models and their parameter
fluctuations.

In a previous work, a variational reduced order interconnect
model was reported to capture global parameter variations in [1].
The efficiency of the linear-centric variational models was
demonstrated in statistical analysis of the skew performance of a
clock grid from a gigahertz microprocessor[2][3]. The
variational interconnect models, developed with variational
calculus, relates global interconnect parameters to compact
representations of interconnect models. Generally, the
projectional methods, PACT[4], PRIMA[5] are used to
precharacterize the variational model with a design of
experiments. During the library pre-characterization, the
projectional reduction algorithms retain the passive nature of the
interconnect in the macromodel, however the variational
versions of such algorithms are unable to preserve passivity and
stability. Without preserving the passive nature of the
interconnect, subsequent analyses with nonlinear devices can
cause instability, as discussed later in this paper. 

The proposed framework is embedded with a waveform
evaluation engine TETA[6][7] which was developed for use in
timing analysis. TETA provides efficient runtime accuracy trade-
offs in handling nonlinear devices and offers several benefits for
statistical analyses. Unlike macromodeling approaches, TETA
employs interconnect-friendly linear-centric device models
without sacrificing accuracy. 

Variational analysis of the linear interconnect with nonlinear
devices and their associated parameter fluctuations is a
formidable task. The complexity of the linear models and the
requirements for nonlinear analysis limit the advantages of
current methods. In this paper, we propose a linear-centric
simulation framework, which incorporates variational
interconnect models into the aforementioned transistor-level
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waveform evaluation methodology, TETA. Our framework
employs efficient models for nonlinear devices and obviates the
need for passive interconnect models. The framework also
includes proper statistical methods to perform statistical analysis
on path delays. We demonstrate the accuracy and efficiency of
the framework by various examples.

2.  Variational Reduced Order Model
Reduced order modeling constructs a macromodel for a large

linear system with an MNA formulation:
Original System: (1)

where  and  are the admittance and susceptence matrices.
The vectors,  and  are the node voltages and currents:

(2)

where the  dimensional  and  vectors are associated with
the port nodes, and ,  are for internal nodes. Note that for
most of the interconnect problems, the linear system is driven at
its ports, hence .

When global interconnect parameters fluctuate, the circuit
matrices can be written in variational forms:

(3)

(4)
Variational reduced order modeling finds a compact

representation of the interconnect macromodel by including the
variation parameters. In doing so, it creates a macromodel which
can be efficiently evaluated in terms of the global interconnect
parameters. As described in [1], projection based reduced order
modeling methods (PACT, PRIMA) in a variational manner,
form the variational reduced order models as:

 (5)

where  and  are the reduced order matrices for a
particular parameter sample . The related matrices

 are computed by using the pre-characterized
model library. The resulting MNA formulation of the newly
constructed reduced order model:

Reduced System: (6)
relates a new set of voltage and current vectors:

. (7)

 and  are related to the new set of internal nodes
that mimic the original linear system. Similar to the original
formulation, . The number of internal nodes in the
(6) is much less than the original dimension of the system
making the macromodel more efficient.

A practical implementation of variational reduced order
modeling can be made via variational Krylov vectors in a
projection based method:

(8)
Following the PRIMA algorithm, the reduced order macromodel
matrices can be computed via congruence transformations. Using

the variational forms for Krylov vectors, the projection based
methods compute the first order variational admittance matrix for
a single parameter as:

(9)

(10)

(11)

As seen in (11), the first-order variational admittance
macromodel is not a congruence transformation which is
essential for macromodel passivity. If the impractical higher
order terms were included for proper congruence transformation,
the passivity would become provable. However, it is impractical
to store and apply the higher order variational matrices. For
efficiency and accuracy reasons, these higher order terms are
often ignored. Therefore, unlike the nominal case, the practical
variational reduced order models do not generally preserve
passivity and stability. Hence their interfaces with general
transistor-level analysis tools have potential divergent behavior.
As opposed to stability checks, a practical test for passivity is not
available and remains as an open problem. However, one could
easily check for macromodel stability by monitoring the poles in
the frequency domain pole/residue description[8]. Furthermore,
unstable macromodels can be forced to be stable by removing
their unstable modes and compensating the stable modes to
preserve the dc conditions. Such useful heuristics are not
available for non-passive macromodels due to the theoretical
difficulties in detection and correction strategies.

