
Divide-and-Conquer IDDQ Testing for Core-based System Chips

C.P. Ravikumar
Texas Instruments India Pvt Ltd

Wind Tunnel Road, Murgeshpalya
Bangalore-560017, India

ravikumar@ti.com

Rahul Kumar
Sasken Communication Technologies Ltd.

#21, Brigade Square, Cambridge Road,
Ulsoor, Bangalore-560008

rahulk@sasken.com

Abstract

IDDQ testing has been used as a test technique to supplement voltage testing of CMOS chips. The idea behind IDDQ testing is to
declare a chip as faulty if the steady-state current drawn from the power supply after the application of a test vector exceeds a
threshold value. A CMOS circuit only consumes leakage power after the switching transients settle down, and a large quiescent
power-line current indicates a defective chip. With device counts in system chips crossing into millions, the leakage power is no
more insignificant, making IDDQ tests unsafe. Yet, IDDQ tests are invaluable since they can catch faults that are not testable
using voltage testing. In this paper, we propose a solution to make IDDQ testing practical for large system chips. Our technique
is based on chip partitioning and scheduling the testing of partitions so that IDDQ testing can be safely practiced. We formulate
partitioning as a constrained optimization problem and propose two algorithms for partitioning. The objective function for the
optimization problem is the test execution time. We present experimental results to illustrate our methodology.

1.0 Introduction

Current testing can be applied to Static CMOS circuits
since they draw negligible current under steady state.
The quiescent power-line current after the application of
a test vector is referred to as IDDQ and consists of
subthreshold leakage current and PN-junction leakage
current. If there is a defect in the circuit, such as a short
circuit between two nodes, a direct resistive path may be
formed between VDD and VSS, causing an increase in
IDDQ. By suitably selecting test vectors [1] and
monitoring IDDQ after the application of the test vectors
[2], defective chips can be separated from good ones.
Defects such as gate-oxide shorts, which may not change
the functional behavior of the circuit, can be detected
using IDDQ testing [1,2,5,11]. IDDQ tests are
particularly well suited for detecting bridge faults, open
transistor faults, transistor stuck-on faults, punch-through
faults, PN-junction leakage faults, and abnormally high
contact resistances [1,5,11]. Since IDDQ tests detect
defects that are not necessarily logic faults, their use
improves the circuit reliability and quality.

However, IDDQ testing is becoming difficult to practice
for system chips implemented in deep sub-micron
technologies. There are many reasons for this problem.
The sub-threshold leakage current increases for deep
sub-micron technologies. As an illustration, a chip
implemented in 0.8µm technology operating at 5V has a
typical oxide thickness of 150 Angstrom, a threshold
voltage of 0.8V, and the leakage current is around 0.01
pA/µm. On the other hand, a chip implemented in 0.18
µm technology will operate at a scaled-down voltage of
1.8V, has an oxide thickness of about 50 Angstrom, a
threshold voltage of around 0.5V, and a leakage current
of about 300 pA/µm [15]. In a nutshell, system chips
have a larger number of transistors, each of which draws
a larger sub-threshold current. Thus a good chip draws a

significant IDDQ and to distinguish it from a defective
chip would be difficult and require the use of very
powerful current sensors. There are technological
solutions to this problem. For instance, since the
subthreshold leakage current heavily depends on the
operating temperature, one can carry out IDDQ testing at
low temperatures to make them viable [12]. Such a
solution will increase both the initial cost and operating
cost of the test equipment. Other solutions to reduce the
leakage current are the use of substrate biasing, multiple
threshold CMOS, and SOI technology. In this paper, we
propose an alternate solution to the problem, which does
not rely on technological enhancements to reduce the
leakage current. Our solution relies on partitioning the
circuit into blocks so that IDDQ testing can be safely
practiced on individual blocks.

