
Abstract—Increasing complexity of the functionalities and
the resultant growth in number of gates integrated in a chip
coupled with shrinking geometries and short cycle time
requirements bring in several challenges into the design of
present day VLSI chips. In this paper we present the
challenges faced and the approaches successfully adopted in
the design of a complex 2.5 million gate high bandwidth data
acquisition and processing VLSI chip (a trace-receiver chip,
code-named Drishti) in a deep sub-micron technology at
Texas Instruments India. The very high design complexity
arises due to the rich architecture of the trace-receiver chip,
the aggressive timing and performance requirements and its
large size. The trace-receiver chip is highly configurable and
scalable, thereby catering to both low-end systems, which are
cost sensitive, and high-end applications, which demand
performance. We present the innovative approaches that were
applied to address the challenges encountered in meeting the
aggressive design goals (which include functionality, timing,
testability, manufacturability, reliability, system issues etc)
and to bring the product early to market. Efficient logical and
physical partitioning, design reuse and DFT strategies are a
few of the techniques that were applied in this design. We
present these along with details on the various analyses
carried out as part of the design, including signal-integrity,
reliability and system-level analyses, which were very critical
in ensuring design-closure.

Index terms—deep sub-micron, timing closure, functional
verification, electrical analysis, design-closure

I. INTRODUCTION

Today's VLSI designs are characterized by large gate
counts, high complexity and aggressive time-to-market
requirements. Reuse of pre-existing building blocks
reduces the design cycle time. Optimal logical
partitioning is a critical first step in the design process.
Functional and timing verification are one of the biggest
challenges. To ensure correct behavior of the system
requires extensive simulations of various modes.
Physical design of a large chip in a deep submicron
technology requires optimal physical partitioning; and a

placement that is routable, meets timing goals and
addresses reliability and signal integrity issues.
Achieving timing closure is difficult because of the
interconnect delays and the logic depth. Design for
testability (DFT) is an important careabout that needs to
be taken into consideration. Board-level performance
needs to be kept in mind while optimizing the chip
interfaces. In this paper we highlight the challenges
faced in the design of a scalable data-acquisition and
processing system, a trace-receiver chip code-named
Drishti.

The rest of the paper is organised as follows. We give an
overview of the design in Section II and describe the
motivation and challenges in Section III. Section IV
presents the design techniques to address the challenges
in functional verification, synthesis, physical design,
timing closure, test, electrical/reliability analysis and
package optimization. Observations and future work are
stated in Section V. Conclusions are given in Section
VI.

II. DESIGN OVERVIEW

Drishti is a trace receiver that receives trace data from a
real time system consisting of one or more digital signal
processors (DSP) and/or micro-controllers. Trace data is
used to enable debugging of real time application
running on the DSP/micro-controller. The architecture
of the Drishti chip is generic and scalable and caters to a
variety of trace requirements like different clocking
modes, high-speed trace, wide trace widths, very long
traces or combinations of one or more of them. Drishti
also provides for 3 identical and independently
configurable I/O trace interfaces. Drishti can receive
trace data on only one trace port at any point of time.
Each of the 24 bits on the trace port can be configured
to belong to any one of the 4 channels. The data
streaming out of trace port feeds into 4 channels. Drishti
also provides for exception-analysis capability and real-

Challenges in the Design of a Scalable Data-
Acquisition and Processing System-on-Silicon

Karanth S, Soujanna Sarkar, R. Venkatraman, Shyam S. Jagini,
Venkatesh N, Jagdish C. Rao, Udayakumar H, Manohar S., K.P Sheshadri

Somsubhra Talapatra, Parag Mhatre, Jais Abraham, Rubin Parekhji
{karanth,souj,rvenkat,shyam,n-venkatesh,j-rao,uday,s-manohar,sheshadri,s-talapatra1,parag,jais,parekhji}@ti.com

Texas Instruments India Ltd.,
Golf View Homes, Murugeshpalya, Bangalore – 560 017, India.

time sampling of trace data and real-time upload of trace
data in specific cases. Fig. 1 shows the trace system
comprising of one or more Drishti chips, a host PC and
a DSP/micro-controller based application. The received
data is transferred to internal and/or external memory
(trace memory). Host software running on a personal
computer (PC) will retrieve the trace data from the trace
memory.

