
Communication Mechanisms for Parallel DSP Systems on a Chip

Joseph Williams, Bryan Ackland, and Nevin Heintze
Agere Systems

Circuits and Systems Technology Laboratory
Holmdel, NJ 07733, USA

Abstract

We consider the implication of deep sub-micron VLSI

technology on the design of communication frameworks
for parallel DSP systems-on-chip. We assert that
distributed data transfer and control mechanisms are
necessary to manage many independent processing
subsystems and software tasks. An example of a parallel
DSP architecture is given and used to demonstrate these
mechanisms at work. We show the similarity of these
mechanism and those used in large scale computing
networks.

1. Introduction

Rapid advances in semiconductor technology have
had several implications on VLSI circuit design. The
ability to integrate 10's of millions of transistors on a
single die means that entire systems can be integrated on a
chip. A system-on-chip (SoC) allows designers to design
solutions with greater performance, reduced power and
lower cost. However, there are many challenges to
implementing a SoC with high performance.

One of these challenges is communication over long
distances on a chip. Until recently the clock speed of a
chip was largely determined by the number of gates in the
critical path of the design. As the feature size of process
technology continues to shrink, the performance of
interconnect has not scaled as rapidly as the transistor
switching speeds. Critical paths are becoming dominated
by delays due to interconnect, especially when the logic is
spread across the chip [1].

As a result, tightly coupled chip architectures are

increasingly impractical, and SoC designs have evolved
towards collections of loosely coupled largely autonomous
subsystems, each performing a different function such a
processing, memory and I/O. These subsystems must be
efficiently integrated and coordinated, and they must share
chip resources. This requires an interconnection network
and associated communication mechanisms to allow the
different subsystems to transfer data and control
information. Critical to such designs are communication

mechanisms with distributed control. Moreover, to reduce
the complexity of programming and managing the system,
we want to hide as much as possible of the low-level detail
of these mechanisms.

The evolving architecture of the SoC is not unlike a
large data network. A data network also has different
subsystems such a processing (computers), memory (file
servers), and I/O (fiber optic links). It also requires an
interconnection network (routers interconnected with fiber
optic links) and communication mechanisms (network
protocols). Many of the techniques developed for data
networks can be applied to a SoC. In this paper, we will
present some of the architectural features of a SoC
platform designed for high performance signal processing.
We will summarize some of the architectural features of
the platform. We then give an example of a data transfer
that demonstrates communication mechanisms that are
used to manage data transfer and control the execution of
applications. We will demonstrate the similarity between
the distributed processing and control of the SoC and a
typical data network.

2. Daytona DSP architecture

Daytona is a programmable DSP platform designed
for communication infrastructure applications [2]-[4]. Two
example applications are 3G wireless basestations and
DSL access multiplexors. Figure 1 gives an illustration of
a typical Daytona DSP SoC. Multiple processing elements
(PEs) are interconnected with a pipelined split-transaction
bus called the Daytona Bus. The PEs can range from
programmable RISC and DSP processors for flexibility to
fixed function hardwired accelerators optimized for
performance and power. The Daytona Bus allows PEs to
exchange data and control information as well as access
shared resources such as global memory and chip I/O.
Daytona uses a sophisticated memory hierarchy to keep
most accesses local to the PE and minimized the amount
of bandwidth required on the Daytona Bus.
Programmable priorities can be used to minimize latency
of critical accesses across the bus such as blocking
memory requests.

A controller called the I/O Subsystem manages data

transfers between PEs and global resources. Daytona
provides various hardware mechanisms to support
communication such as cache coherency, DMA, and
semaphores. Multiple tasks are scheduled dynamically by
an embedded RTOS [5].

3. Packet Switched I/O Subsystem

Sharing resources amongst subsystems on a SoC is

especially challenging when the resource is limited. For
example the number of I/O pins in an IC package is
limited and often must be shared among the various SoC
subsystems. The system architecture must allocate I/O
bandwidth to each subsystem in an intelligent way to
insure good system performance. The I/O performance
requirements of each subsystem could vary significantly.
For example, one subsystem could require large
bandwidth but be relatively insensitive to latency, while
another could require little bandwidth but will suffer
significant performance loss if the latency is too large. In
addition, different applications running on the same SoC
could have varying I/O requirements. Programmers need
flexibility to allocate I/O dependent on the application
needs.

Daytona uses the I/O Subsystem to manage shared

off-chip interfaces. An illustration of the I/O Subsystem
and how it interfaces with the rest of the system is shown
in Figure 2. It is effectively a memory switch that
interconnects off-chip shared memory, off-chip shared
I/O, and the Daytona Bus. These subsystems are all
memory mapped. A 32-bit source and destination address
indicates which subsystem data is coming from and going
to. Data is segmented into fixed length 32 byte payloads
and a header is appended to the data. The interpretation of
the 32-bit source and destination address depends on the
particular subsystem. For example the least significant 24-
bits of the address is used by the shared memory to specify

the physical address of the data to read or write. In
addition, several other fields of the header give semantics
for the data transfer such as which bytes in the 32-byte
payload are valid. One interesting field to note is the 2-bit
priority field that is used to manage the quality of service
(QOS). All higher priority requests are serviced before a
lower priority request is serviced.

