
Layout-driven Timing Optimization by Generalized De Morgan Transform

Supratik Chakraborty
Dept. of Computer Science and Engineering

Indian Institute of Technology, Bombay, India
supratik@cse.iitb.ac.in

Rajeev Murgai
Fujitsu Laboratories of America, Inc.

Sunnyvale, CA 94086, USA
murgai@fla.fujitsu.com

Abstract

We propose a timing-oriented logic optimization technique
called Generalized De Morgan (GDM) transform, that inte-
grates gate resizing, net buffering and De Morgan transforma-
tion. The contribution of our work lies in the integration of the
three techniques, allowing them to interact at a much finer level
of granularity than would be otherwise possible. This produces
better results than those obtainable by individual techniques like
net buffering or gate resizing applied to the circuit in various
combinations. GDM transform is also layout-friendly since it
does not alter the routing patterns and placement of cells, except
possibly some buffer insertions/deletions. Hence it is useful for
achieving timing closure in late stages of the design flow. We
propose a comprehensive GDM algorithm that (a) determines
the best replacement of a gate, possibly with inverted inputs and
outputs, along with the best buffering configurations of nets in-
cident on it, and (b) embeds this into a global scheme for opti-
mizing large designs. We have implemented this algorithm in a
layout-driven, industrial-strength logic optimization framework,
and have successfully applied it to large industrial designs.

1. Introduction
Timing convergence is an important problem in deep sub-

micron digital design. To address this problem, logic synthesis
and technology mapping tools need access to layout information
such as cell placements, wire lengths and wire delays, implying
a tight coupling of physical and logical design flows. It is now
standard practice to apply simple transformations such as gate
resizing, net buffering, gate replication, etc. at design stages
close to the layout process in order to achieve timing closure.
These transformations, being simple, incremental and local in
nature, do not change the layout significantly and are suitable for
application immediately prior to detailed place-and-route. We
have developed a tool for timing-driven logic optimization of
digital circuits, suitable for application after global place-and-
route but before detailed place-and-route. In this paper, we de-
scribe a technique, called Generalized De Morgan transform,
implemented as part of this tool.

The input to our optimization tool is a circuit optimized by
designers or logic synthesis tools and mapped to cells from a
given library. It is assumed that a mincut based algorithm has
been used to partition the chip area into blocks using horizon-
tal and vertical cuts, and each cell is assigned to some block.
A block may however contain multiple cells. Further, we as-
sume that a global routing tool has been used to determine the

block

output
 pad

input
 pad

Figure 1. Block layout of a design

topology and global route of each net by generating net segments
between blocks (see Figure 1). We argue that this is an appropri-
ate stage in the design flow for applying optimization techniques
such as net buffering and gate-resizing. Since cells have been
roughly placed and nets have been globally routed, wire loads
and delays are approximately known, and so is the delay at each
pin. However, since the final layout has not been frozen, any
optimization obtained through careful addition, deletion or re-
placement of cells can be incorporated into the final layout by
refined placement and detailed routing. Fig. 2 shows our overall
design flow and the position of the layout-driven optimization
tools in the flow.

 delay values,
design changes

design data,
 constraints

detailed routing

 layout−driven
 timing analysis &
logic optimization

RTL design

logic synthesis

mask patterns

 cell
library

global routing,
 refinement

 min−cut & timing
 driven placement,
 refinement

Figure 2. Design flow
Earlier, we had implemented well-known transformations

such as gate resizing and net buffering in our tool. In this pa-

per, we propose a new technique called Generalized De Morgan
(GDM) transform. This is more general than gate resizing and
net buffering in that it changes the logic functionality of cells in
the design. It is also more powerful than the simple De Mor-
gan transform that replaces a gate with its dual (such as an AND
with an OR) and inserts inverters at the inputs and outputs. As
will be seen later, GDM transform integrates gate resizing, De
Morgan’s laws, and net buffering in one unified transform, al-
lowing these three techniques to interact at a much finer level
of granularity than would be otherwise possible. The transform
is also layout-friendly: it replaces a gate with another one that
has the same number of terminals, and preserves routing pat-
terns and placement positions in the design (except for some
buffer insertions/deletions). Thus, although GDM transform is
less powerful than re-synthesis and re-mapping, it is more use-
ful in a layout-driven scenario, especially in late stages of the
design flow, where we wish to maximize circuit performance by
minimal layout modifications.

In this paper, we propose a comprehensive GDM transforma-
tion algorithm that not only determines the best replacement of a
cell along with the best buffering configurations of nets incident
on it, but also embeds this into a global scheme for minimizing
the delay of large designs. We have successfully applied this
transform on large industrial designs built on state-of-the-art in-
dustrial libraries. Experiments indicate that one invocation of
the GDM transform reduces the circuit delay more than can be
obtained by net buffering alone, gate resizing alone, or by a com-
bination of net buffering followed by gate resizing. The GDM
transform applied in concert with net buffering and gate resiz-
ing yields the best possible delay results of all combinations of
transformations in our repository.

2. Previous work
2.1. Simple transforms

Simple transforms are those that preserve the logic function-
ality of each cell in the design. Buffers and inverters may be
added or deleted in these transforms. Gate resizing and buffer
optimization constitute examples of simple transforms.

Gate Resizing: There are several approaches to gate resiz-
ing. These include transistor sizing approaches that model area
and delay as posynomials [9], linear programming approaches
using a piece-wise linear delay model [4], convex programming
approaches [18], cutset based approaches [19] and global siz-
ing [7], which is a greedy technique enhanced with a mechanism
to come out of local minima.

