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Abstract

In this paper, the placement problem on FPGAs is faced
using Thermodynamic Combinatorial Optimization (TCO).
TCO is a new combinatorial optimization method based
on both Thermodynamics and Information Theory. In TCO
two kinds of processes are conmsidered: microstate and
macrostate transformations. Applying the Shannon’s
definition of Entropy to microstate reversible
transformations, a probability of acceptance based on
Fermi-Dirac statistics is derived. On the other hand
applying thermodynamic laws to reversible macrostate
transformations, an efficient annealing schedule is
provided. TCO has been compared with Simulated
Annealing (SA) on a set of benchmark circuits for the
FPGA placement problem. TCO has achieved large time
reductions with respect to SA, while providing interesting
adaptive properties.

1. Introduction

Placement is one of the most time consuming tasks of
integrated circuit physical design. The placement quality
affects both the area and speed of circuits. In the case of
FPGAs where wiring resources are strongly limited,
placement becomes a key issue for routing success.
Placement is an NP-complete problem, thus new
challenges arise from the continuous growth in the number
of logic elements contained into commercial FPGAs.
Since the solution space grows exponentially with the size
of the circuit, it is necessary to resort to efficient
combinatorial  optimization algorithms.  Simulated
Annealing (SA) is a combinatorial optimization method
standing out for the quality of solution it provides in
solving placement problems [1]. This algorithm simulates
the annealing process performed in the industry to achieve
the lowest energy ground state of solids. Thus, S4
algorithm consists of heating the system at high
temperature, then lowering the temperature slowly until no
further changes occur. One of theoretical foundations of
SA is that the system must be close to equilibrium
throughout the annealing process. To achieve such goal
the algorithm demands a careful adjustment of the

annealing schedule parameters. Moreover, S4 becomes a
method whose best results depend upon the skills or
experience of practitioners.

In this paper, we first review Simulated Annealing
algorithm, highlighting several successful annealing
schedules. Following, we present Thermodynamic
Combinatorial  Optimization (TCO). TCO is a
combinatorial optimization method derived from
Thermodynamics and Information Theory. In this method
the optimization is performed by means of reversible
processes meeting thermodynamic laws. A useful feature
of reversible processes is precisely that their intermediate
states are also equilibrium states. Moreover, a reversible
process improves the efficiency of any other process
performed irreversibly. In 7CO two kinds of processes are
considered: microstate and macrostate transformations.
Applying Shannon’s definition of Entropy to microstate
reversible transformations, a probability of acceptance
based on Fermi-Dirac statistics is derived. On the other
hand, applying thermodynamic laws to reversible
macrostate transformations, an efficient annealing
schedule is provided.

TCO has been compared with a common SA4
implementation for a set of benchmark circuits in the
FPGA placement problem. 7CO has provided interesting
time reduction with respect to S4 while obtaining high
quality solutions.

2. FPGA placement problem

FPGAs [2] are user-programmable integrated circuits
providing flexibility and reconfiguration advantages for
supporting the design and production of digital systems.
An FPGA is basically composed of a bidimensional array
of Configurable Logic Blocks (CLBs) to support the logic
and storage elements of circuits, and programmable
input/output blocks (IOBs) at the perimeter of the device
to provide off-chip interconnections.

The FPGA placement problem consists of assigning a
netlist of virtual CLBs and IOBs (circuit components) to
specific CLBs and IOBs on the FPGA. Placement must be
optimized so that the circuit can be routed with the



available resources and signal delays meet timing
constraint [3][4][51[6][71[8]-

The quality of placements is ussualy estimated by the
Bounding Box (BB) cost function applied to all nets. BB
approximates the cost of routing a net by the perimeter of
the rectangle that encloses it. Thereby, BB estimates the
total wire length and hence reduces delays and congestion
in the optimization process. A sligth variation of this cost
function [9][10] has been chosen throughout the rest of
this paper to compare the efficiency of the combinatorial
optimization algorithms. The functional form of this cost
function is

N {3
q(n)
n=1 CaV

where bb, and bb, denote the horizontal and vertical spans
of the bounding box for each net respectively, q(n) is a
factor to compensate the underestimated area of
multiterminal nets [11], and C,, is the average channel
capacity (in tracks).

