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ABSTRACT
This paper describes the verification of two versions of a bridge
between two on-chip buses. The verification was performed just
as the Infineon Technologies Design Centre in Bristol was
introducing pseudo-random testing (using Specman) and property
checking (using GateProp) into their verification flows and thus
provides a good opportunity to compare these two techniques
with the existing strategy of directed testing using VHDL bus
functional models.

Categories and Subject Descriptors

B.5.2 [Register-Transfer-Level Implementation]: Design Aids
– Verification.

General Terms

Verification.

1. INTRODUCTION
The verification of two versions of a bridge between two on-chip
busses is described. The verification methodology incorporated
directed testing, pseudo-random testing and property checking at
module level, as well as in-system testing. Only the module-level
verification is considered in detail. The incorporation of the three
techniques into a verification flow is described in Section 3. In
Section 4, results are used to discuss the relative strengths of each
verification technology, as well as the strength of the verification
provided by all three combined. Since verification is not an exact
science, rather than trying to draw hard and fast conclusions,
recommended use of these technologies is presented based on the
experience gained in Section 5. Some ideas as to how the three
technologies may more easily be used in conjunction are included.

2. BACKGROUND
2.1 The Design-Under-Test (DUT)
The LFI is a bus bridge that connects a 32-bit address, 64-bit data
local memory bus to a 32-bit address, 32-bit data flexible
peripheral bus. The LFI is approximately 30K gates in size. Two

versions were verified - the first version (LFI-IBC32) required that
the DUT could work with LMB:FPI clock ratios of 2:1 and 1:1.
The second version (LFI-S) extended the LFI-IBC32 functionality
to support any clock frequency ratio so long as the LMB
frequency is equal to or greater than the FPI frequency, and as
long as the positive edges of the clock signals align. In addition,
power saving features were incorporated into the LFI-S version.

2.2 Methodology
Four main techniques were applied to the verification of the LFI:

§ Directed testing using VHDL BFM’s for the test bench and
transaction-based tests for directed tests.

§ Pseudo-random constraint driven testing using Specman from
Verisity.

§ Formal property checking using GateProp from Siemens.

§ The LFI was placed within a larger system and verified as
part of that system. This system is a reference system used
solely for the purpose of verifying system level aspects of a
DUT that are hard to verify at module level. For example, the
LFI can go into power down mode with other parts of the
system when a certain set of conditions apply and the LFI
then engages in a complex handshake with the CPU and other
blocks. The complete operation is better verified at system
level than at module level.

This paper is more concerned with module level verification and
so will concentrate on the first three techniques.

Figure 1 indicates when each technique was applied during the
project. There follows a brief explanation of why these techniques
were applied at these times and how they were applied.

§ When the LFI-IBC32 project started the only infrastructure
available was the VHDL Bus Functional Models (BFM’s).

Figure 1: Verification time-line
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Hence a directed test bench and directed tests was developed
first.

§ The directed tests were completed about halfway through
LFI-IBC32 but were continually run in regression and were
enhanced to achieve the structural coverage targets.

§ The LFI-IBC32 directed test bench and tests were ported to
LFI-S and used for regression and structural coverage there
too.

§ e language Verification Components (eVCs) for the FPI and
LMB became available during the LFI-IBC32 project and
were then used to build a LFI Specman test bench (this
accounts for starting the random testing later for LFI-IBC32).
This test bench was then ported to the LFI-S project.

§ GateProp was a new tool to the Infineon Technologies
Design Centre in Bristol and some training and infrastructure
development was required before it could be used (this
accounts for starting the property checking later for LFI-
IBC32). The GateProp environment and properties were
however very quickly ported to LFI-S.

.

3. VERIFICATION TECHNOLOGIES
3.1 Directed testing
Directed testing started with the writing of a test specification
document and a test bench description document by a separate
verification team to give the independent interpretation discussed
in Bergeron (2000). The test specification is written using a “black
box” approach from the verification engineers understanding of the
DUT spec. The document aims to test fully all of the stated
functionality in the DUT spec, and it is from this that the directed
tests are written. The writing of the test spec forms a very good
review of the DUT spec and can uncover discrepancies or holes in
the DUT spec. The test bench spec is aimed at describing the test
bench features such that the tests to be run on it are able to
exercise all of the design features and to allow for the
implementation of the test specification. The design and
verification teams reviewed both specifications.