Buffer Optimization: Existing work in this category falls in
one of two domains – pre-routing and post-routing. In the pre-
routing domain, the problem consists of generating a delay-
optimum fanout tree and is known to be computationally hard.
Several algorithms have been proposed targeting either a single
multi-fanout gate and/or an entire design [10, 5, 22, 21, 13, 16].
In the post-global-routing realm, the topology of each net is
fixed by the routing tool and the buffer optimization problem
reduces to net buffering. Given a net with fixed topology and
candidate buffer insertion points, van Ginneken proposed an
optimum, polynomial-time, minimum-delay buffer insertion al-
gorithm [15]. Extensions to handle an input-slew based delay
model [14], optimal wire segmenting [2], noise [3] and resistive
shielding effects [1] have also been proposed.

2.2. Complex transforms
More complex logic transformations may also be applied to

a mapped circuit, resulting in the logic function of one or more
cells to be changed. Examples of such transforms are De Morgan
transform, and general re-synthesis and re-mapping.

In the LATTIS system [8], a number of optimizations such as
gate resizing, buffer insertion, De Morgan, timing directed fac-
torization and re-mapping are applied sequentially on a technol-
ogy mapped netlist. The De Morgan transform used in LATTIS
replaces a gate with its dual, and adds inverters at the inputs and
outputs (if the complemented signal is not available). As will be
shortly seen, the GDM transform proposed in this paper is more
general than the De Morgan transform in LATTIS. Kannan et
al. [12] and Ishioka [11] proposed post-placement, pre-routing
optimizations, followed by incremental placement to incorporate
the changes. Their transformations include fanout optimization
and gate resizing applied sequentially [12], and re-synthesis and
re-mapping [11]. In [12], the wire-routes are estimated by min-
imum spanning trees. Hojat and Villarubia [17] described the
results of using simple synthesis operations such as gate sizing
between partitioning steps in a mincut based placement algo-
rithm. More recently, Shenoy et al. [20] proposed a design flow
that incorporates an intermediate iterative step between the tra-
ditional synthesis and physical design steps. This step integrates
a number of synthesis optimizations in the inner loop of an it-
erative method to perform global placement under given timing
constraints.

A common drawback of all the above approaches is that the
optimizations are performed before true routing information is
available. Hence the assumptions regarding global net topol-
ogy and wire loading and delays, which are crucial in deep sub-
micron technologies, may be erroneous.

In [6], Carragher et al. proposed a paradigm in which logic
optimization is interleaved with placement/partitioning refine-
ment and hierarchical global routing. The optimizations incor-
porate a comprehensive set of layout-friendly, logic-level trans-
formations for improving the delay and area of a mapped, block-
placed, and globally routed circuit under design and technology
constraints.

3. Preliminaries
Structurally, a circuit is an interconnection of cells through

nets. An extended net is one that passes over buffers and invert-
ers. The source of such a net is either a primary input or the
output of a non-buffer and non-inverter cell. Sinks are either pri-
mary outputs or inputs of non-buffer and non-inverter cells. For
example, let the boxes in Fig. 3a represent non-inverter and non-
buffer cells. Then this subcircuit contains three extended nets:
(i) with root G and sinks E and F , (ii) with root A and sinks C
and I , and (iii) with root B and sinks J and D. Extended nets
are the basic objects used in buffering algorithms. Since the in-
put to our optimization tool is a fully-mapped, block-placed, and
globally-routed design (as shown in Figure 1), the topology of
extended nets are assumed to be known.

Timing analysis is done statically using cell delays, wire de-
lays and wire loads. Pin-to-pin delays of cells can be computed
either by the load-dependent simple delay model or input-slew
dependent linear delay model. In the simple delay model, the
delay from input pin i to output pin o of a cell is given by

6

10

9

9

7

7

10

10

10

A

B

C

E

F
D

G
I

J4

4

9

10

10
10

10
3

8

10

109
6

6

5

4

5

10

10

98

10

10
5.5

5.5

4.5

10

10

10

10

9

6.5

6.5

5.5

10

10

(a)

Net

Buffer

(d)

(e)

GDM Transform

(b)

(c)

Figure 3. Comparison of GDM transformation with simple approach.

di;o = �i;o + �i;o:Co, where �i;o is the intrinsic delay from i

to o, �i;o is the load coefficient and Co is the load capacitance
visible at output o of the cell. The linear delay model has addi-
tional linear terms incorporating the slew at the input pin. Since
we assume that global routing has been performed, approximate
values of wire loads and delays can be derived. In this work, we
use the Elmore delay model for computing wire delays.

The arrival time at a net is the time at which a signal prop-
agating from the primary inputs reaches the net. The required
time is the time by which the signal must reach the net for the
circuit to meet timing requirements. The slack is the difference
between the required time and the arrival time. A critical net
is one that has the minimum slack in the circuit. A cell with a
critical output net is a critical cell.

Given a globally routed extended net with required times and
desired signal phases (even/odd inversions from source) at all
sink nodes, an optimal net buffering algorithm chooses buffers
and inverters from a library and inserts them at appropriate
places on the extended net, such that all sink phase require-
ments are satisfied and the required time at the root is maxi-
mized. However, if the root is an output pin of a cell, the algo-
rithm must not stop at maximizing the slack at the root; instead
it must choose the buffering solution that maximizes the mini-
mum slack at the inputs of the cell. In this paper, we assume that
an algorithm similar to van Ginneken’s buffering algorithm [15]
(or its extension by Lillis et al. [14]) is available to us for this
purpose.

