
1

Abstract— One of the major roadblocks in reduction of
library generation cycle time is the layout generation
phase. The two methods of doing automatic layout
generation are synthesis and migration. The tools that are
available for layout generation, each have it’s own
limitations. This paper describes how we have developed
an integrated methodology for generating standard cell
layouts using synthesis and migration. The placement
engine of the synthesis tool was replaced by the Simulated
Annealing based placer as well as the routing engine of
the synthesis tool was made more intelligent and robust by
using our own algorithms. The migration flow was also
enhanced to suit requirements that were specific to ASIC
cell libraries. This paper also presents the strategy we
developed of an optimum combination of synthesis and
migration for reducing the cycle time for generation of cell
layouts. This strategy has enabled us to remove the
bottleneck of the layout generation cycle time. The paper
also touches upon how we have extended the flow to
handle the “what-if” experiments that are carried out at a
library definition phase.

1. INTRODUCTION
With the increasing number of applications demanding
ASIC solutions, there is a growing need for ASIC libraries
to be developed to address different aspects of cell library.
These include requirements like high performance, high
density, low power etc. This requires a number of libraries
to be delivered for a particular technology node, which are
optimized and tuned for different end applications. So, to
take advantage of the latest technology shrink, it is very
important that the cycle time of the overall library
generation process is reduced as far as possible. One of the
major bottlenecks in this process is the layout generation
phase which traditionally has been manual. In order to
bring down the layout generation cycle time, we have come
up with an integrated flow for generating layouts, which is
an optimal combination of layout synthesis and migration.
Existing solutions and their corresponding problems:

• There are many chip level techniques for placement
and routing [1]. However these cannot be directly
applied to cell level layout generation where we deal
with layout geometries.

• Tools for cell layout synthesis [2][3][8] are available.
However none were found to give us layouts of
handcrafted quality. In the synthesis flow, the
placement engine specifically has the following
drawbacks

- It applies the same weighted cost function for cells
of all complexities, which leads to sub optimal
placements for many cases.

- It does not take care of any reliability
considerations such as latch-up.

The routing phase has a number of limitations also as
described in [4].

• Layout migration [9] tools are also available. But these
do not handle all the standard cell level migration
requirements. Particular drawbacks are :
- Migration focuses on maintaining the topology of

the layout that results in increase in either cell
height or width (Increase in cell height is not
acceptable for standard cell architecture under any
condition).

- Transistor specific sizing cannot be handled
automatically through the migration flow (which
only performs a linear scaling on all transistors)

We have developed a methodology to generate layouts of
handcrafted quality for cells of all complexity. By layout
quality, we imply minimum area layouts with minimum
wire-length. It also includes other factors like no
unnecessary bends in layout geometries, minimized
diffusion capacitance and other reliability considerations
(Wide metal routing for electromigration, large number of
well/substrate contacts to reduce latch-up and so on). Cell
complexity is a measure of the number of routable nets in a
layout.

In Section 2 of this paper, we will discuss on how our flow
addressed each of the possible scenarios that may arise in
an ASIC library. In the Sections 3 and 4 respectively we
will elaborate on how the existing synthesis and migration
flows were enhanced and redefined to be integrated into a
single solution. Finally in Section 5 we will describe what
the impact our layout create flow had on the whole library
development process. In Section 6 we discuss our future
work.

2. THE LAYOUT CREATE FLOW
The flow that we developed for generation of cell layouts is
based on two techniques, which are synthesis and
migration. This is illustrated in Fig1 with the different
scenarios that may occur during the course of library
development. In sections 2.1 to 2.3 we will elaborate how
we have combined the enhanced synthesis and migration
flows optimally to develop cell layouts for any library

Reducing Library Development Cycle Time
through an Optimum Layout Create Flow

Rituparna Mandal, Dibyendu Goswami, Arup Dash
Texas Instruments India Limited

2

within the shortest possible cycle time. In order to do this
we have chosen three specific cases that are most likely to
arise during any layout development phase for any given
library.

