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Abstract 
 
We consider the implication of deep sub-micron VLSI 

technology on the design of communication frameworks 
for parallel DSP systems-on-chip. We assert that 
distributed data transfer and control mechanisms are 
necessary to manage many independent processing 
subsystems and software tasks. An example of a parallel 
DSP architecture is given and used to demonstrate these 
mechanisms at work. We show the similarity of these 
mechanism and those used in large scale computing 
networks. 
 
1. Introduction 
 

Rapid advances in semiconductor technology have 
had several implications on VLSI circuit design. The 
ability to integrate 10's of millions of transistors on a 
single die means that entire systems can be integrated on a 
chip. A system-on-chip (SoC) allows designers to design 
solutions with greater performance, reduced power and 
lower cost. However, there are many challenges to 
implementing a SoC with high performance. 
 

One of these challenges is communication over long 
distances on a chip. Until recently the clock speed of a 
chip was largely determined by the number of gates in the 
critical path of the design. As the feature size of process 
technology continues to shrink, the performance of 
interconnect has not scaled as rapidly as the transistor 
switching speeds. Critical paths are becoming dominated 
by delays due to interconnect, especially when the logic is 
spread across the chip [1]. 

 
As a result, tightly coupled chip architectures are 

increasingly impractical, and SoC designs have evolved 
towards collections of loosely coupled largely autonomous 
subsystems, each performing a different function such a 
processing, memory and I/O. These subsystems must be 
efficiently integrated and coordinated, and they must share 
chip resources. This requires an interconnection network 
and associated communication mechanisms to allow the 
different subsystems to transfer data and control 
information. Critical to such designs are communication 

mechanisms with distributed control.  Moreover, to reduce 
the complexity of programming and managing the system, 
we want to hide as much as possible of the low-level detail 
of these mechanisms. 
 

The evolving architecture of the SoC is not unlike a 
large data network. A data network also has different 
subsystems such a processing (computers), memory (file 
servers), and I/O (fiber optic links). It also requires an 
interconnection network (routers interconnected with fiber 
optic links) and communication mechanisms (network 
protocols). Many of the techniques developed for data 
networks can be applied to a SoC. In this paper, we will 
present some of the architectural features of a SoC 
platform designed for high performance signal processing. 
We will summarize some of the architectural features of 
the platform. We then give an example of a data transfer 
that demonstrates communication mechanisms that are 
used to manage data transfer and control the execution of 
applications. We will demonstrate the similarity between 
the distributed processing and control of the SoC and a 
typical data network. 

 
2. Daytona DSP architecture 
 

Daytona is a programmable DSP platform designed 
for communication infrastructure applications [2]-[4]. Two 
example applications are 3G wireless basestations and 
DSL access multiplexors. Figure 1 gives an illustration of 
a typical Daytona DSP SoC. Multiple processing elements 
(PEs) are interconnected with a pipelined split-transaction 
bus called the Daytona Bus. The PEs can range from 
programmable RISC and DSP processors for flexibility to 
fixed function hardwired accelerators optimized for 
performance and power. The Daytona Bus allows PEs to 
exchange data and control information as well as access 
shared resources such as global memory and chip I/O. 
Daytona uses a sophisticated memory hierarchy to keep 
most accesses local to the PE and minimized the amount 
of bandwidth required on the Daytona Bus.  
Programmable priorities can be used to minimize latency 
of critical accesses across the bus such as blocking 
memory requests. 



 
A controller called the I/O Subsystem manages data 

transfers between PEs and global resources. Daytona 
provides various hardware mechanisms to support 
communication such as cache coherency, DMA, and 
semaphores. Multiple tasks are scheduled dynamically by 
an embedded RTOS [5].  

 
 

3. Packet Switched I/O Subsystem 
 
Sharing resources amongst subsystems on a SoC is 

especially challenging when the resource is limited. For 
example the number of I/O pins in an IC package is 
limited and often must be shared among the various SoC 
subsystems. The system architecture must allocate I/O 
bandwidth to each subsystem in an intelligent way to 
insure good system performance. The I/O performance 
requirements of each subsystem could vary significantly. 
For example, one subsystem could require large 
bandwidth but be relatively insensitive to latency, while 
another could require little bandwidth but will suffer 
significant performance loss if the latency is too large. In 
addition, different applications running on the same SoC 
could have varying I/O requirements. Programmers need 
flexibility to allocate I/O dependent on the application 
needs. 