4. GDM-equivalence of functions
Two boolean functions, f and g, are said to be NN-equivalent

or GDM-equivalent if (a) both have the same support set, and
(b) either f or f 0 can be obtained by complementing zero or
more inputs of g. For example, let f(x1; x2) = x1 + x2 and
g(x1; x2) = x1x2. Since f 0(x1; x2) = g(x0

1
; x0

2
), functions f

and g are GDM-equivalent.
More generally, let F(x1; x2 : : : xn) be a set of m functions

ff1; f2 : : : fmg. The support set of each fi is assumed to be
a subset of fx1; x2 : : : xng. Let I be an (n + m)-dimensional
binary vector that encodes the complementation of inputs and
outputs of F as follows. If the ith bit of I (henceforth I [i]) is

1 and 1 � i � n, then input xi of F is complemented; other-
wise, it is left uncomplemented. Similarly, if I [n + i] is 1 and
1 � i � m, the ith output, fi, of F is complemented; other-
wise it is not complemented. Vector I is called the inversion
vector of F , and the set of functions obtained after complement-
ing inputs and outputs of F according to I is denoted F I . As an
example, let F(x1; x2) = fx1x2; x1g and I = [0; 1; 1; 0]. Then
FI(x1; x2) = f(x1x

0

2
)0; x1g or fx0

1
+ x2; x1g.

Using the above notation, two sets of functions F(x1 : : : xn)
and G(x1 : : : xn) are said to be GDM-equivalent if both have the
same number (m) of functions, and there exists an inversion vec-
tor I of G such that the ith function of GI (x1 : : : xn) is equivalent
to fi for all i in 1 to m.

5. GDM transformation

GDM transformation of a cell F (multi-output in general) in-
volves replacing F by a GDM-equivalent cell G, and inserting
and/or deleting buffers and inverters on the extended nets at the
inputs and outputs of G to preserve the functionality of F . In a
simplistic approach, one would use the capacitance and delay in-
formation from the current buffering scheme (recall that we start
with a mapped, globally placed and routed design) to determine
the best GDM-equivalent cell G for replacing F . Thereafter, in-
verters would be added at the appropriate inputs and outputs of
G to make it functionally equivalent to F . Finally, optimal net
buffering would be applied to these nets to determine the best
distribution of buffers and inverters, for the already determined
choice of replacement cell G. The drawback of this approach is
that it fails to take into account the effect (capacitance and de-
lays) of the final net buffering solutions when determining which
replacement cell G to use in place of F . Consequently, the opti-
mal combination of replacement cell and net buffering solutions
might be missed. The innovation in our approach lies in apply-
ing optimal net buffering to the input and output nets of the cell
to implement inversions mandated by each choice of replace-
ment cell G, and then using this information to choose the best
combination of G and input and output buffering. Thus, infor-
mation from the final buffering scheme is used to guide the best
choice of G. While it may appear that computing buffering so-
lutions for each input and output extended net for each choice of

G is prohibitively expensive, the computation of buffering solu-
tions can be significantly optimized, as described in Section 5.3.

To illustrate the advantage of the GDM transformation vis-
a-vis choosing replacement cell G first and then buffering input
and output nets, consider the subcircuit shown in Fig 3a. Here,
each shaded box represents a non-inverter/non-buffer cell shar-
ing an extended net with the AND gate. The numbers repre-
sent required times at the corresponding locations in the circuit.
We wish to replace the AND gate with a GDM-equivalent cell
and buffer its inputs and outputs such that the minimum required
time at A and B is maximized. For simplicity, let us assume that
the cell library has only 4 cells: inverters with a fixed delay of
1, two-input AND gates with a fixed delay of 5 from each input
to output, two-input NAND gates with a fixed delay of 2:5 from
each input to output, and two-input OR gates with a fixed delay
of 2 from each input to output. The variation in the delays of
AND, NAND and OR gates could be attributed to different gate
sizes, for example.

If we choose to replace the AND gate first, and then insert
inverters at its inputs and/or outputs, we have two choices as
shown in Figs. 3b and c. Since the minimum required time at A
and B in Fig. 3c is higher than that in Fig. 3b, the NAND gate is
chosen as the replacement for the AND gate. Subsequently, on
applying net buffering techniques to the input and output nets of
the NAND gate, the subcircuit in Fig. 3d results. Here, the min-
imum required time at A and B is 5:5. On the other hand, if we
apply GDM transformation, the subcircuit shown in Fig. 3e is
obtained. The minimum required time at A and B in this subcir-
cuit is 6; hence this is a better transformation than Fig. 3d. Since
GDM transformation considers the effect of buffering input and
output nets when determining the best choice for the replace-
ment cell, it is able to determine that the subcircuit in Fig. 3b
eventually leads to a better subcircuit (Fig. 3e) than the subcir-
cuit eventually obtainable from Fig. 3c.

It is important to observe that gate sizing, net buffering, and
simple De Morgan transform (i.e., replacing a gate with its dual,
such as an AND with an OR) can be viewed as special cases
of GDM transform. For instance, gate sizing is subsumed in
the GDM transform, since a function f is GDM-equivalent to
itself (by definition) and hence GDM transformation automati-
cally considers replacing a cell F by another cell G that has the
same functionality as F , but has a different size. However, our
current GDM implementation also imposes some restrictions, as
discussed in the next section.

