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Abstract
In floorplan design, it is common that a designer will want

to control the positions of some modules in the final packing for
various purposes like data path alignment, I/O connection, etc..
There are several previous works [7, 9, 8, 4, 1] focusing on a
few particular kinds of placement constraint. In this paper, we
will present the first “unified method” to handle all of them si-
multaneously, including pre-placed constraint, range constraint,
boundary constraint, alignment, abutment and clustering, etc., in
general non-slicing floorplans. We have used incremental updates
and an interesting idea of reduced graph to improve the runtime
of the algorithm. We tested our method using some benchmark
data with about one eighth of the modules having placement con-
straints and the results is very promising. Good packings with all
the constraints satisfied can be obtained efficiently.

1. Introduction

Floorplan design is an important step in physical design of
VLSI circuits to plan the positions of a set of circuit modules on
a chip in order to optimize the circuit performance. In this floor-
planning step, it is common that a designer will want to control
the positions of some modules in the final packing for various rea-
sons. For example, a designer may want to restrict the separation
between two modules if there are a lot of interconnections between
them, or he may want to align them vertically in the middle of the
chip for better data path design, etc.. This will also happen in de-
sign re-use in which a designer may want to keep the positions
of some modules unchanged in the new floorplan. Unfortunately,
an effective method to control the absolute or relative positions
between the modules in floorplan design is non-trivial and this in-
adequacy has limited the application and usefulness of many floor-
planning algorithms in practice.

Some previous works have been done to handle some particular
kinds of placement constraints. The paper [7] focuses on handling
pre-placed constraint in which some modules are fixed in posi-
tions. The paper [9] works on boundary constraint in which some
modules are constrained to be placed along one of the four sides
of the chip for I/O connection. The paper [8] generalizes the ap-
proach in [7] to handle range constraint in which some modules

are restricted to be placed within some rectangular ranges. Dif-
ferent approaches are used to handle different kinds of constraints
and there is no unified method that can handle all of them simulta-
neously. Besides, all these previous works are based on a restricted
type of floorplan representation, called slicing floorplan. A slicing
floorplan is one that can be obtained by recursively cutting a rect-
angle into two parts by either a vertical line or a horizontal line. A
non-slicing floorplan is one that is not necessarily slicing. There-
fore, a non-slicing floorplan is more general and it can describe
any type of packing. For non-slicing floorplan, there are only a
few previous works [4, 1] that can handle pre-placed constraints.

In this paper, we will present the first “unified method” that can
handle different kinds of placement constraints simultaneously,
including pre-placed constraint, range constraint, boundary con-
straint, alignment, abutment and clustering, etc., in general non-
slicing floorplans. The user can input a mixed set of constraints
and the unified method will be able to handle all of them simul-
taneously. Our method makes use of constraint graphs to handle
the constraints and can thus be used with any kind of floorplan
representation that computes the module positions by constraint
graphs, e.g., sequence pair, BSG, O-Tree, B*-Tree, etc.. We mod-
ify the constraint graphs to enforce the required constraints in the
result packing. This is done by augmenting the graphs with pos-
itive, negative or zero weighted edges. These augmented edges
will restrict the modules to be placed correctly according to the
requirements. This technique of adding edges to constraint graphs
has been used before for layout compaction [3] and packing of
rectilinear blocks [2]. We found that this method could be gen-
eralized to handle different kinds of placement constraints simul-
taneously in floorplan design. However, a direct implementation
of the original method is very expensive computationally and thus
impractical. It will take O(n3) time for each iteration of the an-
nealing process where n is the number of modules. We improved
this runtime by using an interesting idea of reducing the size of the
constraint graphs and by updating the constraint graphs incremen-
tally.