As we need new models and methods to capture
manufacturing realities in greater detail, we need to combine
nonlinear device models and their parameter fluctuations with
variational interconnect models. Two major considerations need
to be addressed. First, as we described above, the variational
interconnect models do not maintain passivity making linear
models incompatible for simulation with nonlinear devices.
Therefore, we have to obviate the need for passive macromodels
in our framework. Second, the inclusion of nonlinear device
models and their parameter fluctuations is a formidable task due
to its extreme complexity. A practical approach can be taken with
using linear-centric models that can sustain limited parametric
variations within a fast waveform evaluation engine[9]. 

In the next section, we briefly describe the proposed
simulation framework that analyzes digital integrated circuits
with variational interconnect models.

3.  Linear-Centric Simulation Framework
3.1. Need For Passivity

The general time-domain simulators are composed of two
major techniques: numerical integration and nonlinear algebraic
equation solution. They often employ Newton-based nonlinear
solvers which linearize the nonlinear circuit elements and
iteratively solve the linearized system. For digital circuits that are
made of nonlinear drivers and a linear load, the linearization of
the nonlinear circuit elements transforms the nonlinear driver
into a Norton equivalent of which the parameters vary for every
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operating point. When interfaced with a nonpassive linear load
model, the effective load seen by the Norton current source can
be unstable, resulting a possible divergence. This simple
explanation clearly describes the need for passive linear models
for conventional circuit simulators. The simulation of linear
models with nonlinear devices using a general Newton based
linearization approach strongly needs a passive linear model [7]. 

3.2. TETA: Linear-Centric Simulation Engine
TETA is a fast transistor-level timing simulation engine with

almost SPICE accuracy[6][7][9]. Unlike other timing simulators,
TETA uses Successive Chords (SC) technique to solve the
associated nonlinear system of equations creating fixed affine
linearizations for nonlinear circuit elements. The SC method and
splitting the linear and nonlinear portions of the circuit, create
constant impedances seen as each nonlinear element during
solver iterations. The linearized impedances can be lumped into a
final Norton equivalent model. In TETA, this is done by a linear
centric device model which is called as chord model [6][7][9].
The chord models are chosen prior to the analysis and are used in
every nonlinear iteration. 

TETA was developed to evaluate the delay and output
waveforms of multi-port coupled logic stages whose load models
include large number of linear circuit elements. Its effectiveness
is extremely significant when the complexity of waveform
analysis is due to these linear circuit elements. 

When applied to simulate strongly connected components
coupled via a large multiport interconnect, TETA does not
require a strict passivity condition for the linear models. As
shown in Figure 1, it solves the passivity bottleneck of nonlinear
simulation by incorporating the aggregate Norton conductance of
the nonlinear devices (resulting from the chord models) with the
linear load prior to simulation. This enables the use of more
efficient stable macromodeling algorithms which do not maintain

passivity. For simulating the variational interconnect models, it is
seemingly impossible to maintain passivity. Therefore, the use of
the SC method and linear-centric device models in TETA are
crucial for our framework to accommodate nonpassive
variational interconnect models in nonlinear simulation.

3.3. Stable Variational Reduced Order Models
In this work, we target variational delay analysis of the paths

made of logic stages that may include coupling. For that purpose,
we derive our models for multiple nonlinear drivers that are
coupled via large multi-port interconnect. Simulation of such
structures is the major problem in DSM�s timing verification.