5.1. Basic algorithm

The basic algorithm for choosing the best GDM transform of
a cell F for timing optimization is shown in Fig 4. Inverters and
buffers are not referred to as cells in this discussion. Function
GDM cell does not really implement any transformation; it sim-
ply determines the transformation that maximizes the minimum
slack at the inputs of cells driving F (henceforth called local
minimum slack). The procedure for applying GDM transform
globally to the entire circuit is divided into 3 phases, as described
below.
(a) Evaluation: Let C be the set of all critical cells in the cir-
cuit. For each cell F in C, the best GDM transformation is de-
termined by invoking function GDM cell. Each transformation
(G�; N�) thus obtained is assigned a cost, based on (a) local

GDM cell (circuit K, cell F , library L)
In = set of cells/pr. inps. driving extended input nets of F .
Out = set of cells/pr. outs driven by extended output nets of F .
sF = minimum slack at input pins of cells in In.
E = set of cells in L that are GDM-equivalent to F .
1. Save current buffering of input & output extended nets of F .

2. For each cell G in E
(a) Replace F by G
(b) I = inversion vector to make G equivalent to F .
(c) Apply optimal net buffering routine to input & output

extended nets of G to implement inversions in I .
(d) Propagate required times from cells in Out to those in In

using parameters of G, and buffering of step 2(c)
(e) sG new min slack at the inputs of cells in In

3. Restore F and original buffering of extended nets.
4. Let G� be the replacement cell that maximizes sG, and
N� be the corresponding buffering solutions.

5. If sG� > sF , return (G�; N�)
else return (F , original net buffering).

Figure 4. Finding best GDM transform of a cell.

min slack improvement (sG� � sF) in function GDM cell, and
(b) area penalty of replacing the original cell F by G� and due
to implementation of buffering solution N �. Let T be the set of
best GDM transformations for all cells in C. The set T is kept
sorted in increasing order of the cost of transformations.
(b) Selective implementation: Given the sorted set T , the trans-
formation with the least cost is first implemented. Let this be the
transformation (G�; N�) for critical cell F in the original cir-
cuit. Now, implementing N � potentially modifies the buffering
of some input and output extended nets of F . Therefore, if there
exists another critical cell F 0 that shares an input or output ex-
tended net with F , then there can be a potential conflict between
the buffering solutions for the shared net in the GDM transfor-
mations forF andF 0. Thus, once the GDM transformation forF
is implemented, the already-computed GDM transformation for
F 0 may be rendered sub-optimal or even invalid (e.g., if they dif-
fer in the phases of signals at input or output pins of G�). There-
fore, the GDM transformations of all critical cells that share an
extended net with F are removed from the set T after (G�; N�)
is implemented. Of the remaining transformations in T , the one
with the lowest cost is then chosen for implementation and the
process is repeated until the set T is empty.

A

B

C D

E

F

Figure 5. Illustrating sharing of extended nets.

As an example, suppose cells A, B, C, D, E and F in Fig 5
are critical. Initially, the best GDM transformation for all cells
are determined. Suppose the cost of transformation increases
from A to F . Using the above strategy, once the transforma-
tion for A is implemented, those for B, E and F are invalidated
because they share an extended net with A. The transforma-
tion for C is thus implemented next. This, in turn, invalidates
the transformation for D. Therefore, only A and C are trans-

formed. A consequence of this invalidation policy is that the
current GDM implementation does not strictly subsume our gate
resizing or net buffering implementation. Our gate resizing algo-
rithm can potentially resize any gate, whereas a given iteration
of GDM will not simultaneously resize two gates that share ex-
tended nets. Similarly, GDM transformation may not buffer two
extended nets N1 and N2 simultaneously if the root cells C1 and
C2 of N1 and N2 share a net between them, and C1 is GDM
transformed.
(c) Partial undoing: Once the set T becomes empty, a static
timing analyzer is run on the modified circuit to determine the
new minimum slack. If this is larger than the original minimum
slack s0 (before the transformations were applied), the new set
C of critical cells is determined and phases (a), (b) and (c) are re-
peated. However, if the minimum slack worsens as a result of the
transformations1, we undo the transformations in small groups
in the following manner. We first undo a fixed small number
(10 in our experiments) of the costliest transformations and re-
evaluate the minimum slack in the circuit. If the minimum slack
increases beyond the original slack s0, we accept the remain-
ing transformations (not yet undone), and repeat phases (a), (b)
and (c). Otherwise, we undo a small number of the remaining
costliest transformations, and continue the process until either
the minimum slack increases beyond s0 or all transformations
are undone. If all transformations are undone, we terminate the
iterative process.

Observe that in phase (b), one can choose to re-compute the
best GDM transformations of all cells on a shared extended net
whenever one of the gates is transformed. However, this entails
significant computation every time a transformation is imple-
mented, and most of the results re-computed are soon invalidated
again. Moreover, given the inevitable inaccuracies in estimating
wire delays and capacitances at this stage of the design flow, we
believe that this is not worth the extra effort. Our experiments
also suggest that even if the GDM transformation for a cell G is
invalidated in an iteration, there is a good chance of G being re-
considered (after re-evaluation of its best GDM transformation)
in a later iteration if G continues to remain critical.

While the basic algorithm for timing optimization of a circuit
by GDM transformation has been given above, there are several
important issues related to implementation. We discuss them
briefly in the following subsections.