We tested our method with some MCNC benchmarks (ami33,
ami49 and playout) and a randomly generated data set with 100
modules. Ami33, ami49 and playout were chosen because they
are the largest data sets (with 33, 49 and 62 modules respectively)
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among all the MCNC benchmarks. Sequence pair representa-
tion [5] is used in our implementation. The results is promising
and a tight packing with all the constraints satisfied can be ob-
tained efficiently. In the following sections, we will first describe
the problem and have a brief review on the sequence pair represen-
tation and constraint graph. Section 4 will give a detailed explana-
tion of our unified approach. Section 5 will explain the techniques
to reduce the size of the constraint graphs and to update them in-
crementally. Experimental results will be given in Section 6.

2. Problem Definition
In floorplanning, we are given the information of a set of mod-

ules, including their areas and interconnection and our goal is to
plan their positions on a chip to minimize the total chip area and in-
terconnect cost. In this paper, we address this floorplanning prob-
lem with placement constraint, i.e., besides the module informa-
tion, we are also given some constraints in placement between the
modules and our goal is to plan their positions on the chip such
that all the placement constraints can be satisfied and the area and
interconnect cost are minimized.

We consider two general kinds of placement constraints, ab-
solute and relative. For relative placement constraint, users can
restrict the horizontal or vertical distance between two modules to
a certain value, or to a certain range of values. We use the notation
h(A;B) to denote the horizontal displacement fromA’s lower left
corner to B’s. Note that this value is positive if B’s lower left cor-
ner is on the right hand side of A’s and is negative otherwise. We
use v(A;B) to denote the vertical displacement from A’s lower
left corner to B’s. Similarly, this value is positive if B’s lower left
corner is above A’s and is negative otherwise. (Figure 1 illustrates
these definitions.) A relative placement constraint between two
modules A and B can be written as:

h(A;B) = [�;�] or v(A;B) = [�;�]

where �;� 2 R and � � �. When � = �, we are restricting the
distance between the two modules to a single value and we will
write them simply as h(A;B) = � or v(A;B) = � respectively.

Absolute placement constraint is specified similarly except that
one of the two modules in the relationship is a boundary of the
chip. We use LL, RR, BB and TT to denote the left, right, bot-
tom and top boundary of the chip respectively. Therefore nota-
tions h(LL;A) and h(A;RR) denote the horizontal distances of
the lower left corner of A from the left and right boundary of the
chip respectively. Similarly, we use v(A;TT ) and v(BB;A) to
denote the vertical distances of the lower left corner of A from
the top and bottom boundary of the chip respectively. (Figure 2

A

h(LL,A)

final packing

v(
B

B
,A

)

v(
A

,T
T

)

h(A,RR)

Figure 2. Notations h(LL;A), h(A;RR), v(BB;A)
and v(A;TT ).

illustrates these definitions.) An absolute placement constraint of
a module A can be written as:

h(LL;A) = [�;�] or h(A;RR) = [�; �] or
v(BB;A) = [�;�] or v(A;TT ) = [�;�]

where �;� 2 R and � � �. If � = �, we are restricting the
distance between the module and the boundary to a certain value
and we will simply write it as h(LL;A) = �, h(A;RR) = �,
v(BB;A) = � or v(A;TT ) = � respectively.

These two types of specifications are general enough to express
all common types of placement constraints. For example, if we
want to restrict the placement of module A, B and C such that
they all align horizontally, we can specify the following relative
placement constraints:

v(A;B) = 0 ^ v(B;C) = 0

As another example, if we want to restrict the placement of
module A at the lower right corner of the chip, we can specify the
following absolute placement constraints:

h(A;RR) = wA ^ v(BB;A) = 0

where wA is the width of A. We can now define our floorplanning
problem with placement constraint, FP/PC, as follows:
Problem FP/PC: Given the information of a set of modules in-
cluding their areas and interconnections, a set �1 of relative
placement constraints and a set �2 of absolute placement con-
straints, the goal is to pack the modules in a rectangular region
such that all the given placement constraints are satisfied and the
area and interconnect costs are minimized.

We assume that the input set of placement constraints will not
be contradictory to each other, i.e., there exists a feasible packing
in which all the constraints can be satisfied simultaneously. (If
the input requirements are inherently inconsistent, the floorplanner
will still generate a packing that satisfys the requirements as much
as possible.)