New cells

Simple combinational

Placement through placer

Interactive editing in synthesis
tool or manual editing aided by
incremental compaction to
enhance layout quality

 Routing in synthesis
with improved routing algorithm

 Compaction in synthesis tool/

Compaction through migration

Manual placement and
initial routing

Incremental compaction
through Migration

Final routing

Final compaction through
migration and incremental
compaction to enhance
layout quality

Sequential cells

Existing cells
Existing cells
redesigned

Classical migration

Incremental compaction
to enhance quality

Migration with target
netlist

Incremental compaction
to enhance quality

Cells in ASIC

Fig 1

2.1 cells with new functionality:
For any new library there will be a set of combinational as
well as sequential cells that either has a new functionality
or designed newly. These layouts have to be generated with
the netlist as the only input. In this case, the cells need to
be taken through the synthesis flow. The compaction
engine of the synthesis tool is not able to handle
compaction of complex layouts like those of Multiplexers,
Adders and some complex Boolean functions. For simple
Boolean cells, or other basic gates like NANDs, NORs,
ANDs, EXORs etc where the cell is not too complex in
terms of routing congestion, it is taken entirely through the
synthesis flow. However this may not always be completely
automated to get production worthy layouts. In order to
improve the layout quality we have introduced some
breakpoints into the flow to enable a user to interactively
edit through the synthesis tool. This prevents us from using
a separate layout editor and in the process saves a lot of
time. In cases of the more complex cells as mentioned
above, the compaction step fails even if the routing is
complete. For such cases, the pre-compacted layout is
taken through the migration flow using the incremental
compaction methodology as described in Section 4.1.
However sequential cells, which require a lot of complex
routes in the layout to meet timing, are created manually
with the incremental compaction.

2.2 cells existing in the previous library:
This is a case of classical migration in which the layouts
already exist for a previous library and need to be ported to

the current technology which essentially implies migration
from the old to the new technology. This is however
possible only when the standard cell architecture does not
change drastically from one technology to another. This
migration is done by the conventional migration flow as
discussed in Section 4.3.

2.3 redesign of the existing cells:
This is the case when the cell layouts already exist but as a
result of redesigning the cells to meet the performance
goals of the current library, the transistor sizes have
changed. An ideal example here would be trying to migrate
a cell from a high-density library to a high performance
library. In this scenario, we migrate the layouts from the
older technology to the new one keeping the target
transistor sizes as one of the inputs to the migration flow.
So, while the new design rules are enforced during
compaction in migration, the transistor sizes are also
enforced at the same time. This flow has also been
described in Section 4.2.

3. THE LAYOUT SYNTHESIS FLOW

Synthesis automatically generates the cell layouts taking in
the netlists and the design rules. The whole synthesis flow
can be broadly classified into three main operations:
Placement, Routing and Compaction.

The foremost operation that is done in the Synthesis flow is
the placement, where all the mosfets in the cell will be
placed in such a manner that the final area of the layout
will be the minimum whereas the routing congestion will
be less. In the next section we have discussed about the
placer which was developed as a solution to overcome the
existing placement problems. Next step is routing where
electrical connectivity is provided to the different signal as
well as power nets. We have developed our own routing
algorithm described in [4]. The last step of the synthesis
flow is compaction. This is a process of removing extra
spacing in the layout as much as possible while enforcing
the design rules.

The Placer:
High-density libraries need optimal transistor placement
because of less routing resources. A bad placement will
lead to larger layout area or an un-routed solution or
compaction failure. The area of the layout depends mainly
on the abutment of transistors. Abutment reduces transistor
source/drain diffusion area and hence cell-width by
merging same diffusion nets of adjacent transistors [2].
However maximal abutment does not always assure the
best layout for routing intensive cells and may even result
in unroutable or routing congested solution, causing
subsequent compaction failure. Thus, in addition to
abutment cost, we also need to consider a cost for gate
alignment that will enhance better routing.
The placer developed is based on Simulated Annealing
[5][6], a sequential optimization method, which

3

stochastically simulates the behaviour of a slowly cooling
physical system, arriving at an orientation with the lowest
cost. Simulated Annealing works in the following way:

For applying simulated annealing we need an efficient and
accurate cost function to evaluate a placement. The cost
function should include estimated cell width, wirelength
and congestion. The placement module should be able to
give optimal placement for wider variation of cells within a
finite time. We designed the cost function to take care of
the above layout aspects. We have assigned different cost
scales based on cell complexity and have defined
normalized acceptance probability that can work
irrespective of cell size. We have used iterative simulated
annealing to avoid locally optimal solution. We could have
achieved the same by reducing the temperature at a slower
rate, which would mean that it would take a huge number
of iterations to reach the minima. Hence we opted for the
iterative solution which is illustrated in Fig 2. Finally we
have adjusted all the cost scales for different complexity.