We organize the paper as follows. The partitioning
approach to IDDQ testing is described in the following
section. Estimators for fault-free IDDQ and test
execution time for cores and core-based systems are
given in Section 3. Two algorithms for performing
circuit partitioning and test scheduling are discussed in
Section 4. Experimental results are described in Section
5. Conclusions are presented in Section 6.

2.0 Partitioning
As mentioned in the previous section, system chips have
large IDDQ due to the large number of devices on the
chip, and setting an IDDQ threshold to distinguish faulty
chips from good ones is difficult. To circumvent this
problem, we force a test plan in which only a portion of
the circuit is tested and the other parts of the circuit are
powered off. Since SOC design is core-based, the
granularity of the partition is up to cores. The essential
principle of testing by partitioning and how it improves
the confidence in the tested products can be described
using an analogy. Suppose the students in a class appear
for tests inn subjects and their scores in the subjects are



denoted S1, S2, …, Sn. In one system of evaluation, the
scores are added and a student is declared to have passed
if (S1+S2+ … + Sn) is larger than a threshold. The
confidence of such a procedure is obviously low, since a
student who may have scored very low in a subject
would pass if he has scored high in the other subjects.
Selecting the threshold in such a system of examination
is difficult when n is large and the maximum score in a
subject is large. (Any teacher knows it is easier to grade
a student on a scale of 1 to 10 than a scale of 1 to 100.)
In an alternate system of evaluation, we could “partition”
the aggregate into individual scores and set up separate
threshold for each subject. A student is said to pass if
his/her score Sj is larger than the threshold selected for
subjectj, for j = 1, 2, …,n. We have more confidence in
a student who has passed in the second system of
evaluation.

The test architecture we select for System-On-Chip
IDDQ testing is the IEEE P1500 architecture described
in [14]. Currently, the P1500 architecture is suitable for
voltage testing.

2.1 Enhancement to P1500 Architecture
Since the modifications to the test architecture must not
result in excessive area overhead or have major
implications on the DFT issues of the core, we use the
technique of high-threshold voltage switch. A similar
technique has been used by Rajsuman [6]. A high-
threshold switch is added to the core wrapper for
isolating the core from the power supply. The gate
voltage of the switch can be controlled to turn off the
switch, cutting off the power supply to the core to which
the switch is connected. A P1500-compliant test
architecture is shown in Figure 1. An isolation control
register (ICR) selects which cores are powered off during
testing. The outputs of the register control the gates of
the high-threshold switches. The high-threshold switch
can be regarded as part of the core wrapper. The wrapper
also consists of scan flip-flops, which, depending on
whether they are placed on the input side or the output
side, are useful for scanning in test data and scanning out
test responses (for voltage testing). A bypass register is
useful for isolating the core from the TAM, so that test
data can be forwarded to another core.

2.2 Quantitative Analysis

Let there ben cores in the system. When current testing
is applied individually to each core, let the IDDQ for a
fault-free corej be given by IDDQj. The total IDDQ for a
fault-free chip is given by

IDDQ = IDDQ1 +IDDQ2 + … IDDQn

Note that IDDQj are random variables, since the current
depends on the operating conditions, input pattern, and
the variations in the manufacturing process. Usually,
IDDQj are taken to be Gaussian random variates. Letµj

and σj be the mean and standard deviation of current

IDDQj. Then the meanµ and standard deviationσ of the
cumulative current IDDQ are given by

µ = µ1 + µ2 + ... + µn

σ2 = σ1
2 + σ2

2 + … + σn
2

For a faulty chip, the IDDQ can be written as
IDDQf = IDDQ + If

where If corresponds to the extra current that the SOC
will sink due to a resistive path from VDD to VSS. The
mean and standard deviations of IDDQf are given by

µIDDQf = µIDDQ + µIf

σ2
IDDQf = σ2

IDDQ + σ2
If

It is common to set the IDDQ threshold to (µIDDQ +
3σIDDQ). Due to the intrinsic leakage of the system, the
distribution of fault-free IDDQ may overlap with the
distribution of the faulty IDDQ (see Figure 2(a)) and the
confidence in a tested product is not high due to chances
of “aliasing.” Now suppose that we partition the set of
cores intok groups and test each group separately. The
threshold limit of (µIDDQ + 3σIDDQ) will be applicable to
each group, and since the associated mean and standard
deviations are small, the chances of “aliasing” are
smaller for a subset of cores. Therefore, the confidence
in the tested product improves (Figure 2(b)).