3. Preliminaries
We use sequence-pair in our implementation to represent a gen-

eral non-slicing floorplan. A sequence-pair of a set of modules
is a pair of combinations of the module names. For example,
s = (abcd; bacd) is a sequence-pair of the module set fa; b; c; dg.
We can derive the relative positions between the modules from
these two combinations. and use a pair of constraint graphs to rep-
resent these relationships. A horizontal (vertical) constraint graph
Gh (Gv ) for a set of n modules is a directed graph with n vertices,



the vertices represent the modules and the edges represent the hor-
izontal (vertical) relationships between the module positions. We
will have an edge from a to b labeled wa in Gh where wa is the
width of a if and only if module b is on the right hand side of mod-
ule a. Similarly, we will have an edge from a to b labeled ha in
Gv where ha is the height of a if and only if module b is above
module a. We can build these graphs directly from a sequence-
pair representation s: insert an edge from a to b in Gh labeled wa
if and only if s = ( :: a :: b ::; :: a :: b :: ), and insert an edge from
b to a in Gv labeled hb if and only if s = ( :: a :: b ::; :: b :: a :: ).
We can compute the positions of each module from the constraint
graphs by putting the x-coordinate and y-coordinate of a module i
as the length of the longest path from a source to i in the horizontal
and vertical constraint graph respectively.

4. Handling Placement Constraints in Con-
straint Graphs

There are two kinds of placement constraints, relative and ab-
solute. A relative placement constraint describes the relationship
between two modules, while an absolute placement constraint de-
scribes the relationship between a module and the chip. We will
first discuss the approach to handle relative placement constraint
and will later discuss how this approach can be used to handle ab-
solute placement constraint by making a simple modification to
the constraint graphs.

4.1. Relative Placement Constraint
In relative placement constraint, users can restrict the horizon-

tal or vertical distance between two modules to a certain range of
values. For example, users can specify that h(A;B) = [�;�] (or
v(A;B) = [�;�]) where �;� 2 R and � � � meaning that B
is at a distance of � to � on the right hand side of A (B is at a
distance of � to � above A). When � = �, we are restricting the
distance to a certain value. Notice that both � and � can be zero,
positive, negative, +1 or �1. (It is trivial to have � = �1
and � = +1, so we assume that this will not happen.) In order
to realize the required constraints in the final packing, we will add
a single edge or a pair of edges to the corresponding constraint
graph G as described below. We use w(e) to denote the weight of
an edge e.
Case 1 If � = �1, insert an edge e = (B;A) into G with

w(e) = ��.

Case 2 If � = +1, insert an edge e = (A;B) into G with
w(e) = �.

Case 3 Otherwise, insert two edges e1 = (A;B) and e2 =
(B;A) into G s.t. w(e1) = � and w(e2) = ��.

Theorem 1 The relative placement constraint h(A;B) = [�;�]
(or v(A;B) = [�;�]) can be achieved in the final packing by
inserting edges into the horizontal (vertical) constraint graph as
described in the above cases if the packing is feasible.
Proof Without loss of generality, we only prove the correctness
for the horizontal direction. The proof for the vertical direction
will follow similarly. To prove the correctness of these steps, we
need to show that if the packing is feasible after inserting these
edges, the constraint h(A;B) = [�;�] will be satisfied in the
packing. In the following, Gh denotes the horizontal constraint
graph and x(A) denotes the x-coordinate of the lower left corner

of A. Assume that the packing is feasible, i.e., both constraint
graphs have no positive cycle and the position of each module can
be found by computing the longest paths from a source to its cor-
responding vertex in the two constraint graphs. We made the fol-
lowing two observations which follow simply from definition:
Observation 1 If there is an edge from A to B labeled s in Gh,

x(B) 2 [x(A) + s;+1].

Observation 2 x(B) 2 [x(A) + s;+1] and x(A) 2
[�1; x(B)� s] are equivalent.