Fig2: annealing schedule
The cost function [7] that we have defined is the
combination of four costs:
• Area Cost
• Interconnect Cost
• Gate Alignment Cost
• Congestion Cost

3.1 Area Cost
Area cost is a factor of estimated diffusion area. For a
particular placement, diffusion area estimates what the cell
width is going to be after compaction. Cell width is
determined by Max[PDIFFWidth, NDIFFWidth](Fig3),
assuming edge routings do not increase cell width.
Apparently it may appear that Min[PDIFFWidth, NDIFFWidth
] does not affect the layout quality. But by reducing it we
can utilize the space for placing well/substrate contacts.
We have defined area cost (A) as:
A = N* Max[PDIFFWidth, NDIFFWidth] +
 Min[PDIFFWidth, NDIFFWidth] + CostTie; N>>1
N is a relative scale to give higher preference to the first
factor in the above equation.
CostTie is a factor to give higher preference to placement of
well/substrate contacts that lead to lesser layout area.
The estimated layout width is:
Cell layout width = Max [PDIFFWidth, NDIFFWidth] + 2*g.

Fig 3: diffusion widths

For high-density libraries, abutment cost is the most
important factor in placement evaluation to determine an
area optimal placement.

3.2 Interconnect Cost
This estimates the length of wire needed to route the
layout. This cost plays an important role to find an optimal
placement for routing intensive cells. Routing cost
estimates the Manhattan interconnect length of a
placement. It is a linear function of
• Metal wire cost (Lengthmetal)
• Poly (polysilicon) wire cost (Lengthpoly)

Interconnect Cost= Scalemetal*Lengthmetal + Scalepoly
*Lengthpoly
These two costs are considered because metal and poly
differ in resistivity and run in different level. For high
density libraries poly routing under power bus is preferred
over metal (Costpoly < Costmetal) but for high performance
library metal is preferred (Costmetal < Costpoly) because of
lesser resistivity. Most of the gate to gate routing however

evaluate(initial state); //cost of initial state
 T = very high value //initial temperature
 while(! Terminating condition) {
 current state = random change (initial state);
 evaluate (current state);
 if(Costcurrent <= Costinitial) {
 initial state = current state;
 }
 else{
 if(e (Cost initial - Cost current) / T >
 a random number between [0,1])
 { initial state = current state ;}
 }
 reduce T ;
 } // end while
 optimal state = initial state;
The most popular terminating condition is T ~ 0.

4

is done through poly in order to avoid use of contact (adds
routing congestion in channel).
 3.3 Gate Alignment Cost
Alignment of pmos and nmos having the same net for the
gate increases routability of a layout [2]. For smaller cells
misalignment leads to unroutable solution but larger cells
can compromise misalignment for gaining in area.
To connect unaligned and far apart gates poly is less
preferred for it’s high resistivity. Again metal wire is also
not preferred because it needs a poly contact which is
bigger in size. To avoid misalignment, we have included
alignment cost. This cost adds some penalty for each
misalignment. For a particular placement if we consider
the position of transistors as different indices of an array,
then for n-th index if gate of the pmos transistor is not the
same as the nmos transistor then we call this a
misalignment. Experimentally we found a misalignment is
having almost equal cost as K times of an additional
diffusion gap i.e we can compromise a misalignment for
removal of K diffusion gaps. K is an integer independent
of technology.
Cost alignment = K*[(minimum distance between gates of two
consecutive transistors with a diffusion gap in between) -
(minimum distance between gates of two consecutive
abutted transistors)]
i.e. Cost alignment = K*[{2* (a + b + c) +e} – d] (ref :Fig 2)

3.4 Congestion Cost
This cost represents amount of routing congestion in the
layout. Congestion cost estimates average number of wires
passing through vertical cross section of layout.
Congestion cost plays a major role for routing intensive
cells as cell height is fixed and a fixed number of wires
can pass through a layout cross section. Source, gate and
drain of each transistor are the points of cross section. If a
wire (poly/metal) runs from the source of a transistor to
the drain of other transistor then congestion at each point
of all the transistor sitting below the wire is incremented
by one.

Congestion cost is a combination of two factors:
• Average congestion (Congav).

• Deviation from average congestion at each
point.(CostdevCong).

 Average congestion takes care of less congestion in the
layout. Less congestion deviation from the average helps to
avoid locally congested layout. If the congestion is very
high for a sample point it may lead to compaction failure.
CostdevCong is the sum of deviations for each sample point.
For example: If we consider 3 sample points with
congestion 2,4 and 6 respectively and for another
placement congestion are 4,4 and 4. For both cases Congav
is same(=4) but the later one can easily be compacted. For
the first case CostdevCong is 2 where it is 0 for the next case.
.