3.0 Optimization
We have outlined in the previous section a P1500-
compliant IDDQ test architecture. We now formulate
partitioning as an optimization problem. Let C = {C1, C2,
…, Cn} be the set of cores in the SOC. LetP = P1 ⊕ P2

⊕ … ⊕ Pk be a partition of C, wherePj are subsets of C
such thatPi ∩ Pj = ϕ if i ≠ j, andP1 ∪ P2 … Pk = C. Two
extreme cases of partitioning occur whenk=1 andk=n. In
the former case, all cores are in the same partition, and
the resulting IDDQ may be too large for reliable testing.
In the latter case, the cores are tested one at a time,
increasing the TAT. We desire an intermediate solution
that minimizes the TAT while ensuring the reliability of
the IDDQ test procedure.

Scheduling of the testing of cores on an SOC also has
implications on dynamic power consumption during
testing; testing too many cores at the same time can burn
down the chip [13]. Partitioning the set of cores and
scheduling the testing of the partitions under power
constraints has been studied in [7,9]. In this work,
voltage testing was assumed and the estimation of test
execution time is different.

It is not hard to appreciate that the partitioning problem
is computationally difficult. The number of solutions to
the k-way partitioning problem is the Stirling number of
the second order, S(n,k), which grows sharply withn and
k. For a system with 16 cores, the number of 10-way
partitions is 193754990. To make matters worse, we do
not know the number of partitionsk a priori. Due to the
above considerations, we propose heuristic solutions to
the partition problem. These are described in the
following section.



3.1 Problem Formulation
The inputs to the problem include the description of the
system with details such as the number of cores,n, the
descriptions of the cores, and the upper threshold It on
the mean value of IDDQ that is acceptable from the
viewpoint of reliability. For the purpose of this work, the
description of a core j includes items that are mainly
useful in evaluating the test execution time for a given
core partition and test schedule. These are the number of
functional inputs FIj to the core, the number of scan
inputs SIj to the core, the number of IDDQ test patternsτi

to the core, and the actual test patterns. We assume that
the cores make use of one or more internal scan chains
for the purposes of testing. Let the lengths of the scan
chains in the core j be denoted sj(0), sj(1), …, sj(SIj-1).
Let STji be the settling time taken by core j after the
application of the ith pattern. This is the time for
transient current to settle down when inputs stabilize.
The outputs include the partitionP of the core set C and
a test schedule for the cores assigned to the partitions.
The objective is to minimize the estimated TAT while
maintaining the estimated IDDQ during a test session to
be below It. We now describe the procedures used to
estimate the TAT and the maximum IDDQ.

3.2 Estimation of Test Time
Suppose the partition informationP = P1 ⊕ P2 ⊕ … ⊕ Pk

is known. We estimate the total test execution time as the
sum of the test times for all the partitions. Since all the
cores assigned to a partition are tested concurrently, the
test time for a partition is the maximum of the test
execution times of all the cores assigned to the partition.
The core test time is calculated as the sum of the time
taken to scan in the test patterns and the sum of the
settling times of IDDQ after the application of each test
pattern. The time taken to scan in a test pattern depends
on the number of scan chains, the number of functional
inputs to the core, the lengths of the scan chains and the
width of the TAM. The following procedure is used to
estimate the total scan-in time.

procedure ScanInTime(SI,FI,T,ChainLength)
//SI and FI are the number of scan and functional inputs
//T is the TAM width
//ChainLength is an array containing the lengths of scan
chains
begin

declareA: array [0..SI+FI-1] of integer;
for (i=0;i<SI;i++) A[i] = ChainLength[i];
for (i=SI;i<SI+FI;i++) A[i] = 1;
while (A[SI] > 0) do begin