The directed test bench is built from internally supplied BFM’s,
written in VHDL. These are driven by a simple test language that
allows the test to perform read and write transactions plus idle
cycles. The test is thus written at the transaction level and the
BFM translates the transactions to the appropriate signal
behaviour on the bus. The BFM’s allow the DUT to be stimulated
across the full range of functionality specified in the bus protocol.
Adherence to the protocol by all parties is monitored by a
protocol checker - another VHDL module which plugs directly
onto the bus.

The directed test bench used consisted of:

§ Four BFM Masters and Slaves, plus a protocol checker on
the LMB bus.

§ Two BFM slaves and masters, plus protocol checker and
local memory unit on the FPI bus.

Once the directed tests have been written and run on the DUT,
structural coverage is performed using a suitable third party tool
to provide defined coverage metrics such as Statement Coverage,
Branch Coverage and Toggle Coverage. Pre-defined targets of
100% justified statement coverage (“justified” as some statements
are unexecutable, such as some “when others” statements), >95%
branch coverage and 100% toggle coverage. These structural
coverage targets form a necessary but not a sufficient quality
target. They are a safety net – whilst your verification has not
reached the targets you know you haven’t done enough, but
reaching the targets does not mean completion of verification.
Experience shows that the tests derived from the black box test
spec are insufficient to reach these structural coverage targets and
so extra tests are specified and implemented using a “white box”
approach. The white box approach works by looking at the
coverage holes with a designer and specifying specific transaction
sequences that need to be performed in order to hit the previously
uncovered holes. This results in a set of very targeted tests.

As well as relying on structural coverage metrics, directed testing
also aims to demonstrate bus compliance. The bus protocol
specifies certain scenarios that have to be performed correctly in
order for bus compliance to be achieved. A compliance document
with tick boxes is used, and for each sequence the test which
demonstrates this is supplied.

3.2 Random testing
Random testing was performed using Specman Elite and dedicated
in-house eVC’s (e language verification components – comparable
to BFM’s). The testbench was constructed using configurable
numbers of eVC masters and slaves on both busses, together with
an e-protocol checker on each bus. The system clocks were driven
from the VHDL top level in order to improve simulation
performance, but otherwise all stimuli were generated from the e-
code itself.

A test specification is again written in advance based on the DUT
spec - the document describes the scenarios that need to be
covered. Similarly a test bench specification is written. Both are
reviewed with the designers who may suggest additional scenarios.

Coverage scenarios fell into two main types for both of the
DUT’s considered in this paper.

1) Transaction coverage. On a per-master and per-slave basis,
the types of transactions applied and received are recorded,
along with associated information such as acknowledge codes,
byte lanes used, wait states observed. Cross-coverage of
these transaction types is then performed, in order to ensure
that for each opcode type we have observed every error
condition, every type of wait state and so on.

2) FSM transition coverage. We hook Specman to the internal
state machines within the DUT itself, and define what the



legal transitions are. During the course of the testing, we can
measure coverage of every legal transition, and check that we
did not cause any illegal transitions.

The combination of ensuring that we apply every possible cross-
coverage point and FSM transition ensures that we achieve a high
functional coverage of the DUT, and any areas that we initially
miss during random testing are rapidly highlighted in the coverage
results. The creation of new test scenarios with modified
transaction constraints can then be added to ensure that we
achieve 100% of the coverage that we have defined.

Cross-coverage of all opcode types with all byte lanes and all
errors is impossible, as it can generate impossible to hit
combinations. All impossible combinations and FSM transitions
were removed from the coverage targets, so that a simple check for
100% coverage can be made at sign-off.

3.3 Formal
Formal verification was carried out using the Siemen’s property
checker, GateProp (see Bormann and Spalinger (2001) for details
of this tool). The main tasks involved in property checking are
writing and testing constraints and writing and running properties.

