
Input Space Adaptive Embedded Software Synthesis�

Weidong Wang
EE Department, Princeton University, Princeton, NJ

wwang@ee.princeton.edu

Anand Raghunathan
NEC USA, C&C Research Labs, Princeton, NJ

anand@ccrl.nj.nec.com

Ganesh Lakshminarayana
NEC USA, C&C Research Labs, Princeton, NJ

ganesh@ccrl.nj.nec.com

Niraj K. Jha
EE Department, Princeton University, Princeton, NJ

jha@ee.princeton.edu

Abstract
This paper presents a novel technique, called input space adap-
tive software synthesis, for the energy and performance optimiza-
tion of embedded software. The proposed technique is based on
the fact that the computational complexities of programs or sub-
programs are often highly dependent on the values assumed by
input and intermediate program variables during execution. This
observation is exploited in the proposed software synthesis tech-
nique by augmenting the program with optimized versions of one
or more sub-programs that are specialized to, and executed under,
specific input sub-spaces.

We propose a methodology for input space adaptive software
synthesis which consists of the following steps: control and value
profiling of the input program, application of compiler transfor-
mations as a preprocessing step, identification of sub-programs
and corresponding input sub-spaces that hold the highest poten-
tial for optimization, and transformation of the sub-programs to
realize performance and energy savings. We have evaluated input
space adaptive software synthesis by compiling the resulting op-
timized programs to two commercial embedded processors (Fu-
jitsu SPARCliteTM and Intel StrongARMTM). Our experiments
indicate that our techniques can reduce energy consumption of
the whole program by up to 7.8X (an average of 3.1X for SPAR-
Clite and 2.6X for StrongARM) while simultaneously improving
performance by up to 8.5X (an average of 3.1X for SPARClite and
2.7X for StrongARM), leading to an improvement in the energy-
delay product by up to 66.7X (an average of 8.2X for SPARClite
and 6.3X for StrongARM), at the cost of minimal code size over-
heads (an average of 5.9%).

1 Introduction
The increase in embedded software content of portable low-
power electronic systems and appliances has made it important
to consider power dissipation issues during the design of embed-
ded software. In this paper, we discuss a novel methodology and
techniques for optimizing energy consumption and performance
of embedded software through input space adaptive software syn-
thesis. Our techniques can be applied in conjunction with tradi-
tional software compilation, and are processor independent. Pro-
grams optimized through input space adaptive software synthesis
attain higher performance and energy efficiency by utilizing opti-
mized versions of one or more sub-programs that are specialized
to, and executed under, specific input sub-spaces.

1.1 Paper Overview and Contributions
Starting with an embedded software program to be optimized, and
typical input traces that are used to profile the program and gen-

�Acknowledgments: This work was supported by DARPA under con-
tract no. DAAB07-00-C-L516.

erate various statistics, we present techniques to perform the key
steps involved in the optimization of embedded software, which
consist of: (i) application of compiler transformations as a pre-
processing step to better explore the potential of our technique,
(ii) identification of sub-programs that hold the highest potential
for optimization, (iii) selection of the input sub-space(s) whose
occurrence can lead to significant reductions in the implemen-
tation complexity for the chosen sub-programs, and (iv) iterative
application of the known compiler transformations to achieve per-
formance and energy improvement.

We have evaluated the proposed technique for several embed-
ded software functions and programs using energy/performance
evaluation systems for Fujitsu SPARClite and Intel StrongARM
processors, as well as through direct current measurement on the
Itsy handheld computer [1]. Our experimental results demon-
strate energy reductions of up to 7.8X, and simultaneous perfor-
mance improvements of up to 8.5X. Further, we demonstrate that
our techniques are robust with respect to variations in the input
statistics.

The following key advantages of our technique (compared to
traditional software compilation flows) are worth noting:

1. It is able to spot unique optimization opportunities that can-
not be identified through an analysis of the software pro-
gram alone (as a result, these opportunities cannot be ex-
ploited by conventional software compilation techniques).
The proposed technique translates these unique optimiza-
tion opportunities into significant improvements in energy
and performance over and above those achieved by a tradi-
tional optimizing compiler.

2. It is processor independent. We achieve similar energy and
execution time reductions when we apply our technique to
two different commercial processors, as illustrated in Sec-
tion 4.