A[0] = A[0] + A[SI];
A[SI] = 0;
sort(Ascending,A[0..SI-1]);
sort(Descending,A[SI..SI+FI-1]);

end
return (A[SI-1]);

end

As an example, suppose the procedure is applied to the
s713 benchmark circuit which has 19 flip-flops and 35
functional inputs. Assuming 4 scan chains of lengths 5,
5, 5, and 4, and a TAM width of 3, the above procedure
will estimate the scan-in time for a single test pattern to
be 18 clock cycles.

In our experimentation, we use the data presented in [1]
to estimate the settling times STji. Chakravarty and
Thadikaran [1] have reported the transient current for a
chain of inverters through SPICE simulations. They
reported the propagation delay for a 1000-gate deep
inverter chain as well as the settling time for the inverter
chain, and observed that the settling time can be any
where from 1.1 times to 1.93 times the propagation time
PDi for the pattern Pi. Thus, pessimistically, one could
take the settling time to be twice the propagation delay.
Under this assumption, the number of clock cycles
required for the current to settle down isÿ2. PDi/To �
where To is the clock frequency of the tester.

3.3 Estimation of IDDQ
Estimation of IDDQ is a vast topic and has been studied
extensively in the literature. The actual measurement of
the IDDQ for a fault-free device is done using an off-
chip current sensor [3]. The measurements are carried
out for a large sample of chips since IDDQ varies from
one instance of the chip to another due to variations in
process parameters. Operating conditions, namely
voltage and temperature, also affect IDDQ, and
measurements have to be repeated for many operating
conditions as well. If the average of the measured values
is µ and the standard deviation isσ, then the threshold
IDDQ is taken to beµ + 3σ. Analytical and semi-
analytical approaches have also been reported to estimate
IDDQ [1,4]. We propose a simple method for leakage
power estimation and use it to estimate the threshold
IDDQ. We used 35 different benchmark circuits, 8
combinational and 27 sequential benchmarks, and
measured the leakage power for each of them using the
estimator available in Synopsys DesignCompiler. The
TSMC 0.18µm library was used. Timing constraints and
area constraints were fed for each circuit to obtain gate-
level realizations of the benchmark circuits. For each
circuit, we repeated the estimation for all the three
libraries, slow, fast, and typical. A log-log plot of the
leakage power Vs the number of cells in the gate-level
realization was generated. It was seen that the plot was
nearly linear with the parameters of Table 1.

Table 1: Parameters of Log-Log Plot of Leakage Power Vs Number
of Cells

Library Slope of the line Intercept
Slow 0.966 -1.032
Fast 0.946 -1.633
Typical 0.993 -2.212



Using the above data, we can write down equations for
the leakage power as a function of the number of cells;
there will be one equation for each library/operating
condition. The leakage power for a circuit with a known
number of cells and a given library/operating condition
can then be estimated through extrapolation. The leakage
current is obtained by dividing the leakage power by the
operating voltage corresponding to the library. Due to
limitation of space, we omit the details of the linear
model. We validated the model using the example of the
24-bit CMU DSP core and obtained the results tabulated
in Table 2. Percentage error was calculated by
synthesizing the DSP circuit using Design Compiler and
using the leakage power estimator of the Design
Compiler on the gate-level realization. The results shown
in Table 2 are for the “slow” library. Since our results
indicate that the estimator gives results within 10% error,
we have used this technique in our experimentation.