3.5 Overall Cost Function:

For high-density libraries Scaleabutment > Scalealignment >
Scaleinterconnect > Scalecongestion. These cost scales are
depending on cell complexity. We calculate the cell
complexity as the sum of the number of transistors
connected to each net. For simple cells number of nets is
less and for complex cells number of nets is large, which
give an estimate of cell complexity. Relative weightage of
abutment scale over all other cost scales is high for simple
cells. We have preferred higher weightage of alignment
cost for simple cells to avoid misaligned gates. We have
set very high interconnect scale and congestion scale for
routing intensive cells.

In this way we have taken care of the layout aspects related
to placement of all kinds of combinational cells in the
ASIC core cell library. Basic routing aspects of the cells
are considered during the placement stage, like gate
alignment etc. So the placer that we developed is in tune
with the router to give better layout solutions. An example
of a placement, which results in an un-routed solution, is
shown in Fig 4.

Fig 4: Sub optimal Placement with un-routable nets
 (V4, V6, and S)

With our placement solution the above placement changes
to the one shown in Fig 5

Fig 5: Optimal placement solution

cost (placement) {return(Scaleabutment *Area_Cost() +
 Scale interconnect *Interconnect_cost()+
 Scalealignment* Alignment_cost()+
 Scalecongestion* Congestion_cost ());}

5

4. THE MIGRATION FLOW

Migration is a process of porting the cell library from one
technology to another when there is change in layout
design rules but the topology remains more or less
unchanged. The inputs to the migration tool are the cell
layouts of any technology and the design rules and the
standard cell architecture information for the target
technology.

The constraint for doing automatic migration is that the
tool cannot handle any change in the layout topology
during migration. So if we want to automatically migrate
the layouts, we will get good results in terms of layout
quality only if the migration is possible without any
changes in the positions and shapes of the geometries.
However if we want to take advantage of any new design
rules or cell architecture changes that will lead to a change
in the way the transistors are placed or routed, then it will
not be possible to do it through an automatic migration
flow. This is even if the cells in any particular library can
be reused for the next one. For example let us say we
wanted to migrate layouts from a high-density library to a
high performance library which is characterized by bigger
transistors but a free routing track under each power bus
which will be used for routing at chip level. This will not
be possible through automatic migration.

Due to the above reason, we have observed that automatic
migration is not best suited for ASIC standard cell library
layouts. So we have tailored the migration flow to be used
according to our requirements. The way we have done this
is through the following:

1. Migration used as an incremental compaction engine
2. Migration used with target netlists
3. Migration used in the conventional way

4.1 INCREMENTAL COMPACTION

As we have already mentioned, migration indicates porting
of layouts from one technology to another. This will be
applicable if and only if the cells are existing in a
particular library and are required for the next library. In
many cases for a new library completely new cell
functionalities may be defined or a cell that was existing in
the previous library may be completely redesigned. In such
cases, if the cell were very complex in nature, the layout in
all likelihood would be done manually. Complexity is in
terms of optimum placement of transistors, which requires
a lot of manual interventions and also complex routing to
get minimum area. This is where incremental compaction
comes into the picture.

We have developed a methodology for incremental
compaction which allows us to take advantage of the
features of the compaction engine of a migration tool as
well as get layouts of hand crafted quality at the same time.

The migration tool that we have adopted for our flow has
an interface to the layout editor that we use. We have
exploited this feature to use the migration tool essentially
as a compaction engine rather than a conventional
migration tool. The way we have done this is described
below.

Taking the netlist for the new cell we will place the
transistors with the respective sizes as defined in the netlist
as optimally as possible. Then an initial level of routing
will be done manually also. However while doing this we
need not worry about the design rules with respect to the
various layout geometries – like the width of the metal
wire, or the contact widths, or the metal overlap of contact
etc. Having done the preliminary routing we migrate the
layout to the target technology. So essentially we do an
incremental migration of the layout, that is, we use the
compaction engine of the migrator to enforce the design
rules on the layout. Then we do the next step of routing
and again compact through migration. In this way we can
complete the whole layout – getting the best of both
handcrafted quality for placement and routing of the
transistors and automatic compaction through migration.
This result in a significant reduction of cycle time for
generating those layouts compared to what it would take to
do those same layouts completely manually.

4.2 MIGRATION WITH TARGET NETLISTS

Let us consider a case where a cell is present in a particular
library and we want to port it to the new library but only
after changing the transistor sizes to improve the cell
performance. For such a case, we devised our own flow of
enforcing the new transistor sizes by feeding in the target
netlist to the migration tool. The technique that we follow
is generic in nature. For a particular transistor in the
layout, we find it’s equivalent from the target netlist based
on connectivity information. Then we resize the transistor
accordingly. The way we automated this is shown in Fig6
below.