Drishti
System

Host
PC

Cable Processed
Data

DSP
Trace Port

[0,1,2]

Figure 1. Drishti Trace System

The trace data received on the input port through a cable
is subjected to significant duty cycle and skew
distortions. The chip has a programmable skew adjust
feature by which the data bits can be aligned with the
clock (Fig. 2). Drishti can extract data received from
input port at a high bandwidth of 7.992 Gbits/sec
maximum rate (333 Mbits/sec/pin with a 24-bit trace
width). Drishti can be programmed to receive data on a
maximum of 4 channels, which can act either in
independent mode, or in locked manner. It can retrieve
data clocked on single edge or dual-edges. Interleaving
trace data across multiple Drishti chips can expand trace
memory. Ganging multiple Drishti chips can expand
trace width. Multiple chips maintain synchronization
between each other through exchange of handshaking
signals. Each Drishti recorder stores data in its own
trace memory. The different modes of Drishti can be
programmed through an asynchronous host interface
port.

SDRAM
interface

Trace Memory

Trace Port
[0,1,2]

Host Interface

Pr
og

ra
m

m
ab

le
Sk

ew
 A

dj
us

t

Ac
qu

is
iti

on
Sy

st
em

D
at

a
R

ou
te

r

M
em

or
y

C
on

tro
lle

r

Configuration
Controller

Figure 2. Drishti block diagram

Salient Drishti features are captured in Table 1. 1.5V
I/Os are used for Drishti to Drishti communication and
3.3V I/Os are used for interfacing with external

SDRAMs, application system. Host interface port also
uses 3.3V I/Os.

Equivalent Gate count 2.5 Million
Memory 2.1 Mbits
Logic Gate Count 1.7 Million
Clock Frequency 167 MHz
Maximum Data & I/O Rates 333 MHz
Die Size 16 mm x 16 mm
Power Supply Core Logic - 1.5 V

I/O – 1.5V & 3.3 V

Estimated Power dissipation 3.9 W
Minimum feature size 0.13 µm
Minimum metal pitch 0.5 µm
Number of metal layers 5
Package 600 pin BGA
Signal Pins 360

Table 1. Features Summary

III. MOTIVATION

The design of a complex, multi-million-gate Drishti
offers huge technical challenges. Challenges span almost
every domain – design implementation and methodology
and deep sub-micron process issues. Ensuring first-pass
silicon success in the presence of very aggressive
performance and time-to-market goals adds to the
challenge.

As described in the above section, the Drishti trace chip
required a high-bandwidth data interface. Considering
the high-performance nature of several IO buses, a
proper selection of the IO buffers and optimal pin
assignment was a huge challenge [1]. In addition, the
presence of dual edge timing causes higher toggle rates
resulting in drawing considerable power supply current
and ground bounce, forcing attention to signal integrity
issues. The chip also has a programmable skew adjust
capability for the received trace signals. Any of the 24
trace inputs can be programmed to a clock pin due to
which every trace signal needs to be carefully handled.
The design of the programmable skew adjust module
posed several challenges in the areas of verification,
logic synthesis and physical design. The need for tight
control over the skew and the asynchronous nature of
logic did not allow the use of conventional logic
synthesis for this part of the design. The additional
requirement to obtain uniform delays on the delay chain
that implements the skew adjustment meant that
conventional timing-driven physical design flow and a
random-logic placement approach would not be
acceptable. Additional verification challenges resulted
due to the need to debug multiple Drishti. The
requirement for three data ports supported within the
chip to exhibit exactly the same behavior and presence
of both on-chip synchronous and asynchronous logic

demanded a very optimal, up-front partitioning of the
chip from a logic and physical design implementation
perspective.

The complexity of Drishti verification is mainly posed
from the generic and programmable nature of the
architecture and its scalability. Simulation speed is a big
issue due to the large size of Drishti design. Several key
features like interleaving and ganging are defined with
multiple Drishti chips functioning in tandem, which adds
to the simulation time complexity and pushes the
computing requirements and tool capabilities to the
limits. Many configurations in both single and multi-
Drishti topology generate innumerable functional
boundaries that need to be verified. Significant
proportion of the logic (around 40%) is asynchronous.
Static Timing Analysis (STA) tools do not fully
comprehend the asynchronous logic. Gate level timing
simulations are therefore necessary to ensure proper
operation of the asynchronous logic. Design "reuse" [2]
became a reality on the Drishti design, hence inheriting
nearly 300K gates of reusable logic. Comprehending
boundary conditions with reuse logic in context of
Drishti brings its own nuances into the functional
verification.