To solve the stability/passivity problem of the variational
interconnect models, we apply a TETA-like approach that
includes the impact of a nonlinear driver as a lumped Norton
equivalent model with a constant output conductance. Note that
the SC-based linearization of nonlinear drivers (chords) can be
independent of the interconnect and device model parameters,
which are subject to fluctuations. Therefore, in a statistical
analysis, the output conductances of the SC-linearized drivers,

 remain constant. Therefore, we may use the same chord
models under nonlinear device parameter variations. Even if the
device model parameters fluctuate, the output conductance in the
SC-based linearizations do not need to be changed. Therefore the
chord models driven for nominal model parameters can be used
for different types of device and interconnect models efficiently.

In our approach, the effective linear load seen by Norton
current sources of nonlinear drivers (refer to Figure 1) is
transformed into a variational reduced order form. This process
explicitly includes the output conductances seen for the nonlinear
drivers, , into the variational macromodel. Hence, the MNA
formulation for the effective load can be written as:

New System: (12)
where  is a diagonal matrix, and its first  diagonal entries
are equivalent to the output conductances seen for the SC-based
linearizations of nonlinear drivers. TETA provides these values
during LU factorization of the admittance matrix. We have to
note that the inclusion of  updates all of the variational
matrices and not just the diagonal of .

In the first step, the output conductances,  are computed.
Since their values depend on the topology of the nonlinear driver
and timestep resolution of the analysis,  values can be
computed for each driver in the library. Then the variational
reduced order modeling algorithm creates the macromodel of the
effective linear load . These
matrices can be used to create a subcircuit description or they can
be directly stamped into a nonlinear system. However, as we
pointed out in the previous section, they do not guarantee
passivity and therefore may cause divergence in solution. 

To extract the frequency domain behavior of the linear
macromodels, it is more efficient to apply a transformation to
obtain a pole/residue description. The impedance matrix for the
effective linear load,  is

(13)
The numerical procedures to obtain the effective impedance

macromodel are summarized below:

Figure 1.  TETA�s linear-centric device models and the inter-
connection of chord models with the linear load to form the ef-

fective load. Effective load requires to be stable.
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(14)

(15)

(16)

(17)

(18)

(19)

(20)

Since the matrices for the reduced order model are relatively
smaller than those of the original system, the steps above are not
very expensive. Furthermore, eigen-decomposition of  is
done only once and reused for each entry in .

The real advantage of a pole/residue transformation is the
ability to conduct practical strategies to avoid macromodel
instability. Macromodel instability manifests itself with positive
poles in the pole/residue representation. The poles with positive
real parts are mainly due to the high frequency components,
near-singularities, approximation error and ill-conditioned
numerical computations. With very small residues, they
generally do not possess significant information on the system
behavior. The following practical two-step strategy is very
effective for filtering such unstable modes. The first step
eliminates the real positive poles and the second step adjusts the
stable residues with a common  multiplier factor, , in order to
match the dc (first moment) behavior of the original system.

(21)

(22)

(23)

This simple procedure captures the dominant modes and removes
instability that may be caused by the variational modeling. Using
the corrected stable reduced order models in pole/residue form
(22), we may conduct the time-domain simulation with TETA.

The flow of creating variational reduced order models is
depicted in Table 1. For more technical details and an alternative
approach, the reader can refer to [9]. Next, we discuss about the
application of analysis of path delay variability.

4.  Calculating the Path Delay Variations
Among the important performance metrics for digital

integrated circuits is the critical path delay. A critical path is
defined as the performance limiting path that has the longest (or
shortest) sensitizable delay between its primary inputs and
primary outputs. Like others, it is a string of a number of stages
which can include the interconnected wires and effective
neighboring lines. In DSM technologies, the inclusion of the
electrical activity in the local vicinity of the signal path into
timing analysis (signal integrity) can be imperative.

The accuracy in the statistical delay analysis is crucial due to

the impact of the noise from modeling errors. To alleviate this
impact, in current design practice, the critical paths delay
statistics are often evaluated by circuit simulation[10] with
proper input vectors. To predict the timing yield of the critical
path delay, a large number of simulations are required. General
purpose simulators suffer from several reasons. First, these
methods do not model the interconnect efficiently and becomes
very slow for large number of linear circuit elements, even for a
nominal simulation. Second, the dynamic nature of the path
elements, effects for simultaneous switching and parasitic
coupling become extremely hard to be included in the entire path
simulation. Third, some general purpose simulators like SPICE,
could not exploit the natural spatial and temporal latency of the
critical path and cost more runtime.