Consider the three different cases for the constraint h(A;B) =
[�;�]:
Case 1 � = �1, i.e., we want x(B) to lie in [�1; x(A) + �].

According to Observation 2, this condition is equivalent to
x(A) 2 [x(B)� �;+1], which, by Observation 1, can be
achieved by inserting an edge from B to A labeled��.

Case 2 � = +1, i.e., we want B to lie in [x(A) + �;+1].
According to Observation 1, this can be achieved by inserting
an edge from A to B labeled �.

Case 3 �1 < � � � < +1, i.e., we wantB to lie in the range
[x(A)+ �;x(A) + �]. Notice that [x(A)+�;x(A) + �] is
equivalent to [x(A) +�;+1] ^ [�1; x(A) + �]. The first
condition can be achieved by inserting an edge from A to B
labeled�. The second condition x(B) 2 [�1; x(A)+�] is
equivalent to x(A) 2 [x(B)� �;+1] according to Obser-
vation 2 and this can be achieved by inserting an edge fromB

to A labeled��. Therefore we need to insert a pair of edges,
one from A to B labeled � and another one from B to A la-
beled��. Q.E.D.

4.2. Absolute Placement Constraint
Absolute placement constraint restricts the absolute placement

of a module with respect to the whole chip. Users can restrict the
placement of a module such that its distance from the boundary of
the chip is within a certain range of values. We can handle this kind
of constraint using a method similar to that for relative placement
constraints, i.e., by inserting a single edge or a pair of edges to
the constraint graphs. To achieve this, we augment the horizontal
and vertical constraint graphs each with two extra nodes. For the
horizontal constraint graph, we add two nodes: one is a source
with zero weighted out-going edges to all the other nodes, and the
other one is a sink with zero weighted in-coming edges from all
the other nodes. The source represents the left boundary and the
sink represents the right boundary of the final packing. Similarly,
we add two nodes to the vertical constraint graph: one is a source
with zero weighted out-going edges to all the other nodes and one
is a sink with zero weighted in-coming edges from all the other
nodes. The source represents the bottom boundary and the sink
represents the top boundary of the final packing.

In the following, we use vl and vr to denote the two addi-
tional nodes in the horizontal constraint graph: vl represents the
left boundary and vr represents the right boundary. Similarly, we
use vt and vb to denote the two additional nodes in the vertical
constraint graph: vt represents the top boundary and vb represents
the bottom boundary. After adding these nodes, we can handle
absolute placement constraint easily as described below. Notice
that there is no such case for h(A;LL), h(RR;A), v(A;BB) nor
v(TT; A) and � and � are non-negative numbers because we will



not consider packing modules outside the boundary of the chip. In
the following, we have only shown the cases in the horizontal di-
rection. The other two cases in the vertical direction can be derived
similarly.

� h(LL;A) 2 [�;�]: If � = +1, insert an edge e1 = (vl;A)
in Gh with w(e1) = �; else, insert edges e1 = (vl;A) and
e2 = (A; vl) in Gh with w(e1) = � and w(e2) = ��.

� h(A;RR) 2 [�;�]: If � = +1, insert an edge e1 =
(A; vr) in Gh with w(e1) = �; else, insert edges e1 =
(A; vr) and e2 = (vr;A) in Gh with w(e1) = � and
w(e2) = ��.

The proof of correctness for absolute placement constraint follows
directly from that for relative placement constraint and we will not
repeat it here.

4.3. Examples of some Commonly Used Placement
Constraint

Using the above specifications for absolute and relative place-
ment constraint, we can describe many different kinds of place-
ment constraints. In this section, we will pick a few commonly
used ones and show how each can be specified using a combi-
nation of the relative and absolute placement constraints. In the
following, we use x(A) and y(A) to denote the x and y coordi-
nates of the lower left corner of module A respectively and we use
hA and wA to denote the height and width of A respectively.