Table 2: Validation of the Leakage Estimation Model

Component #
Gates

Leakage Power
(µW)

% Error

AGU 6500 1.59 1.71 8.22
ALU 7548 1.92 1.98 3.12
PCU 3436 0.87 0.92 5.74
Bus Switch 458 0.16 0.14 -12.50
Core 17962 4.53 4.58 1.10

4.0 Algorithms
We propose two algorithms for the partitioning problem,
namely, a greedy algorithm and a genetic algorithm.
These are now described briefly. In both these
algorithms, the partition information was represented
using a simple integer array data structure ofn elements,
wheren is the number of cores. The jth entry in the array
indicates the partition to which the core has been
assigned. The inputs to our algorithms are two files, the
first one containing the description of the system chip,
and the second one containing the description of the
cores used in the chip. The estimators described in the
previous section are used to calculate the IDDQ and test
execution time for each core. IDDQ and test execution
time for a partition and the system are calculated using
the method described in the previous section.

4.1 Greedy Algorithm
The greedy algorithm begins with a randomly generated
partition P which meets the reliability constraint; in other
words, the estimated IDDQ for the system which will be
tested using the partition information P is no greater than
the threshold current It. Random partitions are repeatedly
generated before one such partition is found. The
execution time for the partition P is computed. The
algorithm then attempts to iteratively improve the
partition P by making local transformations to P. In each
iteration, a large number of local transformations are
attempted, which consist of random perturbations to the
partition information. If a transformation improves the
test time, the transformation is applied and a new
partition is generated. If none of the transformations are

able to improve the partition, the algorithm quits the
improvement procedure since a “local optimum” has
been achieved.

4.2 Genetic Algorithm
Since the greedy algorithm can get stuck in a local
optimum solution, we also experimented with a genetic
algorithm for the partitioning problem which is known
for its potential for yielding global optimum solutions.
Genetic algorithms have been applied to a number of
problems in VLSI/EDA and Testing [8,10]. Unlike other
optimization algorithms, a genetic algorithm starts with a
pool of solutions to the problem. Thus, a population ofN
feasible solutions for the partitioning problem are
generated randomly. The encoding of each of these
solutions is known as a “chromosome” and has a
“fitness” index, which is a measure of its optimality.
Better solutions have a higher fitness and vice versa.
From one population, the next generation of population
is obtained through the process of procreation and
“survival of fittest.” Procreation involves the generation
of N+N’ solutions through the use of genetic operators,
namely, genetic copy, crossover, and mutation. Genetic
copy involves creating a chromosome that is identical to
a parent. Crossover is a binary operator which combines
the properties of two chromosomes, called the parent
chromosomes, into a child chromosome. When selecting
parents for crossover, fitter solutions from the parent
population are given a higher chance. Mutation involves
the introduction of small random changes in a child
resulting either from a genetic copy or a crossover
operation. “Survival of the Fittest” is the process of
eliminating the N’ least fit solutions from the new
generation and sizing the population back toN. It is
clear that the best solution of the second generation is
either better or at least as good as the best solution of the
first generation. More generations can be obtained by
repeating the above process, until a convergence
criterion is satisfied. A possible convergence criterion is
that the number of successive generations without
improvement in the quality of the best solution crosses a
specified limit. Alternately, the evolution process can be
terminated after a specified number of generations or
when the time for optimization crosses a limit.

In our implementation, we used the integer array
encoding explained early in this section to represent a
chromosome. The crossover operator is a “cut-and-paste”
operation which selects the elements 0..i from the
chromosome of one parent and elementsi+1..n from the
second parent, for a randomly selected i, 1 <i < n. The
mutation operator swaps elements i and j in the child
chromosome, where 0 <i < j < n, and i,j are selected
randomly. Note that although the operators are simple to
implement and fast to execute, they may result in
solutions that are invalid. For instance, the crossover
operator may result in a solution in which some
partitions are empty. Considern=6 andi=3, and the two



parents are 111234 and 233124; in the child chromosome
111124, partition 3 is empty. To correct the problem, we
must renumber the partition number 4 as partition
number 3. This renumbering requires O(n) time. The
complexity of the crossover operator is O(n). The
mutation operator requires O(1) time. Both crossover and
mutation operators can yield solutions that are infeasible
i.e. estimated IDDQ during testing exceeds It. When such
is the case, the solutions are assigned low fitness value so
that the process of natural selection eliminates them.