In this section, we describe two methods to evaluate the
critical path delay variations using our linear-centric circuit
simulation framework. Unlike gate-level macromodeling
approaches which surrender accuracy for efficiency, we conduct
an accurate simulation strategy to capture the true nature of the
performance variations with as little numerical error as possible.

4.1. Statistical Methods
We first review the major statistical methods, which are

implemented in our framework.

4.1.1  Principal Component Analysis
Integrated circuit device and wire models are often complex

and include a significant number of model parameters. These
model parameters exhibit spatial and temporal correlation since
they depend on a few common factors in the processing and
operating environment. Therefore, it is wiser to conduct a
Principal Component Analysis (PCA) prior to a statistical
sampling. PCA discovers the independent factors which explain
the majority of the parameter variations. As an example, [11]
reports that the variations in BSIM3 device model parameters, of
60 device model parameters, can be explained by 10
uncorrelated, factors. In PCA, these factors are simply the linear
combinations of the varying parameters and one could retrieve
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Construction:
1. Calculate/retrieve output conductances of SC-based

linearizations of nonlinear drivers, 
2. Include driver conducatnces with multiport load to

create effective load, 
3. Create variational reduced order model library based on

the effective load model: 

Evaluation of a particular global interconnect parameter:
1. Apply the variational algebra[1] to obtain the reduced

order model: 
2. Convert the reduced order model into the frequency

domain: 
3. Filter the unstable pole/residues and make necessary

corrections: 
4. Simulate the load with the nonlinear drivers using

TETA.

Table 1. Flow for variational reduced order modeling
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the original model parameters using a by-product reverse
transformation. Since PCA reduces the dimensionality of the
variational problems and the corresponding sample size, it is
implemented in many statistical analysis frameworks. Additional
variance-reduction methods are also available to enhance its
performance.

4.1.2  Monte-Carlo Methods
A rigorous way to predict the statistical distribution of the

performance is Monte-Carlo analysis. Considering the variability
in device and wire models, a Monte-Carlo analysis creates a
sample of parameters that are subject to variation and
exhaustively evaluates the performance for each sample.
Performing a Monte-Carlo simulation requires to know the
nature of variation sources in advance. The procedure can be
improved by advanced sampling techniques and selecting an
uncorrelated set of main variation sources using PCA. PCA
provides a more manageable set of uncorrelated factors for
sampling and reduces the analysis errors. While the global wire
parameters are subject to fluctuations, similar considerations
need to be considered. However one could argue that the global
wire parameters are less likely correlated and they could be
directly handled in Monte-Carlo analysis.

4.1.3  Gradient Analysis
Gradient Analysis[12] (GA) is a more simple and

computationally efficient technique that consists of a gradient
analysis of the performance. This approach evaluates the
standard deviation of the circuit performance with a linear model
in terms of variation sources. If the performance, the path delay
( ) is related to uncorrelated variation sources,

, then the standard deviation of the performance
can be written as:

(24)

If there is correlation between the variation sources, they  can
be added into the formulation. However, if the factors of a PCA
analysis is used in GA, they will be uncorrelated. The GA
method requires the sensitivity or gradient computation of the
performance with respect to the variation sources. This generally
requires less work than a Monte-Carlo analysis. The required
gradients can be evaluated using  finite difference methods. 

4.2. Formulation
To formulate of the path delays, we need to abstract the

waveform and the signal transfer models as [13]. In timing
analysis, a typical switching signal waveform,  can be
expressed as a waveform function:

(25)
where  denotes the waveform function parameters. The most
popular waveform function is the saturated ramp model, which
has the slew and the start time for its parameters.