1.2 Related Work
Previous work related to energy efficient software design can be
broadly classified into the following categories: adaptation of
conventional compilation techniques to target low energy, and ex-
ploiting power saving features present in embedded processors,
such as shut down and dynamic clock/voltage scaling.

The use of instruction-level energy models to develop energy-
driven compiler optimizations (including instruction reordering,
reduction of memory operands, operand swapping in the Booth
multiplier, efficient usage of memory bands, and a series of
processor-specific optimizations) was proposed in [2]. In [3], a
paradigm for hardware/compiler co-design is presented to mini-
mize the activity in the memory hierarchy of a high-performance

processor. Source code optimization guidelines aimed at reduc-
ing energy consumption are presented in [4]. The idea of com-
pressing the most commonly executed instructions so as to re-
duce the energy dissipated in the system memory hierarchy and
buses is presented in [5, 6]. A compiler-assisted technique, based
on a profile-driven code execution, which finds an optimal level
of parallelism to trade off performance for energy efficiency, is
proposed in [7]. The idea of pipeline gating is proposed in [8]
for reducing energy consumption overheads of speculative execu-
tion in high-performance processors. The influence of high-level
compiler optimizations on system power is investigated in [9],
with a focus on loop and function transformations. The above
energy optimization techniques do not exploit the basic principle
underlying input space adaptive synthesis, hence they are comple-
mentary to, and can be used in conjunction with, the techniques
proposed in this paper.

Statistical information about a program’s inputs or variables
can also be used for optimization. Properties of inputs or prob-
lem instances have been used in the design of algorithms that dis-
play improved average or amortized computational complexity or
improved performance for specific parts of the input space [10].
Trace scheduling [11] exploits control-flow statistics by compact-
ing frequently occurring sub-programs using code motion. Value
profiling attempts to identify and exploit dynamic information
about program values that cannot be derived using traditional
static compile-time analysis [12, 13]. In parallel to our work,
automatic source code specialization has been proposed in [14],
in which selection of the functions to be optimized and the argu-
ment values is based purely on conventional profiling statistics,
such as the frequency of occurrence, and the sub-programs to be
optimized are restricted to function calls whose arguments fre-
quently assume the same value.

Input space adaptive synthesis differs significantly from these
techniques in the manner in which it exploits value statistics (e.g.,
reducing computational complexity of sub-programs as opposed
to deriving more compact VLIW schedules), the level of abstrac-
tion at which it is applied, and in the methodology and algorithms
used (e.g., the use of entropy based metrics to identify promising
sub-programs and input sub-spaces).

The concept of input space adaptive design was first introduced
in the context of hardware design in [15]. However, the idea of
input space adaptive design was explored only in the domain of
high-level synthesis of hardware ASICs. In our work, we have
integrated the concept of input space adaptation into the com-
piler flow of embedded software synthesis and have used enabling
compiler transformations to fully realize the impact on perfor-
mance and energy in the context of software. The techniques
developed in the context of hardware design do not apply in the
context of embedded software compilation, necessitating a differ-
ent methodology and algorithms.

2 Input Space Adaptive Software
Synthesis

In general, we optimize the identified sub-program by translating
the input sub-spaces into value constraints on variables, and iter-
atively applying known compiler transformations, which are not
applicable in the context of the original program.

Example 1: Consider the program shown in Figure 1(a) that
transforms a directed graph (DG) represented in the form of
a connectivity matrix, which is frequently used in many algo-
rithms [16]. The matrix org[][] stores the initial graph. The input
array trans[][] and coefficient coeff are used to transform the
DG. The number of the nodes in DG is given by SIZE. When a

given DG of size SIZE is represented by a SIZE�SIZE ma-
trix, the number of nonzero entries is equal to the number of edges
(Nedge) in DG. For most practical graphs, Nedge << SIZE2,
which means that the matrix representing DG (i.e., org[][]) is
a sparse matrix. The computational complexity can be signifi-
cantly reduced if we can take advantage of this fact. We demon-
strate how to automatically perform such an optimization us-
ing input space adaptive software synthesis. Figure 1(a) shows
how we can suitably transform the original program by adapt-
ing to the input statistics. Based on our analysis procedure, de-
scribed in detail in Section 3, the sub-program, which includes
<< 1;+ + 4; �1;+1;+2 within loop L3 in Figure 1(a) is se-
lected as the target sub-program. The target sub-space identified
by our procedure is described by equation org[i1][i3] == 0.