Achieving rapid timing closure is a key challenge, as we
look at large, complex chip designs at process
technologies below 0.15um. Increased parasitics on the
circuit interconnect, additional coupling capacitance on
routes due to aggressive metal pitches, have all
attributed to interconnect delays dominating over the
path delays. Designers, therefore, need accurate
measurements of these interconnect delays in order to
predict system timing and enable timing signoff. The
increased complexity in solving this problem on the
Drishti design was due to the presence of several
(maximum 30) levels of logic between pipeline stages.
Design reuse required a seamless chip-integration and
timing closure methodology that ensured meeting
aggressive chip-level timing goals. Traditional
approaches to achieving timing closure using wire-load
models have been very iterative and deficient in
providing good quality of results (QOR) especially on
large designs [3]. Bridging the gap between front-end
design and the physical implementation using physical
synthesis approaches is key to, not only achieving rapid
timing closure, but also enabling higher QOR and
performance entitlement from the given process
technology. Physical synthesis was widely used on the
Drishti design to enable timing closure. An aggressive
performance target also necessitates a tight control over
power IR drops on a large chip like Drishti [4]. Early
analysis and review of the chip-level power distribution
and coming up with innovative techniques to derive the
power grid while ensuring routability is a key challenge.
Traditionally, chip designers have given a lot of
attention to achieving timing closure [5]. However,

given today's aggressive time-to-market goals, achieving
overall design closure is more important and critical,
particularly because of increased challenges in dealing
with reliability issues like electro-migration, crosstalk
noise, charge-collecting antennas and channel hot
carriers. Given all this, limiting chip-level power
consumption and ensuring chip routability are also
essential. Focussing on design closure on Drishti
enabled us to efficiently deal with all the above issues
without significantly impacting the cycle-time.

To achieve high test-coverage, Design for Test (DFT)
needed to address large chunks of asynchronous logic, a
number of embedded memories of various sizes, and the
presence of several clock domains.

Finally, the design and implementation of a complex,
performance-critical device like Drishti with all the
challenges described above and the need to meet tight
market windows requires an efficient concurrent design
process rather than a traditional sequential design
approach [6,7]. It is essential that verification be
performed in concurrence with design-space
explorations involving area, delay, power, testability,
reliability, pinout and package.

IV. DESIGN TECHNIQUES

A. Verification

The need for concurrent exploration at the architecture
level, longer simulation run times and large size of the
design necessitated the adoption of a bottom-up
approach towards the complete design-verification of
Drishti.

Figure 3. Drishti Verification Environment

Focused effort was given to the various aspects of
timing-simulation due to the presence of large
asynchronous logic. Emulation of the architecture was
also done to validate some of the system level aspects.

Specman

Modelsim VHDL
Simulator

IKOS Timing
Simulator

Co-Verification
Link

(C software)

Testbench Annotated
Netlist

Functional Verification
Environment Timing

Verification
Environment

CVL for
 Hw/Sw

Co-verification

Verification was first performed at the leaf-level
modules (40K gates). The modules were thereafter
verified then at the subsystem level (500K gates). Final
verification was carried out on the full chip, which was
followed by a complete system-level verification.
Boundary conditions between interacting modules were
extensively covered in module- and subsystem-level
verification.

The following verification checklist was used to cover
all aspects of Drishti functionality and thereby its
conformance to specification:

1) 100% function point coverage in a multi-device
configuration. Many of the functions are achieved
by using a system comprising of 9 Drishti chips
working together.

2) 100% statement, branch coverage and 80%
condition coverage. Toggle coverage at the top
level was set to 100%

3) Simulation of the Drishti in multiple clock
frequency ratios to cover throughput and deadlock
situations

4) Use of hardware accelerators for accelerated
simulation at gate level with timings.

5) Simulating the netlist with post layout timings to
uncover any timing related issues in the
asynchronous logic as well as to extract information
on duty cycle degradation using IKOSTM logic
simulation accelerator.