Earlier property checkers could not easily deal with large designs,
suffering ‘state space explosion’. One of the ways that GateProp
overcomes this is not to do any reachable state analysis1. Hence it
is the responsibility of the user to ensure that there are no false
negatives due to internal signals in the design being in an
unreachable state. This involves checking each failing property and
developing a set of constraints on the internal signals so that they
remain in a suitable superset of all possible reachable states. Both
of these are very time consuming. Also, the constraints are not
going to be re-usable on other designs, and in fact may be difficult
to maintain across changes in design. It was therefore decided to
start all properties from reset, this being the simplest valid state to
define. It should be stated that more general approaches have
successfully been applied in other industrial applications of
GateProp, where a very high functional coverage has been
achieved. In most of these projects the always-start-from-reset
approach would not have touched the most interesting
functionality, e.g. in telecommunication systems where you have
frame lengths of thousands of cycles with corresponding serial
synchronisation protocols. Admittedly, these approaches make
limited use of some internal states, yet important ones only which
make sense at an abstract level. They allow at least a certain degree
of reusability of properties.

Given our always-start-from-reset approach, to ensure that the
design did not reach an invalid state it was only necessary to
constrain the inputs to model the DUT’s environment. The goal
here is to allow the inputs to take any legal combinations and

                                                                
1 Note that versions of GateProp subsequent to that used on the
LFI include approximation of the reachable state space and
analysis of unreachable counter-traces.

sequences of values, in order to find corner cases. Of course,
random testing also chooses inputs from inside a set of
constraints. The difference here is that the property checker
‘intelligently’ tries to find a counter-example, or else prove, a
property. However since the property checker is potentially
exhaustive, it moves through clock cycles considerably slower
than directed or random testing.

We split properties into two types - ‘bus protocol properties’
and ‘transaction properties’. Transaction properties drove explicit
transactions across the bridge, checking that addresses, control
signals and data passed through correctly, and that the bridge
responded appropriately to the various acknowledgements from
bus slaves. The property checker has the advantages that all legal
behaviour around the transaction was allowed, and the address and
data were checked symbolically - in effect testing all possible
values. The slowness of moving through clock cycles was a big
limitation however. The transaction properties were sensitive to
timing (e.g. the number of clock cycles it took each type of
transaction to pass through the bridge). This made them more time
consuming to write, with a degree of trial and error being
necessary, and also to maintain since cycle timings were not
specified and so could change with design updates.

Bus protocol properties checked that the LFI obeyed the
protocols of the FPI and LMB. Since the bus protocol properties
were checking that certain behaviour always, or never, happened
they were not sensitive to timing. This also meant that they could
exercise the design further just by running for longer. Another
advantage they have is that, like the input constraints, they are re-
usable on any module with a similar interface (discussed later).

The transaction properties and protocol properties each found
bugs. Exact numbers are given later in Section 4.2.

3.4 Combining the techniques
Directed Testing, Random Testing and Formal Verification are not
completely orthogonal techniques. During both the LFI projects
the random test bench was used to seed both property checking
and directed testing.

When a failure occurs in directed or random testing, a specific set
of circumstances have caused the observed failure, and it may be
possible that there are other similar signal combinations which
expose the same or similar errors. Thus when the bug is “fixed”
and the test re-run, the bug may no longer be observed, but a
similar or new bug may still be present in the code but it is
reachable only via another set of input stimuli. Consequently it is
useful to test a wider set of signal inputs using property checking.
If the bug failure is carefully observed, a set of properties can be
deduced which must be satisfied for the bug to occur, and thus we
can write a property to prove that the bug cannot possibly occur.
In this way we can prove that the bug has been fixed over all
circumstances, rather than the one circumstance observed in the
directed or random test. However, not all directed test bench



failures may be able to be analysed in the manner needed, so we
may not be able to prove all bugs in all cases.

Thus, many failing tests were converted to properties. These
properties were used to check the fix and often found new bugs or
that the fix had introduced a new bug. This raises the question as
to why such properties were not specified initially. The reason for
this is that the set of all possible properties is too large – so using
this approach helps to prioritise the properties to be written and
run.

In addition, a random test may exercise a piece of code that has
not been exercised by directed testing before, and it may prove to
be a particularly problematic piece of code. The random test gives
the verification engineer a set of input conditions which need to be
applied to the DUT in order to reach that piece of code, so these
can then be applied via the directed test bench to explore the
behaviour of this previously untested code. This can free up the
random test bench resource to explore and verify other areas of the
DUT while the directed test bench is used to fix the bugs that
cause the random test bench to fail every time it enters this area.