To qualify as an optimization target, the candidate behavior
should exhibit significantly reduced complexity when the inputs
belonging to the target sub-space are encountered and, the cho-
sen input sub-space should occur with a high frequency. In this
example, the input subspace described above occurs in the input
trace with a frequency of 87.5% 1. In the optimized program
in Figure 1(a), the original sub-program, consisting of operations
<< 1;++4; �1;+1;+2, is optimized into the sub-program con-
sisting of only +3. It is clear that the optimized sub-program
would evaluate much faster and consume much less energy than
the original sub-program. Therefore, the selected sub-program
and input sub-space are valid for our purpose.

Figure 1(b) details how the chosen sub-program and input sub-
space are used to derive the optimized sub-program, by represent-
ing the sub-program as a data flow graph (DFG) and applying a
sequence of well-known compiler transformations. It is important
to note that, although the compiler transformations used in this
procedure are known, they are applicable to the identified sub-
program only in the context of the chosen input sub-space, i.e., an
optimizing compiler would not be able to apply these transforma-
tions by merely analyzing the original program. Statements in the
selected sub-program are annotated with the names of the corre-
sponding nodes in the DFG. For example, the statement tmp1++
corresponds to node ++ 4 in the DFG.

The inputs to the DFG in Figure 1(b) are org[i1][i3]
and trans[i3][i2] and the outputs are result1[i1][i2] and
result2[i1][i2]. Step 1 transforms the sub-programs by apply-
ing the input sub-space constraint, i.e., org[i1][i3] == 0, to the
sub-program. By employing the constant propagation compiler
transformation, the << 1 operation in the DFG is eliminated in
Step 2. Again, by applying constant propagation in Step 3, the
++4 operation is replaced by constant value 1. At this stage, we
observe that the �1 operation, tmp2 = tmp1�trans[i3][i2], be-
comes tmp2 = 1� trans[i3][i2] = trans[i3][i2]. This enables
us to eliminate the �1 operation by applying the strength reduc-
tion compiler transformation in Step 4. Now, we find that the +1
and +2 operation nodes in the DFG can be merged in Step 5, by
using the common-subexpression elimination technique. Finally,
we obtain our optimized sub-program, which includes only one
operation node in the DFG.

Based on the above example, the following aspects of our ap-
proach are worth noting:

� The target input sub-space chosen for optimization should
occur with a high frequency (and is, therefore, effective).
In general, different application domains have distinct data

1Input sub-space frequency differs in different input traces. The en-
ergy/performance benefits of our technique are proportional to this fre-
quency, rather than being based on the exact input trace itself. Hence, our
technique is quite resilient with respect to variations in the input statistics,
as demonstrated through experiments in Section 4.

Array dg(Array org, trans, int SIZE, coeff) {
int tmp1, tmp2;
Array result
for(int i1 = 0; i1 < SIZE; i1++){ // <1, ++1(L1)

for(int i2 = 0; i2 < SIZE; i2++) { // <2, ++2(L2)
result1[i1][i2] = result2[i1][i2] = 0;
for(int i3 = 0; i3 < SIZE; i3++) { // <3, ++3(L3)

tmp1 = org[i1][i3] << 2; // <<1
tmp1++; // ++4
tmp2 = tmp1 × trans[i3][i2]; //*1
result2[i1][i2]=result1[i1][i2]+trans[i3][i2];// +2
result1[i1][i2] += tmp2; //+1

}
}

}
for(int i1 = 0; i1 < SIZE; i1++) // <4, ++4(L4)

for(int i2 = 0; i2 < SIZE; i2++) // <5, ++5(L5)
result1[i1][i2] = result1[i1][i2] × coeff; // *2

return result1, result2;
}

Array dg(Array org, trans, int SIZE, coeff) {
int tmp1, tmp2;
Array result
for(int i1 = 0; i1 < SIZE; i1++){ // <1, ++1(L1)

for(int i2 = 0; i2 < SIZE; i2++) { // <2, ++2(L2)
result1[i1][i2] = result2[i1[i2] = 0;
for(int i3 = 0; i3 < SIZE; i3++) { // <3, ++3(L3)

if(org[i1][i3] == 0){ //==1
result1[i1][i2] += trans[i3][i2]; //+3
result2[i1][i2] = result1[i1][i2]