6) Use of transaction based test bench approach to test
system at a higher functional domain. The pin level
interactions with the device were done using
transaction macros in 'e' language of SpecmanTM

verification tool.
7) High level software test cases exercised through a

co-verification link built onto the SpecmanTM

transaction macros and verified on RTL as well as
gate level netlist with timings both on ModelsimTM

simulator and IKOSTM hardware accelerator.
8) Exercising the skew adjust algorithm in post layout

timing simulations to verify for non-existence of
unwanted glitches and check timing of
asynchronous logic.

9) Use of hardware emulators for system regressions
10) Use of equivalence checkers to check integrity

between RTL versus netlist and netlist versus netlist

The transactions through the chip interfaces were
captured as simple high level functions such as reading a
register, writing to a register and waiting for an
interrupt. Each of these high-level transactions was
mapped to pin level transitions on each pin with their
temporal relations. Low-level transaction functions were
first verified before using them in chip level test cases.
This made it easy to comprehend and build tests at a
higher level, which were independent of the underlying
simulator or the environment.

Reviewing the test plans against functional
specifications ensures functional coverage of Drishti.
Exercising multiple test conditions across functions
ensured cross-functional coverage, i.e. the correctness or
failure of a functional behavior in conjunction with
another functional behavior.

Implementation boundary conditions were addressed
using RTL code coverage. RTL code coverage is a
necessary but not a sufficient condition to ensure proper
functionality.

The module and subsystems functionality was verified
with tests built using the third party EDA simulation
tools. At the device and subsystem level it was easy to
build tests using the control software. The control
software configures the device for various operational
modes as well as does a variety of host data read
operations. The software was interfaced to the
transaction layer built into the third party simulation
tool. The software was used to exercise test cases at the
device and system level with the underlying
implementation transparent in this setup. The conceptual
flow of the software interaction with the hardware
simulator is shown in Fig 1. The hardware simulator
supports timing-simulations using delay information
back-annotated from layout-extraction. The
asynchronous data extraction logic and the skew
adjustment functions required extensive host data read
operations, which was effectively done by simulating the
control software with the actual hardware
implementation.

FPGA based emulation was used for the synchronous
logic due to the high simulation run times. In FPGA
based emulation, it is possible to exercise many system
specific tests in a shorter time compared to a logic
simulator environment. Finally hardware acceleration of
logic simulation using IKOSTM helped speed up the gate
level timing simulations. These simulations were
primarily aimed to verify asynchronous logic timing and
clock duty cycle degradations, which are difficult to
check using Static Timing Analysis tools.

Several incremental changes to the design netlist take
place during full chip timing optimizations and layout
iterations. It is extremely time consuming to rerun the
entire suite of tests on modified netlist. Equivalence
checking between the original regressed netlist and
incremental netlist saved several weeks of simulation
time and enables shorter design cycle [8].

Use of a variety of different simulation environments to
verify different aspects of the design with a common set
of test suites was a key aspect of Drishti verification
methodology.

B. Package and IO Planning

The input-output (I/O) buffers, pinout and package
affect the system performance significantly. The I/O
buffers were chosen based on the results of extensive
SPICE simulations. The dual-edge high-speed interfaces
required the usage of high-speed transceiver logic
(HSTL) I/O buffers while the relatively low speed
interfaces used 3.3V low-voltage CMOS (LVCMOS)
I/Os. As the HSTL I/Os operated at 1.5V, this led to
~4.8 times power savings compared to LVCMOS.

Pinout planning involved the estimation of power and
ground pins and their optimal placement. Estimates of
power dissipation of the chip helped in the calculation of
the power and ground pin counts. Consequently, a 600-
pin ball grid array (BGA) package was chosen. The
placement of the power, ground and signal pins was
done to ensure that simultaneous switching resulting in
ground bounce and cross-talk are within acceptable
limits. To prevent the high switching of the I/Os from
affecting the core logic operation, core and the I/O
ground were isolated. SPICE simulations of the I/O
buffers were performed using a package SPICE deck
with a transmission line model for the off-chip interfaces
to sign-off on the pinout.

This analysis ensured that the right package and input-
output buffers were chosen for the chip so as not to
impact signal integrity adversely.