4. RESULTS
4.1 Coverage
The coverage achieved from the three approaches enabled us to
release a DUT with a high degree of confidence in its design. Our
directed testbench achieved the following structural coverage
metrics:

• 100% Justified Statement Coverage

• 98.4% Branch Coverage

• 95.2% Condition Coverage

• 84.2% Trigger Coverage

• 100% Toggle Coverage

The random testing achieved 100% FSM transition coverage, but
did not attain 100% cross-coverage of the FSM’s. This proved to
be impossible because of the design of the DUT. The bus
transaction coverage targets were met (the target was 100% after
removal of impossible transactions as discussed earlier).

Coverage for Property Checking is far harder to measure as
GateProp has no coverage metric. A review of the properties by
the verification team established that we were convinced that all
the practical transactions and all protocol issues had been covered.
Indeed it is possible to establish full protocol compliance via
review of the properties, or better still mathematically (see Barrett
and McIsaac (1997)).

4.2 Bug Analysis
4.2.1 Bug Graph
Bugs were recorded using an issue tracking system that allowed
statistics to be gathered such as the cumulative number of bugs
found, the number fixed, and whether they occurred in the design
or test bench. Bug find rates are often expected to follow an S-

curve shape, as the number of bugs found rapidly increases as the
verification effort is increased, and gradually reduces as the DUT
reaches maturity. Thus if the levelling out in the curve is not seen,
it can be an indication that more time is needed to debug the
design.

Cumulative Bug Find Rate
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Figure 2 – LFI-S Bug Curves

Figure 2 shows the bug curve seen during the LFI-S project. It
clearly shows the progression of the project through its life cycle.
At the beginning of the project the test bench is constructed and
debugged, then testing of the DUT begins and the bug curve
rapidly moves upwards. Bugs are found in all parts of the design,
and as new parts of the DUT functionality are tested, new areas
of the verification IP are also tested, resulting in more test bench
bugs. Eventually the test bench reaches maturity, and the DUT
reaches maturity shortly afterwards. The cumulative total
flattening out completely for a sufficient time can thus be used as
a sign-off criteria, as it suggests that maturity has been reached.

4.2.2 What technique found what bug
Table 1 gives a breakdown of bugs found in the LFI-S by type,
and by the method used to find them.

Bug Type Prop.Chk Direct. Rnd.

Bus Protocol violations 11 4 8

Internal DUTqueue
deallocation issues

0 2 4

Livelock/Deadlock 0 5 2

Other DUT issues 7 3 8

Total 18 14 22

Table 1 : Breakdown of LFI-S bugs

When reading these figures the reader is reminded that the various
verification techniques were started at different times in the
project. As stated at the start of the paper, for the LFI-S project



the directed tests from LFI-IBC32 were used to prove initial
functionality, and once basic functionality of the DUT had been
demonstrated, random testing was started. However, property
checking was started almost immediately, although time was
required to modify the transaction properties due to changes in
internal DUT timing.

In theory all of the bugs found by random testing could be found
by directed testing. Random testing generates large sequences of
transactions that can easily be replicated in the directed test bench.
However, in practise there is not enough resource (to generate
such large numbers of self-checking sequences) or ingenuity (to
think of the corner cases that random generation creates).

Similarly, most of the bugs found by random testing could have
been found using property checking given the resource to write an
extensive set of properties (less ingenuity is required because
property checking probes corner cases automatically). However,
some bugs did require a number of cycles to cause the failure (e.g.
those caused by filling up internal queues and then trying to add
further transactions). The number of simulated cycles needed to
get to this point can result in an excessively long run time for
properties. For the same reason, property checking is unlikely to
find the livelock or deadlock bugs, although if we create a livelock
or deadlock by initial conditions we can prove that we cannot
escape.

Property checking was most effective at demonstrating that the
DUT does not violate bus protocols. Many of the violations
would require a directed test to be written with a knowledge of
what is happening cycle by cycle on the bus, and are generally
found more by luck than judgement during random testing and
than during directed testing.

Thus, during the two LFI projects, the verification strategies
proved to be complementary – all stressed different areas of the
DUT in different ways, and speeded the finding of bugs. They
also allowed the verification manager to have several quantitative
and qualitative measures on which to assess confidence in the
quality of the DUT. Indeed, the following were all used in the
sign-off criteria:

§ directed and random test bench and test specifications
reviewed and signed off by design and verification teams;

§ structural and functional coverage targets met;

§ all directed tests passing;

§ a certain number of random transactions run successfully
since last bug found;

§ property specification reviewed and signed off by design and
verification teams;

§ all properties passing;

§ bug curve flattened off and no bugs found for a given period
of time.