Cost = [bbx (n)+bb,(n)

3. Placement by Simulated Annealing

Simulated Annealing [12] is based on the analogy that
can be found between the resolution of combinatorial
optimization problems and the problem of determining the
lowest-energy ground state of solids. A similar process to
the annealing of solids can be simulated in solving
combinatorial optimization problems. In this case,
solutions of the combinatorial optimization problem
replace the physical states of the system, while cost of
solutions so does with energy states. From these
equivalences, three operators or functions simulate the
annealing process:

1) An operator for generating a new solution by a local
transformation from the current one. This operator must be
designed in such a way that the solution space is
efficiently sampled (e.g. narrowing the magnitude of
transformations as the search progresses may improve the

performance).
2) A probability of accepting a new solution given by
1 AC<0
P=q _ac 1)
e T AC >0

where T is the temperature and AC is the cost variation.
According to Equation 1, transformations with cost-
decrement are always accepted, while transformations
with cost-increment are accepted with a probability given
by the Boltzmann factor. This definition for the probability
of acceptance allows the algorithm to escape from local
minima.

3) The annealing schedule or method of determining the
initial temperature and its cooling. According to Equation
1, the temperature parameter controls the probability of
acceptance. Since an annealing process is carried out, a

high value of temperature is initially selected. Such high
initial temperature maintains the probability close to one,
and hence almost all movements are initially accepted. In
order to provoke the convergence of the algorithm to the
global optimum, temperature must be lowered slowly
according to the search advance. Also, at each
temperature, the simulation must proceed long enough for
the system to reach a steady state. The annealing schedule
[13][14] is a key issue for getting success in the
optimization, and it is usually connected to the distribution
density used in generating new solutions. There are some
theoretical studies based on Markov chains that prove the
asymptotic convergence of SA to the optimal solution for
some specific annealing schedule [15][16][17]. Thus, the
logarithmic annealing schedule (T=T,/In(t)), along with
Gaussian-Markovian  distribution as the generation
function, has been proven to asymptotically reaching the
global optimum [18]. Nevertheless, such asymptotic
requirement predicts infinite transformations to guarantee
the global optimum solution. In practice, real life problems
are time constrained, and a common goal is to reach good
solutions within the available time.

To speed up the annealing process with respect to the
logarithmic annealing schedule, different functional forms
have emerged. For example, the original annealing
schedule (T;;=cT;, 0 <c< 1) where the temperature drops
exponentially with the number of temperature updates, or
Fast Anmealing (FA) [19] which uses the Cauchy
distribution for the generation function, and the relation
T=T,/t for the temperature decrease. In spite of the success
of such annealing schedules, they lack for some variable
connecting the temperature to the problem or cost function
being optimized. Thus, the unique link between the
annealing schedule and the problem is a set of parameters
to be adjusted experimentally. In this way, they usually
demand a large number of empirical studies to fine-tune
the annealing schedule parameters to specific problems or
cost functions. Along with the above annealing schedules
there are others aiming to provide practical adaptive
properties as Generalized Simulated Annealing [20],
Adaptive  Simulated Awnnealing [21], or Natural
Optimization [22].

In spite of the arduose efforts performed in providing
an efficient annealing schedule valid for a wide range of
problems, it remains as an open question and much
experimentation must still be performed.

4. Thermodynamic Combinatorial Optimization

One of the theoretical bases of SA consists of reaching
equilibrium at each temperature. In order to achieve this
goal, the annealing schedule of SA goes along a sequence
of temperatures for cooling the system, while a number of
rearrangements are attempted to recover equilibrium at
each one, i.c., the system does not achieve equilibrium if
temperature is lowered too quickly. A main concern of SA



practitioners is how slowly the cooling should be to avoid
the search gets stuck in local minima. That is, how large
temperature steps should be, and how many moves should
be performed to recover equilibrium at each temperature.
Both parameters the magnitude of temperature drops and
the number of movements performed at each temperature
are usually adjusted experimentally for each cost function.