}
else{

tmp1 = org[i1][i3] << 2; // <<1
tmp1++; // ++4
tmp2 = tmp1 × trans[i3][i2]; //*1
result2[i1][i2]=result1[i1][i2]+trans[i3][i2];//+2
result1[i1][i2] += tmp2; //+1

}
}

}
}
for(int i1 = 0; i1 < SIZE; i1++) // <4, ++4(L4)

for(int i2 = 0; i2 < SIZE; i2++) // <5, ++5(L5)
result1[i1][i2] = result1[i1][i2] × coeff; // *2

return result1, result2;
}

org[i1][i3]==0

Step 1
Apply sub-space
constraint

Step 2
Constant
propagation

Step 5
Common
sub-expression
elimination

<<1

++4

*1

+2

+1

org[i1][i3]

trans[i3][i2]

result1[i1][i2]

result2[i1][i2]

<<1

++4

*1

+2

+1

0

trans[i3][i2]

result1[i1][i2]

result2[i1][i2]

++4

*1

+2

+1

trans[i3][i2]

result1[i1][i2]

result2[i1][i2]

0

*1

+2

+1

trans[i3][i2]

result1[i1][i2]

result2[i1][i2]

1

Step 3
Constant
propagation

Step 4
Strength
reduction

trans[i3][i2]

result1[i1][i2]
+2

+1

result2[i1][i2]

+3

org[i1][i3]=0

original
sub-
program

trans[i3][i2]org[i1][i3]
-

+

(a) (b)

Figure 1: The DG example: (a) Original and optimized programs in a high-level language, and (b) sequence of optimizations
applied to the DFG of the chosen sub-program under the selected input sub-space

characteristics (e.g., in the sparse matrix example, only a
small fraction of the entries are non-zero values, etc.), and
the optimization conditions chosen need to be identified ap-
propriately. Most current optimization frameworks do not
consider the program in the context of its application or do-
main data statistics, and would therefore be unable to spot
such optimization opportunities.

� The energy consumption of input space adaptive programs
depends on the choice of the sub-program and input sub-
space. In the above example, the use of a different sub-
space org[i1][i3] == 1 leads to a reduction from five op-
erations to three operations, which is less beneficial than
the reduction from five operations to one operation demon-
strated in the example. This necessitates the development
of accurate and efficient techniques to quantitatively assess
the optimization potential for different input sub-spaces and
sub-programs, as presented in Section 3.

Array dg(Array org, trans, int SIZE, coeff) {
int tmp1, tmp2, tmp3;
Array result
for(int i1 = 0; i1 < SIZE; i1++){ // <1, ++1(L1)

for(int i2 = 0; i2 < SIZE; i2 += 2) { // <2, +1(L2)
i4 = i2 + 1; // +2
result1[i1][i2] = result1[i1][i4] = 0;
result2[i1][i2] = result2[i1][i4] = 0;
for(int i3 = 0; i3 < SIZE; i3++) { // <3, ++3(L3)

tmp1 = org[i1][i3] << 2; // <<1
tmp1++; // ++4
tmp2 = tmp1 × trans[i3][i2]; //*1
tmp3 = tmp1 × trans[i3][i4]; //*2
result2[i1][i2]=result1[i1][i2]+trans[i3][i2];/ /+3
result2[i1][i4]=result1[i1][i4]+trans[i3][i4];//+4
result1[i1][i2] += tmp2; // +5
result1[i1][i4] += tmp3; // +6

}
}

}
for(int i1 = 0; i1 < SIZE; i1++) // <4, ++4(L4)

for(int i2 = 0; i2 < SIZE; i2++) // <5, ++5(L5)
result1[i1][i2] = result1[i1][i2] × coeff; // *2

return result1, result2;
}

Figure 2: The DG example program after application of
loop unrolling as an enabling step