4.3.1 Alignment
To align moduleA,B, C andD horizontally (Figure 3(a)), we can
impose the following constraints:

v(A;B) = 0 ^ v(B;C) = 0 ^ v(C;D) = 0

We restrict the vertical distances between these modules to be zero,
they will thus all align horizontally. Six additional edges will be
inserted into the vertical constraint graph.

4.3.2 Abutment
To abut module A, B and C horizontally (Figure 3(b)), we can
impose the following constraints:

v(A;B) = 0 ^ v(B;C) = 0 ^
h(A;B) = wA ^ h(B;C) = wB

wherewA andwB are the widths of moduleA andB respectively.
In this formulation, the vertical distances between these modules
are zero, so they will align horizontally. On the other hand, B is
restricted to be on the right hand side of A by wA units and C on
the right hand side ofB by wB units, so they will be abutting with
each other horizontally. Four additional edges will be inserted into
each constraint graph.

4.3.3 Preplace Constraint
To preplace module A with its lower left corner at (p; q) (Fig-
ure 4(a)), we can impose the following constraints:

h(LL;A) = p ^ v(BB;A) = q

We restrict x(A) to be p units from the left boundary and y(A) to
be q units from the bottom boundary, so A will be preplaced with
its lower left corner at (p; q) in the final packing. Two additional
edges will be inserted into each constraint graph.
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4.3.4 Range Constraint
To restrict the position of A to within the range f(x; y)jx1 � x �
x2; y1 � y � y2g (Figure 4(b)), we can impose the following
constraints:

h(LL;A) = [x1; x2] ^ v(BB;A) = [y1; y2]

In this formulation, we restrict x(A) to be x1 to x2 units from
the left boundary and y(A) to be y1 to y2 units from the bottom
boundary, so A will lie in the required range f(x; y)jx1 � x �
x2; y1 � y � y2g. Two additional edges will be inserted into
each constraint graph.

4.3.5 Boundary Constraint
To place module A at the upper right corner of the final packing,
and place B along the top boundary (Figure 5(a)), we can impose
the following constraints:

h(A;RR) = wA ^ v(A;TT ) = hA^ v(B;TT ) = hB

In this formulation, we restrict the horizontal distance between A
and the right boundary to be the width of A and the vertical dis-
tance between A and the top boundary to be the height of A, so
moduleAwill be placed at the upper right corner in the final pack-
ing. Besides,B is restricted to be hB units from the top boundary,
so B will abut with the top boundary as required. We need to in-
sert two edges into the horizontal constraint graph and four edges
into the vertical constraint graph.

4.3.6 Clustering
To cluster module A, B and C around D at a distance of at most p
units away vertically or horizontally (Figure 5(b)), we can impose
the following constraints:

h(D;A) = [�p;+p] ^ h(D;B) = [�p;+p] ^
h(D;C) = [�p;+p] ^ v(D;A) = [�p;+p] ^
v(D;B) = [�p;+p] ^ v(D;C) = [�p;+p]

In this formulation, we restrict the horizontal and vertical distances
of A, B and C from D to be at most p units in both directions, so
they will cluster around D at a distance of at most p units away.
Six additional edges will be inserted into each constraint graph.
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4.3.7 General Placement Constraint
We can use combinations of the above relative and absolute place-
ment constraints to specify all mixed constraints in general. For
example, to restrict the placement such that moduleB andC align
with each other horizontally and they cluster around A at a dis-
tance of at most 20 units away (Figure 6), we can impose the fol-
lowing constraints:

v(B;C) = 0 ^
v(A;B) = [�20;+20] ^ v(A;C) = [�20;+20] ^
h(A;B) = [�20;+20] ^ h(A;C) = [�20;+20]

The first constraint align B and C horizontally and the next four
cluster B and C around A to within a distance of 20 units away.
We need to add four additional edges to the horizontal constraint
graph and six to the vertical constraint graph.