5.0 Experimental Results
The algorithms discussed in the previous section were
implemented in C programming language on a Pentium
PC/II system under Linux operating system. The other
tools that were employed for leakage current estimation
include SPICE3 from UC Berkeley and Synopsys Design
Compiler working on a Sun server under the Unix
operating system. Since we did not have access to data
for any system chips, we decided to make up our own
SOC benchmarks using the well known ISCAS89
sequential benchmark circuits as cores. Our first
benchmark SOC consisted of 14 cores and the second
SOC had 20 cores. Note that the example circuits do not
represent any meaningful chips. . Due to space
limitation, we shall only discuss the results for the first
SOC. We show the details of the SOC in Table 3. The
IDDQ shown in the Column 6 is for the fault-free core.
The standard deviation of IDDQ was taken to be 5% of
the IDDQ for the respective cores. The faulty IDDQ was
calculated by simulating a 4-inputNAND gate in
SPICE3 with a “short” (50 kΩ) placed across the channel
of one of the NMOS transistors.

Table 3: Details of Benchmark SOC

Core Instances FI SI Vectors IDDQ (nA)
s5378 1,7 35 10 149 115.33
s9234 2,8,13 36 15 235 91.08
s15850 3,9,14 77 20 292 319.00
s38417 4,10 28 18 262 795.47
s35932 5,11 35 22 52 733.14
s13207 6,12 62 14 233 311.33

The value of It was selected to be 5149.91 nA which is
the sum of the fault-free IDDQ for all cores i.e. all cores
are tested concurrently plus a safety margin of 3σ.

The results obtained by the two algorithms are tabulated
in Table 4. We see that the genetic algorithm finds a
marginally better solution than the greedy algorithm,
although it takes slightly longer to run. Interestingly,
both algorithms found a two-partition solution. In the
greedy algorithm, in each iteration, 3000 local
transformations were attempted. The parameters of the
genetic algorithm were selected to beN=2000, N’ =
1000, and number of generations = 10. We tuned the
genetic algorithm’s performance by studying the
variation of the fitness function as a function of the
number of generations; these results are omitted for

brevity. For the second SOC example, the genetic
algorithm yielded a partition with a test execution time of
775 clock cycles, as opposed to the 790-cycle solution
given by the greedy algorithm. The greedy algorithm
required 19s to run, and the genetic algorithm required
40s to run.

Greedy Algorithm Genetic Algorithm
Partition P1={5,7,11}

P2 =
{1,2,3,4,6,8,9,10,12,
13,14}

P1={5,11}
P2={1,2,3,4,6,7,8,9,10,12,1
3,14}

IDDQ
(nA)

IDDQ1 = 1581.60
IDDQ2 = 3668.31

IDDQ1 = 1466.28
IDDQ2 = 3674.50

TAT
(Cycles)

790 775

Run
Time (s)

19 40

6.0 Conclusions
In this paper, we studied the problem of IDDQ testing of
system chips implemented in deep sub-micron
technologies. The leakage current in such chips is quite
large, making it hard for us to apply current testing.
Expensive technological solutions exist for solving the
problem, such as the use of highly sensitive current
sensors, the use of low temperature testing, or the use of
Silicon-on-Insulator technology for implementing the
chip. We propose an approach based on partitioning the
set of cores and testing the partitions one at a time in
order to improve the confidence of the testing procedure.
For example, in the 14-core SOC example which we
experimented with, the faulty IDDQ current has a
Gaussian distribution with a mean of 5149.91 nA and a
standard deviation of 257.5 nA. The fault-free IDDQ has
a mean value of 5140.78 nA. Given that there will be
variations in the measured value of fault-free IDDQ due
to variations of manufacturing processes, voltage, and
temperature, it becomes difficult to distinguish between
faulty and fault-free chips. On the other hand, if the cores
are divided into two partitions, the IDDQ for the two
partitions have mean values of 1466.28 and 3674.50
respectively. This “separates” the faulty and fault-free
IDDQ distributions and allows the test equipment to
distinguish faulty and fault-free chips. We formulated the
partitioning problem as a constrained optimization
problem and proposed a greedy heuristic and a genetic
algorithm for solving the problem. We presented
techniques for estimating the test time and IDDQ for
cores as well as the SOC. Experimental results on two
synthetic benchmark circuits indicate that the genetic
algorithm yields near-optimal results.