Thermodynamic Combinatorial Optimization (TCO)
provides a method to perform the cooling close to
equilibrium missing out on experimental adjustments.
TCO is derived from the first and second thermodynamic
laws applied to reversible processes [23]. A key feature of
reversible processes is just that the intermediate states of a
transformation are also equilibrium states. In this section,
we deduce both the probability of acceptance and the
annealing schedule, constrained to the optimization
process is reversible.

A combinatorial optimization problem can be
formulated from a cost function C defined on a solution
space N. The optimization problem consists of finding the
solution of minimum cost C within the solution space N.
In [17], a relationship between Simulated Annealing and
Statistical Physics is settled. In a similar way, aiming to
establish a link between Thermodynamics and Statistical
Physics on one hand, and Thermodynamic Combinatorial
Optimization on the other, we differentiate among the
concepts of macrostate, microstate and state.

In TCO scope we first define the concept of macrostate
associated to the temperature 7, as a random variable X7
taking values in the solution space N with a probability
distribution

P{XT =xi}=pi

ipi -1 @
i=1

where n is the number of possible configurations in N. The
probability distribution concerns to statistics approach,
since macrostate properties can be derived from p; values.
Thus, the cost Cr of the macrostate X7 is equal to the

average or expected cost, that is
n

Cr=> ¢ p, ®
i=1
where ¢; is the cost of the solution x;. The entropy S7
associated to the macrostate X7 can be expressed as

n
Sy = Zpi -8 “)
i=l

Note that according to Information Theory [24], the
entropy may also take the form

Sy == p,Inlp,) ®)
i=]

x,eN
in such a way that

In second term, we define the concept of microstate as
every value x; that can take the random variable X7

together with its associated probability (p;). Thus, a
microstate is a possible solution, and hence has a
measurable cost ¢;. On the other hand, although we are
unfamiliar with the concept of the entropy of a microstate,
it can also be defined. Thus, matching Equations 4 and 5,
the entropy of a microstate can be expressed as

s; ==In(p;) (6)

Finally, we define the concept of state as the current
microstate or solution examined in the opmization process.
A state is characterized by its cost ¢;. A transformation
between two states A and B is subjeted to the probability
of acceptance P p.

From these definitions, Thermodynamic Combinatorial
Optimization consists of two superimposed processes:
local and global optimizations. The first optimization
focuses on local transformations between microstates,
while the second consists of a path through a series of
macrostates. Two main results can be derived from the
application of thermodynamic laws and information theory
to these optimization processes. Firstly, we are going to
derive an expression for the probability of accepting a
transformation between two microstates meeting the
thermodynamic laws and Shannon’s definition of entropy.
Following, an annealing schedule based on
thermodynamic laws is provided.

Probability of acceptance

During the local search new microstates will be
generated to submit to the acceptance test. According to
Thermodynamics, the efficiency of a reversible process
improves any other transformation perfomed irreversible.
Therefore, a priority goal of 7CO is to perform
transformations in a reversible way, ie., all local
transformations performed between two microstates are
demanded to meet the second thermodynamic law for
reversible processes performed at temperature T. Thus, a
local transformation attempted between the microstates x,
and xp should meet Equation 7.

Or
554 =22 Q)
where s, and sp are the entropy of the microstates 4 and B
respectively, Or the heat interchanged in the process, and
T the temperature.