5. Algorithm and Implementation
We use simulated annealing with sequence pair representation.

In each step of the annealing process, we will augment the con-
straint graphs with edges as described in the above section. We
call these edges constraining edges. However it is possible that
some constraints cannot be satisfied after adding these constrain-
ing edges, the packing is then infeasible. Feasibility of a pack-
ing can be checked by detecting positive cycles in the constraint
graphs. If a packing is infeasible, we will pack the modules as if
there is no placement constraint and compute a penalty term in the
cost function to penalize the violations. This strategy ensures that
all feasible solutions are reachable, and can drive the packing solu-
tion to one that satisfys the constraints as much as possible in case
the user requirements are inherently inconsistent. We observed
a stable convergency in the annealing process using this scheme
and all the placement constraints can be satisfied at the end of the
annealing process in all our experiments. We will describe the
algorithm in details in the following sub-sections.

5.1. Detecting Positive Cycles by Reduced Graphs

After augmenting those constraint graphs with the constrain-
ing edges, we need to test their feasibility by detecting positive
cycles in them. A direct implementation of some classical algo-
rithm (e.g., the modified Floyd-Warshall algorithm [6]) to check
positive cycles will take O(n3) time where n is the total number
of modules. In order to improve the timing complexity, we will re-
duce the size of the constraint graphs before checking for cycles.
This is possible because of the following observation. We use
Gh(V; Eh) and Gv(V;Ev) to denote the original horizontal and
vertical constraint graphs respectively. G0

h(V; E
0

h) andG0

v(V; E
0

v)
are obtained fromGh andGv respectively by adding the constrain-
ing edges.

Observation 3 Any cycle in G0

h (G0

v) must contain some edges
in E0

h � Eh (E0

v � Ev).

This observation is true because the original constraint graphs
Gh and Gv obtained from the sequence pair representation must
be acyclic. Therefore, any cycle in G0

h and G0

v must contain at
least one constraining edge. From this observation, we can infer
that any cycle inG0

h (G0

v) must contain at least two modules which
have placement constraints. Therefore, instead of detecting posi-
tive cycles in G0

h and G0

v , we will construct two reduced graphs
Hh(V

�; E�

h) and Hv(V
�; E�

v) from Gh and Gv respectively
where V � is the set of all modules with placement constraints,
E�

h is the set of all edges fe(i; j)ji; j 2 V � ^w(e) = dGh(i; j)g
where dGh(i; j) denotes the longest path from i to j in Gh and
E�

v is the set of all edges fe(i; j)ji; j 2 V � ^w(e) = dGv(i; j)g
where dGv(i; j) denotes the longest path from i to j in Gv. The
constraining edges will be inserted into Hh and Hv to give H 0

h

and H 0

v respectively. We will then check for positive cycles in H 0

h

and H 0

v and this is equivalent to checking cycles in G0

h and G0

v

according to the following theorem.
Theorem 2 A positive cycle exists in H 0

h (H 0

v) if and only if a
positive cycle exists in G0

h (G0

v).
We will skip the proof here due to the lack of space. Con-

structing Hh and Hv takes O(mn2 + c) time where c is the total
number of constraining edges and m is number of modules with
placement constraints. This can be done by performing a single-
source-longest-path in Gh andGv once for each v where v 2 V �.
Checking cycles in H 0

h and H 0

v by the modified Floyd-Warshall
algorithm [6] takes O(m(m2 + c)) time because m2 + c is an
upper bound on the number of edges in H 0

h and H 0

v . This tim-
ing complexity can be further reduced in practice by performing
incremental updates as described in the next sub-section.

5.2. Moves and Incremental Updates

In every iteration of the annealing process, we will modify the
sequence pair by one of the following three kinds of moves:

[M1] Change the width and height of a module.
[M2] Exchange two modules in both sequences.
[M3] Exchange two modules in the first sequence.

The constraint graphs will not change much after each move, so
we do not need to reconstruct them once in every iteration. We can
take advantage of this incremental updates in two different places:
construction of Gh and Gv , and construction of Hh and Hv.