C. Test Methodology

Full scan methodology was used for the synchronous
logic and functional fault grading is considered on
asynchronous logic to increase the test-coverage. In scan
mode, a single clock tree feeds all the scan flip-flops.

Embedded memories take up a significant area of the
die. Built In Self-Test (BIST) was used on embedded
memories, which have poor controllability. Parallel
Module Test (PMT) was additionally used for large
memories to detect word line transition faults, not
covered by Memory BIST. Parallel Signature Analyzer
(PSA) was added to improve observe-ability of memory
outputs.

D. Synthesis and Timing Closure

Very aggressive timing goals and the large size of the
design were the key challenges towards achieving timing
closure on Drishti. The limited solution space resulting
due to the many design constraints posed a big
challenge.

To achieve identical and aggressive performance across
the three I/O trace interfaces, a bottom-up methodology

was adopted for the IO trace-port design. All trace
signals were needed to have identical timing
characteristics. The trace-port subsystem was designed
as an independent module and was instantiated thrice at
the chip-level to achieve this purpose. The trace port
was further partitioned into three modules (the
programmable skew adjust, the acquisition unit and the
IO module) based on the different timing characteristics
required, and also the nature of the logic. The
programmable skew adjust was completely
asynchronous and required very tight control of skew
across the 24 trace signals. The acquisition unit operated
on dual edges of the clock and was designed to tolerate
up to 25%-75% duty cycle on the input trace signals.
Programmability of any of the 24 input signals as a
clock posed a further challenge within the acquisition
design and required all the trace signals to be designed
as clocks. The IO module was designed to output all the
trace signals on both the edges of the clock with
minimum distortion and skew.

Figure 4. Drishti Partitions

The above-mentioned design hierarchy coupled with the
presence of asynchronous design elements at the lowest
level of design posed considerable challenge in timing-
closure at each level. The main reason for this was the
use of conventional synchronous design tools for logic
synthesis and physical design, where it was impossible
to create models of the asynchronous elements for
optimization. This necessitated manual optimization of
many timing-paths, the goal being to get the maximum
performance possible, so that design constraints during
block-use can be met with relative ease. Another
challenge was to introduce as much concurrency in the
design activities as possible without compromising on
accuracy. This was particularly important in the light of

16 memory
blocks

External
Memory
interface

Async
Interface

PO
R

TA
PO

R
TC

PORTB

Partition

Synchronous
logic

Synchronous
logic

multiple levels of nesting in the data acquisition
subsystem.

At the chip-level, Drishti was partitioned into two
blocks. Timing budgets were generated for these blocks
based on the chip floorplan. Each block was then taken
through physical synthesis separately and integrated at
the top level. Programmation memories and registers,
which were needed to be written by and read from an
asynchronous external configuration bus, were spread
across many modules all over the chip. In the worst
scenario, the address, data and control signals needed to
be fed to all the memories and registers. This design
scenario, which could have resulted in an exponential
increase in the number of on-chip busses and thereby
increased routing congestion, was handled by
connecting all the memories and registers in a daisy
chain.

Sufficient margins were provided in the timing budgets
for each of the blocks to account for the interconnect
delays between them at the top-level. Since the design
was finally flattened before routing, optimizations for
timing were performed at the chip-level rather than the
block-level.

E. Physical Design

The main challenge in the design of Drishti was
handling the design size. Ensuring good QoR with
respect to timing and routability without impacting
cycle-time was a critical requirement. To meet these
challenges, a two-phased design approach was adopted.
The first phase was to design the trace-port sub-system
bottom-up so that this module could be instantiated
thrice at the top-level with identical performance
characteristics across all the instantiations. The focus of
the second phase was the chip-level, where a pseudo-
hierarchical methodology was adopted.

i) Trace-Port Design

The trace-port, being very performance-critical in terms
of signal-delays and skews, was multiply partitioned, so
that each of the blocks could be designed independent of
others. This module was designed bottom-up, and had
six different sub-modules internally, with two levels of
hierarchy. The partitioning criteria were the presence of
asynchronous logic and special design requirements like
delay matching across many signal lines.