Fig 6: automatic target netlist reader

conversion of source layout and target netlist to
common database

Comparison of transistor sizes of the two DBs

Create a device table compatible to migration tool based
On location and size of transistors

Tweak migration flow to read in this device table

6

4.3 CONVENTIONAL MIGRATION FLOW

For large blocks or custom cells like datapath that have to
be ported from one technology to another without any
change in design topology are still most effectively done
through the conventional migration flow. The output
however may not be of the best quality and in many cases
the area constraints may also not be met through this
automatic migration flow. However the output that is
obtained may be used as a starting point and may be
manually edited sufficiently to get the quality of layouts
that we want. This would still result in a significant
reduction of cycle time as compared to doing the layout
from scratch for the new technology.

5. IMPACT
The impact of our layout create flow is highlighted below:

1. Library development cycle time:
During several ASIC core cell library developments, we
have used an optimum combination of both synthesis and
migration as described in the previous sections to generate
layouts for both high density and high performance
libraries. Fig 7 illustrates the impact of our layout create
flow on several ASIC libraries. The layout development
cycle time was reduced by ~5X in LIB3 compared to LIB1.
This reduction was after using the placement and routing
techniques described in section 2.1 and 2.2. We deployed
the complete layout create flow, using a combination of
synthesis and different migration techniques wherever
applicable for incremental releases of the same libraries
which actually resulted in a further 2X improvement in the
layout generation cycle time for LIB4.

0

 1

 2

 3

 4

 5

 6

 7

 8

L I B 1 L I B 2 L I B 3 L I B 4

T
 i
m
e

U
n
i
t

L i b r a r y c y c l e t i m e

Fig 7: Reduction in library cycle time

2. Library definition and evaluation:
One of the most important aspects of library definition is
the architecture evaluation phase. In order to do this and
come up with the best possible architecture for a particular
technology, number of experiments are performed with
regard to layouts. To enable gathering of complete data for
the above, automation in the layout generation process is

absolutely essential. All architecture evaluations with
respect to layouts are done using our layout create flow. In
addition to architecture evaluation, all layout evaluations
which help in library definition are also done using our
flow. Some examples are given below:

• Evaluation to decide the optimum cell height as well
as N-Well location.

• Critical path analysis to give feedback to fab on layout
design rules in terms of impact on area.

• Determining area impact on usage of different
transistors (characterized by different lengths) for the
same technology node.

• Evaluation of using antenna protected cells in terms of
impact on chip area.

6. FUTURE WORK
We plan to enhance the cell layout create flow even further
by generating placement solutions for sequential cells
which involve stacking and rotation of transistors. The
migration flow will also be enhanced to make it more
customizable.

References:

[1] Sadiq M Sait & Habib Youssef,” VLSI PHYSICAL
DESIGN AUTOMATION, Theory and Practice”. Chapters
4 - 7. McGraw-Hill Companies - 1994
[2] Antun Domic, Digital Equipment Corporation,
Hudson,”Layout Synthesis of MOS Digitial Cells”, DAC
1990
[3] Chong-Leong, Ong Jeong-Tyng Li, Chi-Yuan Lo, 26th
ACM/IEEE Design Automation Conference,”GENAC: An
Automatic Cell Synthesis Tool”
[4] Sabyasachi S., Sornavalli R., Dibyendu G., Biswadeep
C., “Minimizing Area and Maximizing Porosity for Cell
Layouts Using Innovative Routing Strategies”, VLSI
Conference, 2001 Bangalore.
[5] Kirkpatrik, C.D Gelatt Jr and M.P. Vechhi, May
1983;”Optimization by Simulated Annealing”, Science,
Vol.220, No.4598, pp.671-680
[6] Carl Sechen, “VLSI Placement and Global Routing
Using Simulated Annealing”,Kluwer Academic Publishers,
1988
[7] Qinghong Wu and Thomas H. Sloane “CMOS Leaf-
Cell Design Using Simulated Annealing”, IEEE 1992
[8] Chao C. Chen, Shau-Lim Chow,”The Layout
Synthesizer: An Automatic Netlist-to-Layout System”, 26th

ACM/IEEE Design Automation Conference
[9] Jon Levi,”Dreaming Up a New Methodology for
Physical Migration of Hard IP”, ISD Mag, May 1999

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