5.2.1 Incremental Updates of Gh andGv

In move M1, a module A is picked and changed in its width and
height, so the structures of the constraint graphs will remain the
same except that all the out-going edges from A will have their
weights changed. In our implementation, the weights on the edges
are stored at the source vertex because all the edges out-going from
the same vertex will have the same weight. Therefore, we only
need to update the weight of vertex A in both Gh and Gv after
M1 and this will take constant time. In move M2, two modules
A and B are picked and switched in positions in both sequences.
The structure of the constraint graphs will again remain the same
except that the vertices corresponding to A and B will switch in
position. This will affect the weights of the out-going edges from
these two vertices. Therefore we only need to update the weights
in these two vertices in both Gh and Gv and this will again take
constant time. In move M3, two modules A and B are picked
and switched in positions in the first sequence. The structure of
the constraint graphs will change after this move. However, only
those modules lying between A and B in the first sequence will
be affected and there are n

3
of them on the average. Besides, each

update can be done very efficiently (either an edge e(i; j) in Gv

is deleted and a new edge e(i; j) is inserted into Gh , or an edge
e(i; j) in Gh is deleted and a new edge e(i; j) is inserted into
Gv). Therefore, Gh and Gv can be updated very efficiently in
O(n) time.

5.2.2 Incremental Updates ofHh andHv

Hh and Hv are obtained from Gh and Gv by keeping only those
vertices with placement constraints. The weight of an edge e(i; j)
in Hh (Hv) is obtained from the longest path from i to j in Gh

(Gv). After move M1, M2 or M3 of the annealing process, the
edge weights in Hh and Hv may change because the longest path
between two vertices in Gh and Gv will have changed. Fortu-
nately this will only affect a fraction of the edges in Hh and Hv.

In move M1, a module A is selected and changed in width
and height. The weight of an edge e(i; j) in Hh or Hv will be
affected if i can reach A in the constraint graphs Gh or Gv . This
happens if i is lying before A in the second sequence and there
are m�1

2
of them on the average. We need to perform once the

single-source-longest-pathalgorithm inGh orGv for each of them
and update the weights of all the edges e(i; j) in Hh or Hv for
all j 2 V �. In M2 and M3, two modules A and B are selected
and switched in positions in the sequence pair. Similarly, an edge
e(i; j) in Hh or Hv will be affected if i can reach A or B in Gh

or Gv before or after the move. This happens if i is lying before
A or B in the second sequence and there are about m�2

2
of them

on the average. Similarly, we need to perform once the single-
source-longest-path algorithm for each of these affected modules
and update the weights of the corresponding edges in Hh and Hv.
Therefore updating Hh and Hv takes O(mn2) time with a very
small constant factor in front.

5.3. Time Complexity

In each step of the annealing process, we modify the sequence
pair by performing move M1, M2 or M3. After the move, we need
to update Gh, Gv, Hh and Hv. Updating Gh and Gv takes O(n)
as explained above. Updating Hh and Hv takes O(mn2) time in
the worst case. After updating these graphs, we need to check for
positive cycles in H 0

h
and H 0

v which are obtained from Hh and

Hv respectively by inserting the constraining edges. The cycle
checking step takes O(m(m2 + c)) time. Therefore the total time
taken is O(n+mn2 +m(m2 + c)), i.e., O(mn2).

5.4. Annealing Schedule and Cost Function

The temperature schedule of the annealing process is of the
form T (k) = rT (k � 1) for all k � 1. At each temperature
step, enough number of moves are attempted until the total num-
ber of moves exceeds a certain number N where N is a user de-
fined constant. The temperature is initialized to a large value at the
beginning and the annealing process terminates when the temper-
ature is low enough. The best solution found will then be used to
go through a “final baking” process in which only better solutions
will be accepted.

The cost function is defined as A + �W + P where A is the
total area of the packing. In our current implementation, W is the
half perimeter estimation of the interconnect cost but this term can
be replaced by other more sophisticated interconnect cost estima-
tions. P is a penalty term which is zero when all the placement
constraints are satisfied, and is otherwise the sum of squares of the
violations.