In order that the asynchronous logic, notably the
programmable delay adjust elements, be handled with
adequate care during placement and routing, these were
designed as individual delay blocks. This ensured that
through multiple instantiations, identical performance
characteristics were possible. The programmable delay
element, being one of the most important components of

the design, was optimized for the best performance.
Rigorous SPICE analyses were performed on this block
to ensure that all the design requirements were met.
Block aspect ratio was one of the most important factors
considered during the performance optimization of this
block. This block was about 1K equivalent gates in size.
Handling such small sizes in a 2.5 million-gate design
was another challenge, with the bottom-up design
methodology requiring these blocks to be designed
completely before they can be used at the top-level.
Furthermore, with a large number of these small blocks
being used in the design, routing congestion was one of
the main issues faced at various stages of the block
hierarchy. This was addressed by optimizing the
floorplan at every stage, as well as by designing lower-
level blocks using lower layers of metal routes only, so
that the higher layers were available for use at the top-
level. Managing the iterations in a bottom-up physical
design methodology, considering the number of the
blocks involved, and the levels of nesting was another
challenge.

Skews on various signal lines were minimized by
constructing skew-balanced trees on these nets, like
those usually constructed on clocks. Furthermore these
nets were all delay-balanced using sufficient delays on
the faster nets during the construction of the balanced
trees.

With these blocks designed stand-alone, all electrical
and reliability analyses were done at the block-level, so
that all the required changes could be made at the block-
level itself. This is required because changes in the
lower-level block late in the design cycle would prove
costly in terms of turn-around time in a bottom-up
design methodology. Appropriate models were created
for electro-migration, power drop and timing for the
lower-level blocks for analysis in the block-use phase.
However, the analysis was carried out flat for crosstalk
noise estimation using the full sub-block design detail.

ii) Chip-Level Design

Physical synthesis approaches were used for initial
timing-closure at the chip-level. In order that the
physical synthesis tools handle the large design size, the
entire design was partitioned into two large blocks. The
placement of standard cells in these blocks was then
imported into the chip-level flat environment for
routing. Minimal interaction between the two large
blocks was ensured through careful partitioning, and this
ensured that top-level optimization required on timing-
paths across these two blocks was minimal.

At the chip-level, all high-frequency inputs and outputs
were grouped. The chip, although being IO limited, had
pockets of high routing congestion. The issue was with

physical synthesis approaches not handling the presence
of the large number hard-blocks optimally with respect
to placement and routing obstruction definitions. This
was addressed by performing a selective placement
adjustment of the standard cells, so that routability was
ensured. The resultant impact on timing was handled
through multiple incremental optimization iterations.

Chip-level power-distribution was one of the other
major challenges, particularly with the large die-size
(256mm2). Initial power-dissipation estimates were used
to optimally distribute the power-ports around the
periphery. Care was taken to optimally provide power
inputs to power-critical portions of the chip, with both
horizontal and vertical straps creating a distribution grid.
Via locations and sizes on the power grid were
optimized so that congestion was not impacted, as also
the resistive drops on the power structures. The overall
resistive drops on the power-lines were analyzed and the
power-network was adjusted to address issues of high
resistive drops in certain areas of the die.

PORT A

PORT C

PORT B

Figure 5 Drishti Chip with the Cell Placements

Placement filler-cells, which could be metal-
programmed to function as logic cells were extensively
used in this design. Using these metal programmable
cells as filler-cells ensured an optimal distribution of
these cells on the die. This helped in implementing logic
changes required late in the design-cycle, with minimal
impact on the turn-around time. Such changes were
necessitated by the results of timing-verification of the
design, which went concurrently with the physical
design.

As mentioned earlier, the individual modules within the
trace-port subsystem, as well as the chip were rigorously

analyzed for crosstalk noise, charge-collecting antennas
on the signal lines and electromigration issues on the
metal structures. Adequate care was taken to ensure a
correct-by-construction design scenario, so that the final
layout changes required to address violations were under
control [9]. The design methodology that we had
adopted [10] helped us meet the challenge of design
closure on a design of this complexity.