Acknowledgements: This work was carried out when
the Rahul Kumar was an MS student at IIT Delhi. The
authors would like to acknowledge Controlnet, India for
providing the computational facility available to carry
out the research reported in this paper.



References
1. Sreejit Chakravarty and Paul J. Thadikaran.

Introduction to IDDQ Testing . Kluwer Academic
Publishers, 1997.

2. A. Gattiker, P. Nigh, D. Grosch, and W. Maly.
Current Signatures for Production Testing. Proc.
of IEEE International Workshop on IDDQ Testing
(IDDQ '96).

3. A.C. Miller. IDDQ Testing in Deep Submicron
Integrated Circuits. Proc. of ITC, 724-729, 1999.

4. F. Najm, I. Hajj, and P. Yang. Computation of bus
current variance for reliability estimation of VLSI
circuits. Proc. of ICCAD, 202-205, 1989.

5. R. Rajsuman. IDDQ Testing for CMOS VLSI.
Artech Publishing House, USA. 1995.

6. R. Rajsuman.Design for IDDQ Testing for
Embedded Cores based Sysem-on-chip.
Proceedings of IEEE International Workshop on
IDDQ Testing. Pages 69-73, 1998.

7. C.P. Ravikumar, A. Verma, and G. Chandra.A
polynomial-time algorithm for power constrained
testing of core based systems.In 8th Asian Test
Symp., pages 107-112, 1999.

8. C.P.Ravikumar and V. Saxena.TOGAPS -- A
Testability Oriented Genetic Algorithm for

Pipeline Synthesis. International Journal of VLSI
Design, Gordon and Breach Publishers, 5(1), 1996.
Pages 77-88.

9. C.P. Ravikumar and N.S. Prasad.Evaluating BIST
architectures for low power. In 7th Asian Test
Symposium, pages 430-434, 1998.

10. C. P. Ravikumar and A. K. Gupta.Genetic
algorithm for mapping tasks onto a
reconfigurable parallel processor. IEE Proc-
Comput. Digit. Tech, 142(2):pp81--96, 1995.

11. M. Sachdev. Deep Submicron IDDQ Testing:
Issues and Solutions. ED&T. 271-278, 1997.

12. K. Sawada and S. Kayono. An evaluation of IDDQ
versus conventional testing of CMOS sea-of-gate
ICs. Proc. of ITC. 158-167, 1992.

13. Y. Zorian.Challenges in testing core-based system
chips. IEEE Communications Magazine. Vol. 37,
No. 6, Pages 104-109, 1998.

14. IEEE P1500 General Working Group Website.
http://grouper.ieee.org/groups/P1500/

15. Semiconductor Industry Association (SIA). The
National Technology Roadmap for Semi-
conductors.
http://public.itrs.net/files/1999_SIA_Roadmap/Hom
e.htm

C1 C2 Cn

CI1 CI2
CIn

T
A

M

T
A

M

1 2 n

Isolation Control Register(ICR)

VDD VSS

Unpartitioned Faulty IDDQ __
Fault Free IDDQ -----

IDDQ Data

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n

Partitioned FaultyIDDQ ____
Fault Free IDDQ1 ----------

Fault Free IDDQ2 ………...

IDDQ Data

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n

Figure 1: P1500-
Compliant IDDQ

Figure 2: Illustration
of Reliability of IDDQ
Testing


	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index