5.5. Handling Infeasible Packings

If a packing is infeasible, i.e., positive cycles exist in the
constraint graphs, we will pack the modules as if there is no
constraint and compute a penalty term P . For example, if an
edge e = (A;B) labeled � is inserted into the horizontal con-
straint graph because of a given placement constraint, the penalty
term due to this edge in case of an infeasible packing will be
(minfx(B) � x(A) � �; 0g)2 . This gives a good estimation of
how far the modules are from their desired positions. Note that
we need to accept infeasible intermediate solutions in the anneal-
ing process because it may happen in some cases that a good fea-
sible solution can only be reached from an initial starting point
with some infeasible intermediate solutions in between during the
searching process.

6. Experimental Results

We tested our floorplanner on a set of MCNC benchmark data
(ami33, ami49 and playout) and a randomly generated data set
with 100 modules. For each experiment, the temperature is set
to 1:5 � 106 initially and is lowered at a constant rate of 0.95
to 0.98 until it is below 1 � 10�10 . The number of iterations at
one temperature step is 80. � in the cost function is set such that
the costs of wirelength and total area are approximately equal. 
is set at a high value (30 to 40) to ensure that all the placement
constraints can be satisfied at the end. All the experiments were
carried out on a 400 MHz Sun Ultra III.

We tested our floorplanner using the benchmark data and a ran-
domly generated data set by imposing different combinations of
placement constraints to the modules. The result is shown in Ta-
ble 1. For each data set, the result reported in each row is an av-
erage of six experiments using three different sets of placement
constraints. We can see from the table that the algorithm is in-
deed very efficient. The percentage deadspace ranges from 5.9%
to 8.4% and all the placement constraints can be satisfied in all
the experiments. Figure 7 and 8 show five result packings of the



benchmark data. (Note that the origin (0; 0) is at the upper right
corner in all these packings.)

We have also compared our results with [8] (using 300MHz
Pentium II) that focuses on handling range constraint in slicing
floorplan. We repeat the same experiments on range constraint us-
ing our new unified method and the results is shown in Table 2.
The result reported in each row is an average of five different ex-
periments using the benchmark data, ami33, ami49 and playout.
We can see that our unified method is faster although the method
in [8] can give packings with smaller deadspace sometimes. This
is because they allow the modules to have flexible shape within the
aspect ratio range of [0:25; 4:0] while we consider only a discrete
number of shapes for each module.

# Con- Time Dead- # Con- Time Dead-
straints (sec) space % straints (sec) space %

ami33 (#module = 33; #net = 123) playout (#module = 64; #net = 1611)

4 18.05 6.57 4 31.33 7.21
8 20.04 6.60 10 36.18 6.61
12 19.89 7.56 16 41.77 7.27
14 25.63 7.26 20 41.77 7.96
16 24.05 6.99 24 45.95 8.35
ami49 (#module = 49; #net = 408) random100 (#module = 100; #net = 1611)

4 34.69 6.29 4 289.03 8.06
8 36.90 7.37 10 310.61 8.06
12 38.63 7.75 16 325.51 7.41
16 39.53 7.48 22 357.39 7.98
20 42.37 6.08 28 374.71 6.92

Table 1. Results for ami33, ami49, playout and ran-
dom100. All placement constraints were satistied in each
experiment.

[8] Our Method
Data Dead- Time Dead- Time
Set space(%) (sec) space(%) (sec)

ami33 1.56 53.85 2.95 43.62
ami49 3.14 118.02 2.92 65.41
playout 3.00 230.85 2.76 109.46

Table 2. Comparisons with the Results in [8]
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Figure 7. Left: Module 4, 5, 6, 7, 8, 9 and 10 cluster at
the lower left corner of the chip. Right: Module 6, 7, 8, 9,
10, 11 and 12 align horizontally.
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