While the above example demonstrates how the basic concept
of input space adaptive software can be used to optimize energy
and performance, its potential is not fully explored due to the fact
that we have not optimized beyond the loop boundary. We com-
piled this example to the Fujitsu SPARClite and Intel StrongARM
embedded processors and performed instruction-level energy es-
timation using the tools presented in [17] and [18]. Experimental
results indicated energy reductions of 27.2% and 27.3%, respec-
tively. In the next example, we demonstrate that targeted use of
compiler transformations to preprocess the program can signifi-
cantly increase the energy savings obtained through input space
adaptive software synthesis.
Example 2: Consider again the original program shown in Fig-
ure 1(a). Having identified the target sub-program (indicated
as the shaded block of code), we apply preprocessing compiler
transformations to increase the potential for our technique, as ex-
plained next. In Figure 2, we unroll loop L2 by increasing the

step length from 1 to 2 and reordering the instructions appropri-
ately to enable our technique. After this step, we actually “merge”
two of the previously selected sub-programs, which are in adja-
cent iterations of previous L2, into a new sub-program, which
becomes the target of our technique. We also reduce some redun-
dant operations. For example, << 1 and ++ 4 were previously
executed for each iteration of the loop, but now we execute them
only once, instead of twice, in the new loop iteration which is
generated from two of the previous iterations. Note that the extent
to which loop unrolling is performed presents a tradeoff, which
can be evaluated using the quantitative techniques presented in
Section 3. This step breaks the loop boundary and exposes more
operations to our technique.

Array dg(Array org, trans, int SIZE, coeff) {
int tmp1, tmp2, tmp3;
Array result
for(int i1 = 0; i1 < SIZE; i1++){ // <1, ++1(L1)

for(int i2 = 0; i2 < SIZE; i2 += 2) { // <2, +1(L2)
i4 = i2 + 1; // +2
result1[i1][i2] = result1[i1][i4] = 0;
result2[i1][i2] = result2[i1][i4] = 0;
for(int i3 = 0; i3 < SIZE; i3++) { // <3, ++3(L3)

if(org[i1][i3] == 0){ // ==1
result1[i1][i2] += trans[i3][i2]; // +3
result1[i1][i4] += trans[i3][i4]; // +4
result2[i1][i2] = result1[i1][i2]
result2[i1][i4] = result1[i1][i4]

}
else{

tmp1 = org[i1][i3] << 2; // <<1
tmp1++; // ++4
tmp2 = tmp1 × trans[i3][i2]; //*1
tmp3 = tmp1 × trans[i3][i4]; //*2
result2[i1][i2]=result1[i1][i2]+trans[i3][i2];//+5
result2[i1][i4]=result1[i1][i4]+trans[i3][i4];// +6
result1[i1][i2] += tmp2; // +7
result1[i1][i4] += tmp3; // +8

}
}

}
}
for(int i1 = 0; i1 < SIZE; i1++) // <4, ++4(L4)

for(int i2 = 0; i2 < SIZE; i2++) // <5, ++5(L5)
result1[i1][i2] = result1[i1][i2] × coeff; // *2

return result1, result2;
}

Array dg(Array org, trans, int SIZE, coeff) {
int tmp1, tmp2, tmp3;
Array result
for(int i1 = 0; i1 < SIZE; i1++){ // <1, ++1(L1)

for(int i2 = 0; i2 < SIZE; i2 += 2) { // <2, +1(L2)
i4 = i2 + 1; // +2
result1[i1][i2] = result1[i1][i4] = 0;
result2[i1][i2] = result2[i1][i4] = 0;
for(int i3 = 0; i3 < SIZE; i3++) { // <3, ++3(L3)

if(org[i1][i3] == 0){ // ==1
result1[i1][i2] += trans[i3][i2]; // +3
result1[i1][i4] += trans[i3][i4]; // +4
result2[i1][i2] = result1[i1][i2]
result2[i1][i4] = result1[i1][i4]

}
else{

tmp1 = org[i1][i3] << 2; // <<1
tmp1++; // ++4
tmp2 = tmp1 × trans[i3][i2]; //*1
tmp3 = tmp1 × trans[i3][i4]; //*2
result2[i1][i2]=result1[i1][i2]+trans[i3][i2];//+5
result2[i1][i4]=result1[i1][i4]+trans[i3][i4];// +6
result1[i1][i2] += tmp2; // +7
result1[i1][i4] += tmp3; // +8

}
}

}
}
for(int i1 = 0; i1 < SIZE; i1++) // <4, ++4(L4)

for(int i2 = 0; i2 < SIZE; i2++) // <5, ++5(L5)
result1[i1][i2] = result1[i1][i2] × coeff; // *2

return result1, result2;
}

Figure 3: The DG example: (a) after loop unrolling, and (b)
after application of input space adaptive software synthesis
to the unrolled program