Given a set of loading and operating conditions, the input/
output behavior of a particular stage can be expressed in terms of
the waveform function parameters. This input/output relation can
be expressed in terms of waveform function parameters:

(26)
where  represents the loading and  holds for device model
parameters and other operational factors. With this abstraction,
the intermediate output waveforms of a path can be defined with
a recurrence relation and a special termination condition:

(27)

(28)
 is the number of stages in the path, and  denotes

the final output waveform. We assume that the input of the initial
stage is given as .

4.3. Calculating Path Delay Statistics
The variability in the path delay can be captured by a

statistical analysis that performs multiple simulations of the logic
stages to evaluate the path delay over a parameter space. One
way to evaluate the path delay is simply a sequential evaluation
of the stages in their topological order. This method evaluates the
stage delay for pre-defined input vectors at a particular model
parameter sample. An alternative method is the application of
statistical analysis for the individual stages and combining the
results to predict the path delay statistics. This section explains
these two different approaches in more detail.

4.3.1  Monte-Carlo Approach
To evaluate the path delay statistics with a Monte-Carlo

analysis, we employ the variational interconnect models and the
linear-centric simulation engine for all stages on the critical path.
The variation sources are classified and transformed into a more
compact set via PCA analysis. Then each stage along the path is
simulated in the topological order. The stage output waveform is
propagated as the input of the subsequent stage. 

One advantage of the proposed simulation framework is that
the nonlinear chord models do not vary with the wire and device
parameter variation and are kept constant throughout the Monte-
Carlo process. Therefore, only a single characterization of the
variational interconnect models is required. This is a significant
advantage for stages with a large number of linear circuit
elements, since the cost of the reduced order modeling may
surpass the cost of nonlinear simulation. Additionally, we
propagate a fine resolution waveform model which captures
almost the exact waveform. The waveforms are  represented by a
piece-wise linear model that adaptively selects the breakpoints.

We have observed that the stage-by-stage path simulation is a
lot more effective than the entire path simulation via traditional
circuit simulators. A few orders of magnitude speedup can be
obtained by exploiting the functional and temporal behavior of
the path, and most importantly the single stage-simulation can
easily incorporate the proper settings for  environmental factors
and coupling.

4.3.2  Gradient Analysis Approach
To compute the path delay statistics via the GA approach, we

need to evaluate the sensitivity of the stage delays with respect to
the variation sources. These sensitivities can be derived from the
recurrence relation (28). To simplify the formulation, a saturated
ramp waveform function can be used with parameters of 50%
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arrival point  and slope , for  stage input waveform, i.e.
. (29)

Then, the input/output waveform relation can be expressed with
two scalar functions as:

(30)

For any variation source , derivatives of the waveform model
can be expressed recursively:

(31)

A similar expression can be written for derivatives of  as
well. Hence, the GA approach requires the derivatives of the
stage input/output relations with respect to ( , ) and ,
i.e. input waveform parameters and all variation sources.
Besides, the derivatives of the waveform function parameters
have to be propagated to next stages for further evaluation.
Similar steps need to be taken for a more complex waveform
function model with additional parameters.

In our framework, each derivative term in (31) is computed
with a few simulations. For instance,  can be
evaluated by  perturbing  around its nominal value keeping
all the other parameters constant. The derivatives with respect to
the variation sources can be handled similarly. The described
sensitivity computation is equivalent to the first-order expansion
of the performance function around the nominal performance and
model parameters. The total number of simulations required in
the described procedure is generally less than the number of
Monte-Carlo simulations. Once all the stages are completed, the
path delay sensitivity is simply found by:

(32)
The standard deviation of the path delay can be found via (24). 

After finishing a particular stage, we propagate the nominal
waveform model along with the required derivative terms. The
nominal waveform model is used to evaluate derivatives for
variation sources. The waveform model, ( , ) is used to
obtain the gradients for input waveform, i.e. .