5.2. Equivalence classes of library cells

GDM-equivalence is easily seen to be reflexive, symmetric
and transitive. Therefore, GDM-equivalence is an equivalence
relation and can be used to partition the cells in a library into
disjoint equivalence classes. The motivation for creating equiva-
lence classes comes from the observation that once these classes
are created, determining the set E in function GDM cell (see
Fig. 4) reduces to accessing the equivalence class of F . Since
the number of critical cells in real designs often runs into thou-
sands, it is beneficial to compute the equivalence classes once
and reuse the results.

In order to determine all cells that are GDM-equivalent to F ,
we proceed by filtering out as many cells as possible by a series

1Although each GDM transformation doesn’t worsen the slack when con-
sidered in isolation, interactions between multiple transformations can cause a
degradation.

of simple tests. These tests either filter out a cell G, or yield
information about values of bit positions in the inversion vector
I of G for it to be GDM equivalent to F . For the remaining
bit positions, we need to assign all possible combinations of bit
values to obtain the possible inversion vectors. For each vector
I thus generated, we then use reduced ordered binary decision
diagrams (ROBDDs) to check the equivalence of each function
fi in F with the corresponding function of GI . If an input vector
I is obtained such that the BDD equivalence checks succeed for
all functions fi of F , we put G in the same equivalence class as
F .

Below, we list some simple tests to eliminate a candidate cell
G from the equivalence class of F .

1. If the number of inputs and outputs of G andF don’t match,
G is not GDM-equivalent to F .

2. Let there be n inputs and m outputs of each of G and F .
Let N(gi) be the onset count (number of minterms) of
function gi of G and let N(fi) be the onset count of the
corresponding function fi of F (correspondence is by in-
dex number). The onset counts can be easily determined
once BDDs of the functions in G and F are constructed.
If N(gi) 6= N(fi), then gi is not equivalent to fi. In ad-
dition, if N(gi) 6= 2n � N(fi), then gi is not equivalent
to f 0

i either. Therefore, if both tests are satisfied, G is not
GDM-equivalent to F .

3. Let gija be the cofactor of function gi of G with respect to
input a. Using the notation for onset counts, If N(g ija) 6=
N(fija) or N(gija0) 6= N(fija0), then gi and fi cannot be
equivalent with the same phase of input a applied to both.
Similarly, if N(gija) 6= N(fija0) or N(gija) 6= N(fija0),
then gi and fi cannot be equivalent with opposite phases of
input a applied to fi and gi. In a similar manner, we can
check from the onset counts if it is possible for g i and f 0

i to
be equivalent with same (opposite) phase of input a applied
to both. If all the above tests fail (i.e., neither f i nor f 0

i can
be equivalent to gi), we infer that fi is not GDM-equivalent
to gi; therefore F and G are not GDM-equivalent.

When the tests involving onset counts fail to eliminate G from
the equivalence class of F , they usually provide useful informa-
tion about the inversion vector I of G. For example, suppose
N(gi) = N(fi) and N(gi) 6= 2n � N(fi). It is easy to infer
from this that if G and F are GDM-equivalent, the i th output of
each must have the same phase, i.e., the n+ ith bit in the inver-
sion vector must be 0. Now, suppose another test (using onset
counts of cofactors), indicates that gi and fi must be in opposite
phase if F and G are GDM-equivalent. Since we have a con-
tradiction, we can then conclude that G is not GDM-equivalent
to F . In other cases, when no such contradictions arise, the in-
formation about bit values in the inversion vector helps reduce
the number of BDD equivalence checks that need to be finally
performed. For example, suppose in an 8-bit inversion vector I ,
we have already inferred the values of 4 bits from tests involv-
ing onset counts. In order to complete our test of whether G is
GDM-equivalent to F , we need to check if the BDD for each f i
in F is equivalent to the BDD for the corresponding function in
GI for one out of 24 combinations of unknown bit values in I . In
contrast, if we did not have any knowledge of bit values in I , we
would have needed to consider 28 combinations.

Our method for identifying GDM-equivalence classes is able
to identify interesting cases where a gate is GDM-equivalent
to another gate of the same functionality, but with some inputs
and/or outputs inverted. For example a two-input XOR is equiv-
alent to another two-input XOR with either (i) no inputs or out-
puts inverted, or (ii) one input and output inverted, or (iii) both
inputs inverted. Such equivalences cannot be identified by gate
sizing or net-buffering alone, but can prove useful when trying
to optimize a design with minimal layout changes.

5.3. Buffering extended nets at inputs and outputs

O S1

S2 S3

S4

S5

S6
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

(a)

T1

T4

T3

T2

T0
D

S4

S3

S5

S6

I2

I1

D
T0

T4

T3

I2

I1

T1

T2

O S1

S2

(b)

Figure 6. Buffering extended nets.

We saw in Section 5.1 that for each candidate cell G that is
GDM-equivalent to F , we must compute optimal net buffering
solutions for extended nets at the inputs and outputs of G. How-
ever, re-computing the solutions each time is very time consum-
ing and wasteful. By carefully analyzing the problem, it is pos-
sible to store partial buffering solutions at suitable nodes on the
extended nets and reuse them for all candidate cells G. This
leads to significant run-time improvements of the GDM trans-
formation.