Figure 3 shows the optimized program resulting from the ap-
plication of input space adaptive software synthesis to the pro-
gram in Figure 2. From this optimized program, we can see that
under the input sub-space, the original sub-program, consisting
of operations << 1;++ 4; �1; �2;+3;+4;+5;+6 in Figure 2,
is replaced by the optimized sub-program which only contains
operations +3;+4 in Figure 3. A larger complexity reduction is
obtained, since we merged the two sub-programs which are un-
der the same input sub-space, resulting in higher energy and per-
formance improvements. When compiled to the SPARClite and
StrongARM embedded processors, the optimized program shown
in Figure 3 consumes, respectively, 44.9% and 39.5% less en-

ergy and executes in 45.2% and 40.2% less time, compared to the
original program in Figure 1(a). After compilation using the gcc
compiler, we compare the executable code size of the optimized
program in Figure 3 and that of the original program. The result
shows that the above improvement incurs only 3:4% increase in
code size, which is quite small.

From the above examples, the following observations can be
made for optimizing programs with input space adaptive software
synthesis:

� Our technique is input statistics driven, while most
conventional software optimization techniques are input-
independent. As experimental results will show, significant
energy/performance benefits are still obtained even when
the optimized program is subject to traces with very dif-
ferent input statistics.

� Sub-programs that account for a larger portion of the total
execution time and energy consumption of the design are
better targets for optimization.

� For a given sub-program, input sub-spaces that occur with a
higher probability may yield larger savings.

� Different input sub-spaces lead to different reductions in the
complexity of the chosen sub-program. The above two ob-
servations are incomplete since they do not consider the po-
tential for complexity reduction. We capture the potential
for simplification using an entropy-based metric that is pre-
sented in Section 3.

3 Methodology and Algorithms
In this section, we present an overview and algorithmic details
for our software optimization technique. Section 3.1 presents the
background in the context of a compiler flow and a brief descrip-
tion of input space adaptive software synthesis. Section 3.2 ex-
plains the important steps in detail.

3.1 An Overview
Figure 4(a) presents a compiler flow [19]. The shaded phase,
Input space adaptive software synthesis, represents the phase
where we apply our technique. Most of the high level and lo-
cal optimizations occur in this phase, while in the lower phases,
the optimizations mainly include detailed instruction selection,
machine-dependent optimizations, etc. IR means intermediate
representation and Opt. IR stands for optimized IR. The inputs
to our algorithm are an intermediate representation of the pro-
gram, typical input traces and designer-specified values for a set
of optimization parameters. The major optimizations involved in
this phase include procedure in-lining, loop transformations, al-
gebraic transformation, constant propagation, strength reduction,
common sub-expression elimination, or a sequence of compiler
transformations. The output is the optimized input space adap-
tive program, which goes to the Global optimizer phase of the
compiler flow.

Figure 4(b) shows the algorithm flow for input space adaptive
software synthesis. We first profile the input program with the
input traces. In addition to extracting control-flow statistics, we
also compute entropy values for each variable in the program.
For each input program, we identify the p most promising sub-
programs as candidates for further optimization. Next, appro-
priate compiler transformations, e.g., loop unrolling, procedure
in-lining, etc., are applied to the input program as preprocess-
ing steps illustrated in Section 2. For each selected sub-program,
we evaluate the energy effect of applying the input sub-space to
the sub-program and select q input sub-spaces that lead to maxi-
mum energy reductions. Parameters p and q are user-supplied for

(a)
(b)

Pro file p rogram
w ith input traces

Apply preprocessing
com piler transform ations

Iden tify p rom ising
sub-program s

C hoose the input
sub-spaces that lead to

m ost energy savings

O ptim ize the selected
sub-program s under the
chosen input sub-spaces

T ransform program by
add ing input sub-

space condition and
optim ized sub-

program

Evaluate energy
savings

F ron t-end per
language

Input space
adaptive softw are

syn thesis

G lobal
optim izer

C ode
generator

Source

IR

Opt.
IR

Inpu ts

O utputs

Target
m achine code

Figure 4: The algorithm: (a) compiler flow, and (b) algo-
rithm for input space adaptive software synthesis

controlling the aggressiveness of optimization. Finally, the cho-
sen sub-programs are simplified by applying optimizing compiler
transformations after constraining their input variables. Note that
the optimized sub-programs only execute under the chosen input
sub-spaces.