The GA approach can be considered as a differential version
of  timing analysis of the stage. It processes the nominal arrival
times and the derivative terms using the stage input/output
relation. The GA approach is more accurate when the
performance function has a linear relation with the parameter of
interest. It relies on the first-order expansion of the performance
function. For stage input/output relations of digital circuits, this
condition is easier to achieve compared to more general analog
circuits. 

5.  Results
5.1. Example 1

Our first example demonstrates the unstable nature of the
variational reduced order models. The circuit is a coupled RC
line shown in Figure 2. The symmetric two-port RC line is
modeled in three segments of which the electrical model is given

in Table 2. A normalized spatial parameter affects the electrical
model as depicted. The element values are assumed to have
linear relation with p. For simplicity, the two-port RC is
transformed into a one-port RC load by shunting the second port
with 100 ohms. 

 When the one-port RC load is reduced with variational
reduced order modeling algorithm (PACT) with fourth order, the
reduced order model produces unstable poles for the driving
point admittance model for a range of parameter values. These
unstable poles are tabulated in Table 3. We used SPICE3f5[10]
(SPICE) to simulate the SPICE-subcircuit created from reduced
order macromodel with a large inverter designed in 0.6 micron
CMOS technology. Since the reduced order model was
nonpassive and unstable, SPICE couldn't converge and reported
error when p>0.05. However, with our methods in the
framework, we could be able to obtain very accurate results for
all p values, p<0.1. The results for nominal, extreme and the
variational macromodel for p=0.1 case agree well as shown in
Figure 3.

5.2. Example 2
This next example demonstrates the efficiency of our

approach to analyze the stages with large number of interconnect
wires. A 4-port stage is given in Figure 4. The input signals for
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Figure 2.  Circuit in Example 1

.
p R1 R2 R3 C1 C2 C3 CC1 CC2 CC3
0 10 2 30 2pf 2pf 2pf 2pf 2pf 2pf

0.1 15 2 40 3pf 2pf 3pf 3pf 2pf 3pf

Table 2. Electrical model of the circuit in Example 1.
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Figure 3.  Result for nominal (p=0), extreme (p=0.1) and the 
reconstructed macromodel.

p 0.05 0.06 0.08 0.09 0.1
unstable pole 2.93e15 3.54e13 8.43e12 5.41e12 3.75e12

Table 3. The unstable poles during construction of variational 
reduced order model for circuit in Example 1.
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the stage shown and the delay at the probe line is measured. For
this simulation study, we modeled the parallel lines identical
from minimum width wire geometries. The geometrical
parameters for the wires, width (W), thickness (T), spacing (S),
resistivity ( ) and the inter-layer-dielectric thickness (H) values
are taken from [14]. Sakurai's formulas are used to generate the
electrical circuit elements [15]; but any similar model could be
used. The experiment is done for variations in W, T, S, H and 
assuming uniform distributions with tolerances specified in [14].
The wires are divided into coupled RC segments at each micron
length. The delays are evaluated for 100 samples which are
generated by Latin Hypercube Sampling.

The cpu-time comparison in Figure 5 for various wirelengths
shows a significant speedup with respect to SPICE, especially
when the number of linear circuit elements is quite large. To
reflect the accuracy of the variational reduced order models, the
histograms of the delays measured at probe node are shown in
Figure 6. The mean and standard deviation statistics for both
methods are in the order of numerical precision error of the
circuit simulation tool. 

5.3. Example 3
The third example demonstrates the application of the

statistical critical path delay analysis for device and wire

parameters for the ISCAS-89 benchmark circuits. The gate-level
descriptions of the benchmarks are transformed into transistor
level circuit netlists. In the benchmark set, ten different logic
cells are used. The latch-to latch paths are extracted and ordered
by a unit-delay based timing analyzer. The delay variation in the
longest path is analyzed in the presence of device and wire
parameters. 

Throughout the simulations 0.18 micron MOSFET models
are used. The nominal and  tolerances for 0.18 micron device
and wire technology parameters are taken from [14]. As in
Example 2, the electrical parameters are computed via [15]. For
simplicity, each variation terms are assumed as independent
distributed normal random variables. Similarly, one could use the
PCA method to obtain an uncorrelated set out of the  measure
data.