On the other hand, the first law of Thermodynamics for
systems that only interchange heat with surroundings and
do not perform work takes the form

ug —uy =9 (3)
where u is the internal energy.
Therefore, a reversible process suffered by a system at
temperature T that only interchange heat with
surroundings should meet
ug —uy =T-(s5—54) )
Making the equivalence between internal energy (u) and
cost of a solution (¢) for combinatorial optimization
problems Equation 9 becomes



cp—cg=T-(sp—54) (10)
Substituting the entropy of a microstate given by Equation
6, we have

sB—sA=—lnp—B 1)
P4

where p, and pjp are the probabilities of the microstates x,
and xg respectively. Now, note that starting from the
microstate x4, the probability pp of reaching the microstate
xg will be Pyp. In the same way, the probability p, of
remaining in the microstate x5 will be equal to 1- Pyp.
Substituting these values in Equation 11 we have

Py
Sg—84 =—In 12
e (12)
and Equation 10 takes the form
P
cp—cy=-T-In—45_ 13
5 —Ca i (13)
Finally, finding P,z in Equation 13 we obtain
1
Pip= T A (14)
1+e”
Therefore, local transformations submitted to the

acceptance test given by Equation 14, meet the first and
second thermodynamic laws defined for reversible
processes. Equation 14 has the form of Fermi-Dirac
distribution. Note that appliying such probability of
acceptance not all transformations with cost decrease are
always accepted. In practice, aiming to benefit from all
cost-decrement transformations, the Boltzmann
distribution (Equation 1) can be applied instead.

Thermodynamic annealing schedule

In SA, the temperature T of the probability of
acceptance is strictly controlled in order to keep the
system close to equilibrium. Unlike S4, in 7CO a
temperature schedule meeting thermodynamic laws is
derived. As stated above, TCO performs a superimposed
global optimization along with the local one. This global
process consists of a path through a series of macrostates.
The ends of this path can be easily identified. At the
begining (failing knowledge about the system), we will be
interested in searching throughout the solution space (N),
i.e., starting from an initial macrostate Xy, where all
configurations have the same probability. That is

JD{XT:x,.}:l Vx, eN (15)
The entropy for the initial macr}Z)state X1, can be expressed
as
55 =-3 LoacL,)
’ =1 "
therefore

Sy, =In(n)

Intuitively, the initial macrostate can be considered as an
indefinite macrostate where all solutions have the same
probability to be selected. Such macrostate has maximum
entropy. As the process goes on, not only the cost but also
entropy must decrease. Thus, the optimization process
loses uncertainty and gets certainty or information. The
final goal of the search process is to achieve an optimum
solution. Let N, be the set of optimum solutions, and let
ney be the cardinal of this set, the final macrostate Xp¢
should meet

1
— x; €N
P{XD( = x,~}= nopt
0 X, & Ny
In this way, the average cost matches up to the optimum
value

opt

nopr
1

Cp=Y —:C

i1 opt
and its entropy is minimum (maximum information)
n

opt = Copt

opt
1 1
St
=1 Popt Bopt
When a single optimum solution exists, the final entropy
becomes

STf =

Sp =—1-In(1)=0

Note that entropy decrease is necessary. Thus, although
the optimum solution can be reached early in the
optimization process, it may be lost in few iterations if
entropy remains high (uncertainty).

Once the initial and final macrostates are identified, we are
interested in finding an efficient path between both. That
is, the optimization process must go through the shortest
path. According to Thermodynamics, a reversible process
performed between two macrostates X y X3 yields better
than any other irreversible process performed between
them. A goal must be to move from the initial macrostate
Xy to final macrostate X by a reversible process meeting
the first and second laws (Equation 16).

T= Cp=Cy (16)
Sp =S4
Since macroscopic space is continuous, Boltzmann

statistics can be applied to macrostate transformations,
then
Sp =S, =In(Pyz)

Moreover, to perceive a change from macroscopic point of
view, it is not enough appliying the first and second laws
to a single microstate transformation. Instead, due the
probabilistic definition of macrostate, Equation 16 must be
met by any compound transformation. Therefore, assume
that the transition between the macrostates X; and X3 is
performed by means of k iterations. Let AC; be the cost
variation of the local transformation tried at iteration i, let
T; be the temperature at which the transformation was



tried, and let P; be its probability of acceptance. The
entropy variation will be

k
S-S, =lnHP,.
i=1

therefore
K
Sp=S4=) InP, (17)
=1
On the other hand, let M, fccep,ed be the set of

transformations accepted at iteration k, the cost variation
will be

Cp-Cy= D AC, (18)

ieM :ccep!ed
Substituting equations 17 and 18 in 16, the macrostate
transformation performed until iteration k will be
reversible if T meets Equation 19. Since the value of T
given by 19 will be applied at next iteration, it can be

denominated Ty..
>4

ieM:CCe e
Do =k — 20— 19)