V. OBSERVATIONS AND FUTURE WORK

The experience gained in designing the trace-receiver
chip has been immense in almost all the areas of chip-
design. We have been able to make the right changes in
the RTL to improve test-coverage on the synchronous
blocks, without impacting the cycle-time. We have
successfully adopted a physical-synthesis-based
methodology for achieving timing-closure in minimum
cycle-time. We have also adopted a pseudo-hierarchical
physical-design strategy, with the top-level placement
happening hierarchically, and the routing being flat.
This method has helped us address the issue of design-
size without compromising on performance. We have
also successfully adopted a physical-design
methodology that ensures a correct-by-construction
design. This has helped us reduce overall cycle-time by
cutting down on layout modifications towards the end of
the design cycle. We have successfully achieved 167
MHz performance on silicon, with the various features
of the device working as intended.

We are presently working on coming up with a strategy
for pattern-generation for the test and fault-simulation of
asynchronous blocks. We are also working on adopting
a fully hierarchical physical-design methodology, so that
the various DSM issues are addressed at smaller design
sizes, rather than on a large design. This can help us
achieve better cycle-times, with scope for design
changes made easier because of the modularity. This is
consistent with our concurrent engineering approach,
which can necessitate such a change late in the design
cycle. We plan to integrate automatic budgeting tools
for timing, so that chip-level timing-issues are addressed
very early in the design-cycle. We also plan to optimally
use decoupling capacitor cells so that the issue of peak
IR drop on the power rails can be addressed. We also
plan to incorporate the impact of crosstalk noise on
signal delays so that a comprehensive timing analysis
can be enabled. All these, coupled with our existing
methodology for addressing the various reliability
issues, should help us achieve faster design-closure.

VI. CONCLUSIONS

This paper highlights the challenges that we had faced in
the design of the trace-receiver chip, Drishti. We also

detail the way these design challenges were addressed,
in terms of verification solutions, the timing-closure
methodology, test-strategies and physical-design
techniques.

 VII. ACKNOWLEGDMENTS

The authors would like to thank Amit Brahme, Bilas
Datta, and the rest of the Drishti design team at TI India
for their contributions towards the design of this chip.
The authors would like to express their gratitude to Ron
Lerner, Kim-Williams Smith, Naveen Chava, Larry
Hite, Frank Cano for their valuable inputs during the
design. We express our gratitude to Mahesh Mehendale
for his guidance and encouragement during the course of
this design. The authors also acknowledge the help and
support received through the course of this design from
the TI ASIC group and Synopsys.

IKOS is a trademark of IKOS Systems Inc. Specman is a
trademark of Verisity Design Inc. Modelsim is a
trademark of Mentor Graphics Inc.

 VIII. REFERENCES

1. Amit Brahme, Soujanna Sarkar, Ronald L. Lerner,
Ramesh Ramamritham, Udayakumar H, “IO buffer
selection, pinout optimization and package
simulation challenges for a high performance trace
chip”, 5th TI India Internal Technical Conference,
2001.

2. Reinaldo A. Bergamaschi, William R. Lee,
“Designing System-on-Chip using Cores”, Design
Automation Conference, 2000.

3. K.Madathil, Jagdish C. Rao, Bilas Datta,
Madhusudhan Rao, “A Links-to-Layout Flow for
High-Speed DSP Cores in Deep-Submicron
Technologies”, Design Automation and Test,
Europe 2000.

4. Gregory Steele, David Overhauser, Steffen Rochel,
Syed Zakir Hussain, “Full-chip verification methods
for DSM power distribution systems”, Design
Automation Conference, 1998.

5. Massimo Bombana et al, “Design Flow and
Synthesis for ASICs: a case study”, Design
Automation Conference, 1995.

6. Thomas F. Fox, “The Design of High Performance
Microprocessors at Digital”, Design Automation
Conference, 1994.

7. Thomas W. Albrecht, “Concurrent Design
Methodology and Configuration Management of the
Siemens EWSD-CCS7E Processor System
Simulation”, Design Automation Conference, 1995.

8. Subash Chander G, Vaideeswaran S, “Addressing
Verification Bottlenecks of Fully Synthesized
Processor Cores Using Equivalence Checkers”,
Asia-Pacific Design Automation Conference, 2001

9. Avinash Gautam, Jagdish C Rao, Rohit Rathi, H
Udayakumar, “A Design-In Methodology to Ensure
First-Time Success of Complex Digital Signal
Processors”, 10th Intl. Conf. On VLSI Design, 1999.

10. Amit Brahme et al., “A Reliable Design
Methodology for Rapid Design Closure”, Avant!
AURORA, 2001.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