 
Daytona uses the I/O Subsystem to manage shared 

off-chip interfaces. An illustration of the I/O Subsystem 
and how it interfaces with the rest of the system is shown 
in Figure 2. It is effectively a memory switch that 
interconnects off-chip shared memory, off-chip shared 
I/O, and the Daytona Bus. These subsystems are all 
memory mapped. A 32-bit source and destination address 
indicates which subsystem data is coming from and going 
to. Data is segmented into fixed length 32 byte payloads 
and a header is appended to the data. The interpretation of 
the 32-bit source and destination address depends on the 
particular subsystem.  For example the least significant 24-
bits of the address is used by the shared memory to specify 

the physical address of the data to read or write. In 
addition, several other fields of the header give semantics 
for the data transfer such as which bytes in the 32-byte 
payload are valid. One interesting field to note is the 2-bit 
priority field that is used to manage the quality of service 
(QOS). All higher priority requests are serviced before a 
lower priority request is serviced. 

 
The I/O Subsystem has a buffer that stores pending 

transactions. Logically the buffer has four queues, one for 
each transaction priority. Each queue is in fact a linked list 
and the I/O Subsystem has a pool of memory used for 
building linked lists. When a data packet arrives with a 
given priority it is added to the beginning of the 
appropriate queue. An entry is removed from a pool of 
free entries and added to the beginning of the queue. The 
queue manager handles the task of linking and removing 
entries from the queues. Each clock cycle the scheduler 
services the highest priority non-empty queue. Once the 
transaction is completed the entry from the serviced queue 
is returned to the free pool. A memory switch physically 
transfers data from one subsystem to another. For 
example, the memory switch is used to transfer 32-bytes 
from the Daytona Bus to the memory controller. 

 
Since the packet switch transaction manager can 

buffer multiple transactions and service them 
simultaneously, it is possible to exploit parallelism. For 
example when a memory access is being performed in one 
memory bank, a second memory access can be performed 
simultaneously in another memory bank. An important 
property of this architecture is isolation of data flows. 
Slow data accesses (maybe because an I/O port is busy) do 
not block other time critical accesses. This fine-grained 
distributed communication between subsystems (and 
software tasks) allows them to share resources efficiently. 
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 Figure 1. Daytona parallel DSP architecture. 
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Figure 3 illustrates an example of a transaction 
through the I/O Subsystem. A processor in the system has 
a data cache miss and requires that the cache line be 
refilled from the shared memory. The cache controller in 
the processor generates a transaction on the Daytona Bus 
and uses an address that is mapped to the shared memory 
(off-chip L2 Cache). The cache is write-back so a 
modified line being replaced must be written back to the 
L2 cache. 

 
The Daytona Bus controller of the I/O Subsystem 

snoops (observes) the bus for addresses that it must 
service. When it sees the transaction addressed to the 
global memory it queues the request into the highest 
priority queue. Since the processor cannot continue 
execution until this data is returned, making the 
transaction high priority improves performance, since a 
non-blocking request can be delayed. If the queue already 
has at least one entry then the transaction will not be 
serviced until the existing ones are serviced. Once the I/O 
Subsystem services the transaction, the data packet is 
forwarded to the global memory controller. The global 
memory controller performs a read of the global memory 
and returns the data to the I/O Subsystem. Once again the 
transaction is queued to the highest priority queue, except 
that the destination in now the processor that requested the 
data originally. Once the queue is serviced the data is 
transferred through the Daytona Bus to the processor. 

 
The data transfer through the I/O Subsystem is not 

unlike the forwarding of cells in an ATM network [6]. An 
ATM network is also designed to perform fine-grained 
distributed communication and to isolate data flows 
between different end-points.  

 

4. Conclusions 
 
As transistor budgets continue to grow, the design 

complexity of SoCs will rapidly increase. Careful problem 
partitioning and parallelization of applications is necessary 
to manage VLSI implementation. Centralized control will 
become prohibitive due to the dominance of routing 
delays. Distributed processing and control will be the only 
way to achieve good system performance. The trend is 
very similar to the shift of centralized computing in a 
mainframe environment towards distributed computing in 
a data network. As we have demonstrated many of the 
lessons learned in that transition can be applied to the 
design of SoCs. 
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