Let us first consider extended nets at cell outputs. As an ex-
ample, suppose the shaded cell in Fig. 6 is being considered for
GDM transformation. The extended net from output O goes to
sink pins S1 and S2 of other cells. Clearly, GDM transformation
of the shaded cell does not affect the required times or phases of
signals at S1 and S2 under the load-dependent delay model. To
see why the phases are not changed, recall that GDM transfor-
mation of a cell preserves the functionality of the cell, as viewed
from other cells. The optimal buffering solution for this extended
net, as computed by van Ginneken’s [15] algorithm (with Lil-
lis’ [14] extensions) depends only on the required times and sig-
nal phases at the sink nodes, and hence is independent of the
replacement cell used for the shaded cell. The buffering algo-
rithm essentially generates two solutions: one which expects an
inverted signal from the source of the net, and the other which
expects the driving signal to be non-inverted. The best solu-
tion is then obtained by choosing the one that maximizes the
required time at the source. This strategy for solving the buffer-
ing problem perfectly suits our requirements, since some GDM-
equivalent cells require inversion of the output before driving the
extended net, while others do not. Thus, instead of rejecting one
solution, we can store the buffering solutions for both phases of
the output at the root nodeO of the extended net. This essentially
amounts to stopping short of the final step in van Ginneken’s al-

gorithm. Depending on whether an inversion is mandated on the
output by the GDM-equivalent cell or not, we can then choose
the appropriate solution from the stored pair of solutions. This
effectively reduces the number of computations of buffering so-
lutions for each extended net at the output to only one computa-
tion.

Let us now consider extended nets at the inputs of the cell.
In Fig. 6a, the net from D to sink nodes I1, I2, S3, S4, S5 and
S6 represents one such net. In this case, the required times and
phases at sink nodes I1 and I2 can change as a result of GDM
transformation of the shaded cell. However, the required times
and phases of S3, S4, S5 and S6 do not depend on the transfor-
mation of the shaded cell. To compute buffering solutions for
the input extended net efficiently, we need to examine van Gin-
neken’s optimal net buffering algorithm [15] more closely. In his
algorithm, solutions are first computed at each sink node of a net,
and then they are propagated towards the root node by merging
solutions from the child nodes at the parent Steiner node. So, in
our example, solutions from S3 and S4 can be merged at Steiner
node T1, and similarly solutions from S5 and S6 can be merged
at T2, regardless of the cell used to replace the shaded cell. How-
ever, the buffering solutions from I1 and I2 depend on the re-
quired time and signal phases at I1 and I2, which in turn, depend
on the replacement cell and the corresponding output buffering
solutions. Therefore, we cannot propagate solutions from I 1 and
I2 to T3 before choosing the replacement cell for the shaded cell.
This, in turn, prevents solutions at T1 from being propagated to
T4 and solutions at T2 from being propagated to T0. Thus, we
cannot compute the buffering solution for the complete extended
net independent of the choice of the replacement cell. Neverthe-
less, we can save some re-computation by storing partial results
that do not depend on the choice of the replacement cell at inter-
mediate nodes such as T1 and T2. These partial results can then
be used to compute complete buffering solutions for the input
extended nets for all candidate replacement cells. In our exam-
ple, once a choice of the replacement cell and the corresponding
output buffering solution is known, the required times and ca-
pacitances at nodes I1 and I2 are computed and the solutions
propagated to T3 and then to T4 and finally to T0. Note that
the amount of computational savings in this case depends on the
net topology. For example, if the extended net at the input had
the topology shown in Fig. 6b, we could have propagated the
solutions from S3, S4, S5 and S6 to T4. Thus, we would have
needed to perform 4 computation/merging of input buffering so-
lutions (at I1, I2, T3 and T0) for every choice of the replacement
cell. In contrast, the number of computation/merging for the cor-
responding net in Fig. 6a is 5 per choice of a replacement cell.

6. Experimental results
To test the effectiveness of the GDM transform, we used six

optimized, mapped, block-placed, and globally routed industrial
designs. Table 1 shows the relevant statistics of these designs
such as the number of gates (a gate could be as simple as an in-
verter or as complex as an 8-bit adder), number of simple nets,
the total gate area of the design (in terms of the smallest inverter
in the library), and the original delay (i.e., delay before opti-
mization by our tool) of the mapped, block-placed, and globally-
routed circuit. This delay takes into consideration pin-to-pin de-
lays through the cells using the input slew-based linear delay

Example NB GS GS after NB GDM
�new �A CPU �new �A CPU �new �A CPU �new �A #invs CPU
(ns) (BC) (sec) (ns) (BC) (sec) (ns) (BC) (sec) (ns) (BC) (sec)

ex1 4.84 96 4 5.16 187 6 4.84 265 5 4.49 201 6 18
ex2 7.32 70 58 7.32 112 80 7.32 70 67 7.32 78 1 67
ex3 10.50 436 199 12.43 97 142 10.42 775 260 10.61 417 3 174
ex4 9.11 1075 214 9.03 676 202 9.11 1644 258 8.77 4653 61 392
ex5 10.50 622 485 12.13 1157 371 10.24 3552 673 9.70 3001 104 1133
ex6 43.00 2058 1444 48.62 583 1479 40.15 2604 1679 40.98 2508 48 2133

Example GDM after NB after GS NB: Net Buffer; GS: Gate Size; GDM = Generalized De Morgan transform.
�new �A CPU �new = Delay after optimization; �A = Area Penalty.
(ns) (BC) (sec) 1 BC = area of smallest inverter in library.

ex1 4.49 352 16 #invs = # cell replacements involving� 1 inversion at input/output nets.
ex2 7.32 70 73 CPU time includes time to read circuit.
ex3 10.42 775 288
ex4 8.75 1757 285
ex5 9.53 4302 934
ex6 39.79 3004 2222

Table 2. Experimental Results

Example #Gates #Nets Gate Area Original
(BC) Delay (ns)

ex1 356 409 1567 7.84
ex2 17.1K 26.0K 122.6K 7.44
ex3 32.0K 37.7K 343.6K 14.49
ex4 40.0K 48.1K 200.2K 11.38
ex5 86.7K 108.1K 381.6K 18.41
ex6 172.2K 210.9K 718.6K 56.36

1K = 1000, 1 BC = area of smallest inverter in library.
All benchmarks are in 0.35-� technology.