K
ZlnPi
=1

The parameter k, has been introduced in Equation 19 to
control the run-time quality tradeoff. Since the
optimization time is proportional to this parameter, the
value of ka can be easily adjusted to the time available
(tavaitable) according to Equation 20.

kA — tavailable (20)

Ig =1
where k=1 is the run time measured for k,=1. Regarding

initial temperature, its value will depend on the initial
configuration or solution. In 7CO two operational modes
can be considered: normal and adaptive. When the initial
configuration is generated randomly, a normal mode can
be applied. In this case, the initial temperature must be
selected in such a way that initially almost all movements
are accepted. For example, it can be calculated in a similar
way to [25] according to the following equation
]

° In(P)
where m is the average of the absolute value of the cost

variation obtained for an initial sequence of random
transformations, and P is a high acceptance probability
close to one. On the other hand, whenever the optimization
process does not start from an initial random solution (i.e., it
starts from a halfway solution), the adaptive mode should be
applied. In this case, the initial temperature must be selected

to a very low value. Then, after some updating movements,
the temperature will match up to the quality of this initial
solution.

Finally, some special cases in applying Equation 19 must
be remarked. Thus, while entropy variation remains zero,
the temperature must be set to T, in order to avoid
singularities. On the other hand, at the beginning of the
optimization process the temperature defined according to
Equation 19 may take negative values. To force cost
minimization, the situation above must be avoided.
Therefore, if the cost of the current solution is larger than
the cost of the initial solution, the temperature should be
set to To. According to above remarks, Equation 19 can be
rewritten as

k
T, if ZIn(E):O or ZAC,zo
i=1 ieM, ﬁuepted
ey
Ty = > ac
iEMﬁue tod
ky —— other cases
D In(B)
i=1
In this section Thermodynamic Combinatorial

Optimization method has been presented. TCO consists of
two superimposed optimizations: local and global. The
local optimization performs microstate transformations
within a macrostate defined by the temperature T. The
global optimization process observes a set of local
transformations as a macrostate reversible transformation.
Unlike the local process, in the global optimization the
probability P,g given by Equation 14 is not interpreted as
the probability to move from one microstate to another.
Instead, Pap is reinterpreted as the probability to move
from a macrostate X, with its cost and entropy values (C,
and S,), to another macrostate Xz with another set of
values (Cp and Sp). In this way, whenever the acceptance
test is applied, the macrostate of the system is modified.
For example, when a transformation is rejected, the
uncertainty decreases since there are fewer changes. Thus,
both the entropy decreases, and the macrostate of the
system changes.

5. Experimental results

Thermodynamic Combinatorial Optimization has been
implemented to perform the placement of a set of
benchmark circuits on an FPGA with Bounding Box (BB)
cost function. In order to appreciate the behavior of 7CO,
it has been compared with VPR (Versatile Place&Route) a
fine-tuned SA placement tool [9][10].

Figure 1 depicts the optimization development with
TCO and SA for the circuit seq.net and k,=300. Horizontal
axis represents the number of iterations or movements
evaluated, while vertical axis shows the cost of solutions.



Note that 7CO drops faster than both S4 does, while a
similar cost is obtained.

— SA
— TCO

Simulated Annealing
Thermodynamic Optimization

cost

Oe+0 1e+7 2e+7 3e+7
Moves

Figure 1. Cost/Movements  relationship  for the
placement of a circuit in an FPGA with

different methods: SA and TCO.

Figure 2 shows the relationship between the cost and
temperature decrease represented in a logarithmic scale.
Note that both graphs have similar behavior. 7CO
provides a simple interpretation of this phenomenon, i.e.,
each temperature has an associated macrostate, and hence
an average cost.