4.3 Combined Effectiveness
Both the LFI-IBC32 and LFI-S have now been manufactured in
silicon as part of larger SOC’s and no bugs have reported against
either.

5. RECOMMENDATIONS AND FUTURE
USE
5.1 Directed testing vs. random testing
The combination of approaches improved the quality of the
verification, but also increased the resources applied, especially as
two test benches were built and maintained. One future course of
action will be to become less reliant on directed testing (and thus
more reliant on random testing and functional coverage) and to use
the random test bench to perform the directed testing. However,
this does result in compromise, as it requires the verification
engineer to heavily constrain the random testbench and results in a
loss of controllability compared to a pure directed testbench. This
raises the question of whether to start with unconstrained random
tests and constrain them to more directed tests over the project or
vice-versa (Verisity recommend the former).

Also, without a large set of directed tests, a repeatable regression
run of tests which can demonstrate DUT functionality becomes
more problematic. Although the use of seeds in Specman allows
repeatability, we require a list of seeds per scenario in order to
guarantee full coverage. This also requires that the eVC’s used are
stable, and that the same version of Specman is also used each
time the regression is run. If this requirement is not met, then the
repeatability of the regression run cannot be guaranteed.

Finally, the structural coverage targets still need to be met and this
requires Specman to be run with an appropriate structural
coverage tool.

5.2 Productisation of verification IP
If users are to gain the benefits of verification IP reuse, then the
productisation of the verification IP itself is very important.

The random test bench elements have been developed into re-
usable IP (using the eVC approach recommended by Verisity).
Indeed, these have been re-used successfully on a number of other
projects with big reductions in test bench construction times

Some of the property checking deliverables have also been turned
into re-usable verification IP. As already noted the property
checking effort can be divided between the writing of constraints
and the writing of properties. Each of these can be further divided.
Constraints can be internal, i.e. constraining the internal signals of
the design to avoid unreachable states, or external i.e. constraining
the inputs to the design to reflect its environment. We’ve already
divided the properties into bus protocol and transaction
properties.

Clearly the internal constraints are not going to be re-usable, and
may in fact be difficult to maintain across changes in a design
during development. This was a major factor in our decision not to



develop such constraints (and rely on reset to ensure properties
used valid internal states). However the external constraints can be
re-used, with appropriate modifications to signal names, on other
modules that have a similar interface. The most commonly used
interfaces are the busses, so constraints modeling busses give the
largest opportunity for re-use.

Similarly the transaction properties will not be re-usable and may
take some effort to maintain, due to small changes in timing.
However the bus protocol properties are easily re-usable. A little
care should be taken to monitor run times to ensure that the design
is really being exercised, since some designs may have a ramp up
time after reset where they do little and so are unlikely to break
any protocols.

So it is the constraints on, and properties for, bus protocols that
are re-usable. Indeed those developed for the LFI have been used
on other modules that interface with the FPI and LMB busses,
namely a peripheral control processor and an external bus unit.
This experience of re-use will be used to develop bus protocol
packages for these busses, using a simple wrapper to standardise
signal names. These packages will be easy to use for someone with
no experience of property checking. Of course such packages are
applicable to any standardised protocol and there are also plans to
develop them for other busses, such as the AHB.

5.3 Easier re-use between dynamic and static
verification
During the LFI projects a set of constraints and properties were
developed and maintained. There is much scope for re-use from
random/directed testing to property checking and vice-versa. For
example:

§ The random test bench and property checking both use
constraints to first define the legal sequences of inputs and
then to further restrict them to a smaller set of sequences of
interest to test or property in question.

§ Properties should also hold during simulation.

§ Dynamic verification can get the design into legal internal
states from where it would be useful to start a property
check (as opposed to always starting it from reset).

Fortunately, all three of these areas are being addressed in various
ways. Accellera (www.accellera.org) are trying to define an
industry standard formal language that can be used in both formal
and dynamic verification. This should allow the first two to be
realised. There are also tools appearing that enable the third (so-
called semi-formal tools), such as 0-In Search.
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