A Monte-Carlo analysis with 100 samples is performed via
SPICE and TETA using the analytical level-1 model from [10].
We observed that the number of samples are large enough to
estimate the standard deviation of the distribution within 1%.
The samples for channel length, W and H parameters are
generated from normal distribution. The runtime speedups are
tabulated in Table 4 for different numbers of linear circuit
elements. The accuracy of the simulations are reasonable and the
simulation speedup increases linearly with the number of linear
elements. Since a simple device model is used in both
simulations, the obtained speedup is mainly attributed to utilizing
the variational interconnect reduced order models.

Using the same set, we apply the GA approach to evaluate the
standard deviation of the critical path delay under nonlinear
device model variations in threshold voltage and channel length
reduction. The waveform function model parameter gradients are
evaluated numerically using five simulations per each variation
source. 

More results for longest path delays are given in Table 5.
Figure 7 shows the histograms for the longest path delays of s27
and s208 obtained by Monte Carlo and the GA approaches. 

Based on our observations, GA approach becomes more
efficient for short paths with few variation sources. Relying on a
linearity assumption, it starts to fail for large-scale problems that
have more potential nonlinearities. Monte-Carlo approach is
more reliable and robust on large-scale examples, especially with
large number of variation sources. Its efficiency can be  enhanced

ρ

ρ

probe

Figure 4.  4-port stage 
(Example 2)

Figure 5.  CPU time comparison with different wirelengths. 
(Example 2).
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Figure 6.  Delay histograms (Example 2).
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Circuit No of 
Stages

No of linear elements 
between stages

Speedup wrt. 
SPICE

s27 5 10 8.12
500 74.2

s208 9 10 18.59
500 78.76

s444 12 10 12.47
500 84.62

s1423 54 10 25.25
500 120.42

s9234 58 10 20.3
500 100.6

Table 4. Speedup obtained with the framework.



by advanced simulation and sampling techniques. 
Another distinction between these two approaches is that the

required number of samples grows linearly in the GA approach
with the number of variation sources, whereas in MC approach, it
increases by a smaller rate.

6.  Conclusion
In this paper, we described an accurate and robust simulation

framework for statistical timing evaluation. Our framework
efficiently handles logic stages made of variational interconnect
models and nonlinear devices. The efficiencies of variational
reduced order modeling and the linear-centric simulation
approach are demonstrated. The proposed framework offers
solutions for potential passivity/stability problem of the
interconnect models, and provide great accuracy for nonlinear
device models. Additionally, the utilized chord models for
nonlinear devices minimizes the number of macromodeling
steps. 

As demonstrated by the examples given, the proposed linear
centric simulation framework can be used to assess the
manufacturability of next-generation integrated circuits.
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Circuit std (DL) std (VT) Method mean (ps) std (ps)
s27 

(5 stages)

0.33 0

GA 308.61 7.72
MC 308.98 11.13

s208
(9 stages)

GA 577.64 13.56
MC 580.38 21.02

s832
(9 stages)

GA 468.00 14.19
MC 468.12 16.70

s444
(12 stages)

GA 1051.55 28.09
MC 1054.08 38.12

s1423
(21 stages)

GA 1004.42 29.61
MC 1000.97 39.54

s27
(5 stages)

0.33 0.33

GA 308.61 10.09
MC 308.62 9.49

s208 
(9 stages)

GA 577.64 16.69
MC 579.73 24.40

s832 
(9 stages)

GA 468.00 16.64
MC 467.64 19.08

s444 
(12 stages)

GA 1051.55 36.07
MC 1052.90 45.29

s1423 
(21 stages)

GA 1004.42 34.99
MC 1000.98 44.83

Table 5. Statistics of longest path delays (Example 3)

Figure 7.  Histograms for the longest path delays obtained by 
the MC and GA analysis (under DL and VT variations)
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