Table 1. Benchmark Statistics

model, and the wire loads and delays using the Elmore delay
model. The two largest designs, ex5 and ex6, are hi-vision TV
encoder/decoder designs. ex6 has 172K gates and 211K simple
nets. All experiments were performed on an UltraSparc 60 with
768MB RAM.

To evaluate the power of the GDM transform, we compared
it with net buffering (NB), with gate resizing (GS), and with a
composed transform consisting of net buffering followed by gate
resizing (NB + GS). The results are shown in Table 2. It can be
seen that GDM is much more effective in reducing the design
delay than NB or GS on all designs, except ex2 on which it
yields the same delay, and ex3 on which it is marginally worse
than NB, although much better than GS. The worse performance
of GDM as compared to NB can be attributed to the following
fact. As mentioned in Section 5.1, our GDM implementation
does not strictly subsume gate resizing or net buffering, because
it prohibits simultaneous resizing of any gates that share nets or
simultaneous buffering of two nets N1 and N2 whose root cells
share either N1 or N2. The effectiveness of GDM vis-a-vis NB
or GS can be correlated with the number of cell replacements
which require inversions at the input or output nets of the cell
(column #invs in Table 2). In the cases of ex2 and ex3, the
number of such cells is very small: 1 and 3 respectively, and
GDM is not very effective. However, on ex4, ex5, and ex6, this
number is much higher, resulting in greater delay improvement

by GDM vis-a-vis NB and GS.
We also find that GDM is more powerful than a combina-

tion of NB and GS in three out of six designs, equally powerful
in one, and less powerful in the remaining two. Finally, to see
the combined effect of all transforms, we applied NB followed
by GS followed by GDM (we found empirically that this yields
better results for our benchmarks than those obtained by apply-
ing GDM after NB after GS). It can be seen from Table 2 that
this achieves better delay results than NB + GS or GDM alone.
The average delay improvement over NB + GS is 3.2%, with
the best improvement being 7% for ex1 and ex5. Although this
may seem a small improvement, it is significant for the following
reasons:

1. Net buffering and gate resizing are the most popular in-
place optimization techniques used during layout in the in-
dustry today. However, if a circuit fails to meet timing re-
quirements even after an application of these techniques,
the designer is left with no choice but to painstakingly re-
synthesize, re-map, re-place, and re-route parts of the de-
sign. As can be seen from Table 2, the GDM transform
provides an additional in-place optimization technique that
can come to the rescue of the designer. The extra 4-5% de-
lay improvement obtained by GDM transform might just be
enough to meet the timing requirements.

2. Since GDM transformation is applied to a design that is
close to the final layout, even small timing improvements
can translate to improvements in the final circuit delay.

Of course, there is a run-time penalty associated with GDM. As
compared to NB + GS, GDM takes 66% more CPU time on av-
erage. Also, NB + GS + GDM takes 53% more time than NB +
GS. We discuss one possible way to reduce the run-time in the
next section.

7. Excessive buffering penalty
In some circuits, such as ex4 in Table 2, our current imple-

mentation of GDM can cause excessive area penalty. Consider

a cell F that is being GDM-transformed. Suppose the replace-
ment cell for F is G. The current implementation of the algo-
rithm attempts to optimally insert buffers and/or inverters for re-
ducing the delay on every input and output extended net of G,
regardless of whether the net is critical or not. Since delay op-
timization is usually area-hungry, this leads to a large number
of buffers being inserted on several non-critical input and out-
put nets and thus incurs a significant area penalty. Indeed, the
buffering algorithm invoked on a net determines the minimum
delay buffering strategy for the net regardless of whether it is
critical or not. Therefore, it should be the onus of the GDM al-
gorithm to present only critical nets to the delay-reducing buffer-
ing algorithm; the remaining nets should be buffered, if needed
(for ensuring correct phases of signals at sink nodes), using an
area-aware delay-constrained algorithm, such as in [14]. This
optimization is currently being investigated in our tool. We ex-
pect the area penalty due to buffering of input and output nets to
reduce considerably as a result of this optimization. We also ex-
pect a signficant speed-up in the run-time of the transformation,
since we can skip computing buffering solutions of non-critical
nets for which the source and sink phases remain unchanged.

8. Conclusions

In this paper, we have proposed a timing-oriented logic op-
timization technique, called Generalized De Morgan (GDM)
transform, that allows gate resizing, net buffering and De Mor-
gan transformation to interact at a fine level of granularity. It is
a powerful transform for optimizing circuits in the post-global
route-and-place, pre-detailed route-and-place stage of the de-
sign flow. At this stage, maximal improvements in performance
with minimal changes to the circuit configuration and layout are
desirable. The GDM transform replaces one cell by a GDM-
equivalent cell with the same number of inputs and outputs, and
simply inserts and/or deletes buffers and inverters on the ex-
tended input and output nets. Consequently, the placement and
routing is minimally disturbed. It deserves mention here that
there exist other techniques like transistor reordering that also
attempt to minimize delay without significantly disturbing the
layout. However, transistor reordering has not been considered
in the current work.