Simulated Annealing
Thermodynamic Optimization

— SA
— TCO
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temperature decrease

Figure 2. Cost/Temperature  evolution  for  the

placement with SA and TCO

In order to appreciate different behaviors in both
methods, we must refer to the temperature/time relationship.
In Figure 3, horizontal axis represents the number of
movements evaluated, while vertical axis the temperature T.
Remark that the temperature with 7CO is tuned with the
development of the optimization, and hence only usefull
movements are performs at each temperature.

— SA
— TCO

Simulated Annealing
Thermodynamic Optimization
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1e+0
H
2
E 1e1 -
=
1e-2
1e-3
T T T
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Figure 3. Temperature/moves  relationship for the

placements performed by SA and TCO

We have expanded the comparison between both
methods on a set of benchmark circuits (Table 1).

Table 1. Benchmark circuits: CLBs, IOBs and demanded
FPGA size

CIRC #CLBs #1/0 FPGA size
tseng 1047 174 33x33
exSp 1064 71 33x33
apex4 1262 28 36x36
misex3 1397 28 38x38
diffeq 1497 103 39x39
alu4 1522 22 40x40
seq 1750 76 42x42
apex2 1878 41 44x44
5298 1931 10 44x44
dsip 1370 126 54x54
bigkey 1707 426 54x54
frisc 3556 136 60x60
spla 3690 62 61x61
ex1010 4598 20 68x68
pde 4575 56 68x68
s38417 6406 135 81x81
$38584.1 6447 342 81x81
clma 8383 144 92x92

Table 2 shows the values of the cost function BB
optimized by S4 and TCO, as well as the number of
movements needed by both methods for these circuits. The



last two columns show the relative improvement of 7CO
with respect to SA measured as follows:

Cost(NO) — Cost(SA)

=100- j
Q Cost(SA) (Quality)
72100 Moves(NO) — Moves(SA) (Time)
Moves(SA)

Remark that negative values of Q and T imply a TCO
improvement with respect to S4 and vice versa. Note that
while similar quality solution is provided by both methods,
TCO reduces appreciably the time demanded by SA4.

Table 2. Comparison between SA and TCO for the
placement problem on a set of benchmarks

CIR. Cost Moves (x10°) Q T
(Bounding Box)

Init. SA TCO | $4 TCO % %

tseng 420 93 93 15.5 6.7 0.0 | -57
ex3p 427 162 162 13.8 6.2 0.0 |-55
apex4 503 180 179 16.3 8.1 -0.5 | -50
misex3 588 188 188 18.8 9.7 00 | -48
diffeq 670 146 145 22.5 11.6 | -0.7 | -48
alud 612 192 191 21.2 7.3 -0.5 | -66
seq 804 247 246 26.7 129 | -04 | -52
apex2 912 267 266 286 | 127 | -04 | -56
5298 750 203 203 293 | 21.6 00 | -26
dsip 895 171 171 285 | 221 00 | -22
bigkey 1085 187 187 35.7 19.5 00 | -45
frisc 2288 | Sle6 516 724 | 523 00 | -28
spla 2373 | 608 604 72.8 | 41.1 -0.7 | 44
ex1010 3325 | 655 655 97.6 | 564 00 | -42
pde 3230 | 869 869 972 | 723 0.0 | -26
s38417 5837 | 674 666 166 112 -1.1 | -32
s38584.1 | 5616 | 647 647 173 118 0.0 | -32
clma 7957 | 1390 | 1389 | 240 148 -0.1 | -38

6. Conclusion

In this paper 7CO, a new combinatorial optimization
method has been presented. 7CO is similar to simulated
annealing method, but both the probability of accepting
local transformations and the temperature schedule, are
directly derived from the thermodynamic laws and
Shannon’s definition of entropy. Unlike most simulated
annealing strategies, 7CO adapts automatically to different
cost functions while providing high performance.

TCO has been applied to FPGA placement, improving
the results provided by VPR, a fine-tuned SA tool for this
problem.
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