The I/O Subsystem has a buffer that stores pending

transactions. Logically the buffer has four queues, one for
each transaction priority. Each queue is in fact a linked list
and the I/O Subsystem has a pool of memory used for
building linked lists. When a data packet arrives with a
given priority it is added to the beginning of the
appropriate queue. An entry is removed from a pool of
free entries and added to the beginning of the queue. The
queue manager handles the task of linking and removing
entries from the queues. Each clock cycle the scheduler
services the highest priority non-empty queue. Once the
transaction is completed the entry from the serviced queue
is returned to the free pool. A memory switch physically
transfers data from one subsystem to another. For
example, the memory switch is used to transfer 32-bytes
from the Daytona Bus to the memory controller.

Since the packet switch transaction manager can

buffer multiple transactions and service them
simultaneously, it is possible to exploit parallelism. For
example when a memory access is being performed in one
memory bank, a second memory access can be performed
simultaneously in another memory bank. An important
property of this architecture is isolation of data flows.
Slow data accesses (maybe because an I/O port is busy) do
not block other time critical accesses. This fine-grained
distributed communication between subsystems (and
software tasks) allows them to share resources efficiently.

Daytona 128-bit Split Transaction Bus

Hardware
Accelerator

Local Memory

High Bandwidth
I/O Interface

Local Memory

Programmable
DSP Core

Local Memory

Programmable
RISC Core

Local Memory
Memory

Controller

I/O
Controller

I/O Subsystem

Shared
Memory

I/O
Interface

 Figure 1. Daytona parallel DSP architecture.
Daytona Bus Interface

Packet Switched
Transaction Manager

I/O
Interface

Memory
Controller

MemoryOff-chip I/O

Daytona Bus

n-Packet Buffer Pool
(32-byte data packets)

Queue Manager
and Scheduler

(4 priority queues)

Src Addr Dst Addr Priority

Src Addr Dst Addr Priority

Src Addr Dst Addr Priority

PE PE PE Chip

Memory Switch

Figure 2. I/O Subsystem

Figure 3 illustrates an example of a transaction
through the I/O Subsystem. A processor in the system has
a data cache miss and requires that the cache line be
refilled from the shared memory. The cache controller in
the processor generates a transaction on the Daytona Bus
and uses an address that is mapped to the shared memory
(off-chip L2 Cache). The cache is write-back so a
modified line being replaced must be written back to the
L2 cache.

The Daytona Bus controller of the I/O Subsystem

snoops (observes) the bus for addresses that it must
service. When it sees the transaction addressed to the
global memory it queues the request into the highest
priority queue. Since the processor cannot continue
execution until this data is returned, making the
transaction high priority improves performance, since a
non-blocking request can be delayed. If the queue already
has at least one entry then the transaction will not be
serviced until the existing ones are serviced. Once the I/O
Subsystem services the transaction, the data packet is
forwarded to the global memory controller. The global
memory controller performs a read of the global memory
and returns the data to the I/O Subsystem. Once again the
transaction is queued to the highest priority queue, except
that the destination in now the processor that requested the
data originally. Once the queue is serviced the data is
transferred through the Daytona Bus to the processor.

The data transfer through the I/O Subsystem is not

unlike the forwarding of cells in an ATM network [6]. An
ATM network is also designed to perform fine-grained
distributed communication and to isolate data flows
between different end-points.

4. Conclusions

As transistor budgets continue to grow, the design

complexity of SoCs will rapidly increase. Careful problem
partitioning and parallelization of applications is necessary
to manage VLSI implementation. Centralized control will
become prohibitive due to the dominance of routing
delays. Distributed processing and control will be the only
way to achieve good system performance. The trend is
very similar to the shift of centralized computing in a
mainframe environment towards distributed computing in
a data network. As we have demonstrated many of the
lessons learned in that transition can be applied to the
design of SoCs.

References

[1] J. Williams, et al., “The Implementation of Two
Multiprocessor DSPs: A Design Methodology Case
Study”, ISSCC 2001.
[2] C. Nicol et-al., "A Single-Chip 1.6 Billion 16-b MAC/s
Multiprocessor DSP", IEEE Custom Integrated Circuits
Conference, May 1999
[3] J. Williams, et al., “A 3.2GOPS Multiprocessor DSP
for Communication Applications”, ISSCC 2000.
[4] C. Nicol, et al., “A Single-Chip, 1.6-B MAC/s
Multiprocessor DSP”, IEEE JSSC, pp. 412-424, March
2000.
[5] A. Kalavade, J. Othmer, B. Ackland, K.J.Singh,
"Software Environment for a Multiprocessor DSP",
Design Automation Conference, June 1999
[6] R. Perlman, “Interconnections: Bridges, Routers,
Switches and Internetworking Protocols”, Addison-
Wesley, 1997

Daytona Bus

DSP

L1 Cache

Miss!

L1 Cache
L2 Cache

High
Priority Write Data

I/O
Subsystem

Off-Chip
L2 Cache

Src Addr
Dst Addr

Priority
Data (32b)

Data Packet

L2 Cache
L1 Cache

High
Priority Read Data

Figure 3. Data transactions to service a data cache miss

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