Our experimental results indicate that one pass of GDM trans-
formation applied to circuits in our benchmark suite produces
delays that are better than those obtained by gate sizing and net
buffering applied in concert. Although GDM is less powerful
than arbitrary re-synthesis and re-mapping, it is more layout-
friendly and is therefore of greater practical utility in a layout-
driven framework. We believe that powerful yet layout-friendly
transforms like the GDM transform are important steps in the
search for a predictable and acceptable solution of the timing
convergence problem.

References

[1] C. J. Alpert, A. Devagan, and S. T. Quay. Buffer insertion with
accurate gate and interconnect delay computation. In Proceedings
of the Design Automation Conference, pages 479–484, June 1999.

[2] C. J. Alpert and A. Devgan. Wire Segmenting For Improved
Buffer Insertion. In DAC, pages 588–593, 1997.

[3] C. J. Alpert, A. Devgan, and S. T. Quay. Buffer Insertion for
Noise and Delay Optimization. In Proceedings of the Design Au-
tomation Conference, pages 362–367, 1998.

[4] M. Berkelaar and J. Jess. Gate Sizing in MOS Digital Circuits
with Linear Programming. In The Proceedings of the European
Conference on Design Automation, 1990.

[5] C. L. Berman, J. L. Carter, and K. F. Day. The Fanout Prob-
lem: From Theory to Practice. In C. L. Seitz, editor, Advanced
Research in VLSI: Proceedings of the 1989 Decennial Caltech
Conference, pages 69–99. MIT Press, Mar. 1989.

[6] R. Carragher, R. Murgai, S. Chakraborty, M. Prasad, A. Srivas-
tava, and N. Vemuri. Layout-driven logic optimization. In Pro-
ceedings of the International Workshop on Logic Synthesis, pages
270–276, June 2000.

[7] O. Coudert, R. Haddad, and S. Manne. New Algorithms for Gate
Sizing: A Comparative Study. In Proceedings of the Design Au-
tomation Conference, pages 734–739, 1996.

[8] J. P. Fishburn. LATTIS: An Iterative Speedup Heuristic for
Mapped Logic. In 29 ACM/IEEE Design Automation Conference,
pages 488–491, 1992.

[9] J. P. Fishburn and A. E. Dunlop. TILOS: A Posynomial Program-
ming Approach to Transistor Sizing. In Proceedings of the Inter-
national Conference on Computer-Aided Design, pages 326–328.
IEEE, 1985.

[10] H. J. Hoover, M. M. Klawe, and N. J. Pippenger. Bounding Fan-
out in Logical Networks. Journal of the Association for Comput-
ing Machinery, 31(1):13–18, Jan. 1984.

[11] T. Ishioka, M. Murofushi, and M. Murakata. Layout Driven Delay
Optimization With Logic Re-synthesis. In Workshop Notes of the
International Workshop on Logic Synthesis, 1997.

[12] L. Kannan, P. Suaris, and H. G. Fang. A Methodology and Algo-
rithms for Post-Placement Delay Optimization. In Proceedings of
the Design Automation Conference, pages 327–332, 1994.

[13] D. Kung. A Fast Fanout Optimization Algorithm for Near-
Continuous Buffer Libraries. In Proceedings of the Design Au-
tomation Conference, pages 352–355, 1998.

[14] J. Lillis, C. K. Cheng, and T. T. Y. Lin. Optimal Wire Sizing and
Buffer Insertion for Low Power and a Generalized Delay Model.
In ICCAD, pages 138–143, 1995.

[15] L. P. P. P. van Ginneken. Buffer Placement in Distributed RC-
tree Networks for Minimum Elmore Delay. In Proceedings of
the International Symposium on Circuits and Systems, pages 865–
868, 1990.

[16] P. Rezvani, A. Ajami, M. Pedram, and H. Savoj. LEOPARD: A
Logical Effort based Fanout OPtimizer for ARea and Delay. In
Proceedings of the International Conference on Computer-Aided
Design, pages 516–519, November 1999.

[17] S. Hojat and P. Villarubia. An Integrated Placement and Synthesis
Approach for Timing Closure of PowerPC Microprocessor. In
International Conference on Computer Design, pages 206–210,
1997.

[18] S. S. Sapatnekar, V. Rao, P. Vaidya, and S. Kang. An exact solu-
tion to the transistor sizing problem for cmos circuits using con-
vex optimization. IEEE Transactions on Computer-Aided Design,
CAD-6(6):1621–1634, Nov. 1993.

[19] H. Savoj, K. Xiang, K. Pan, and A. Domic. Technology dependent
timing optimization. In Proceedings of the International Work-
shop on Logic Synthesis, June 1997.

[20] N. Shenoy, M. Iyer, R. Damiano, K. Harer, H.-K. Ma, and
P. Thilking. A Robust Solution to the Timing Convergence Prob-
lem in High Performance Designs. In International Conference
on Computer Design, October 1999.

[21] K. J. Singh. Performance Optimization of Digital Circuits. PhD
thesis, UC Berkeley, Dec. 1992.

[22] H. Touati. Performance-oriented Technology Mapping. PhD the-
sis, UC Berkeley, Nov. 1990. UCB/ERL M90/109.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