Similar to the technique in [15], we employ an entropy-based
metric in selecting the sub-programs and input sub-spaces. The
entropy, Ent, of a variable, which can take one of N values, is
described by the following equation

Ent = ��N
i=1pilogpi (1)

In this equation, pi is the probability that the variable takes the
ith value. A random variable that is distributed uniformly in the
range [0; 2n�1 � 1] has an entropy of n. A variable that can
take on two values with a probability of 0:5 each has an entropy
of 1, and a variable that has a constant value has an entropy of
0. The above results suggest that entropy correlates well with
a variable’s information content [20, 21]. Thus, for a given set
of input vectors, a lower output entropy implies that the outputs
have lower information content, and can hence be realized by a
simpler (more energy-efficient) program. Note that the entropy
values are calculated only once, during the simulation step. Fur-
ther details of how we use entropy in our procedure are provided
in Section 3.2.3.

3.2 Details
In this section, we give further details of the above-mentioned
steps.

3.2.1 Energy Evaluation
We need to evaluate the energy savings in selecting the sub-
programs and input sub-spaces. Tiwari et al. [2] use instruction-
level energy models to estimate the energy cost of a program. For
any given program, P , its overall energy cost, EP , is given by
Equation (2). The base cost, Bi of each instruction, i, weighted
by the number of times it is executed, Ni, is summed up to give
the base cost of the program. To this, the circuit state overhead,
Oi;j , for each pair of consecutive instructions, (i; j), weighted by
the number of times the pair is executed, Ni;j , is added. The en-
ergy contribution, Ek, of other inter-instruction effects, k, (stalls
and cache misses) that would occur during the execution of the
program, is finally added.

EP = �i(Bi �Ni) + �i;j(Oi;j �Ni;j) + �kEk (2)

In a similar way, we can compute the energy cost of a program
based on the energy evaluation of sub-programs, as opposed to
individual instructions. Note that when large sub-programs, such
as basic blocks, are considered, most of the inter-instruction ef-
fects in the second and third terms of Equation (2) have been ac-
counted for in the base cost of sub-programs. Therefore, for a
given program, P , we compute its energy cost, EP , using Equa-
tion (3), where E(�i) represents the base cost of sub-program �i,
and N(�i) represents the number of times that �i is executed.

EP = �i(E(�i)�N(�i)) (3)

If we replace a sub-program, �, with an optimized sub-program,
�opt, the optimized energy cost for � we can achieve is shown
in Equation (4). �org; �opt represent the original and optimized
sub-programs, respectively. N(�org) +N(�opt) = N(�) is the
total number of times that � is executed in the original program.

E(�) = E(�org)�N(�org) +E(�opt)�N(�opt) (4)

Equation (5) shows the energy savings we achieve by optimizing
�.

Esaving = (E(�org)�E(�opt))�N(�opt) (5)

= �E �
N(�opt)

N(�)
�N(�) (6)

= �E � p(�)�N(�) (7)

From Equation (7), we observe that the energy saving is directly
related to p(�), the probability that the optimized sub-program
is executed, and the energy difference between the original and
optimized sub-program, �E . In Section 3.2.3, we describe how
to select the sub-programs and input sub-spaces based on Equa-
tion (7).

3.2.2 Compiler Transformations
In our algorithm, we employ compiler transformations in two
steps: by applying preprocessing compiler transformations, and
transforming the program by adding input sub-space conditions
and optimized sub-programs. In Section 2, we illustrated in
detail how we employed compiler transformations in these two
steps. The computational complexity of determining an opti-
mal sequence of transformations is known to be very high [19].
Hence, for each of the above two steps, we consider only a subset
of all possible compiler transformations as candidates, based on
an analysis of transformations that are most applicable and bene-
ficial at each step.

In the preprocessing step, we found loop transformations, in-
cluding loop interchange, loop fusion, loop fission, and loop un-
rolling; procedure inlining; algebraic transformation, e.g., asso-
ciativity, distributivity, etc., to be most beneficial. Therefore, we
choose the above-mentioned compiler transformations as candi-
dates in this step. In transforming the program by adding input
sub-spaces, we feed the selected sub-program, along with the in-
put sub-space, to procedures which perform the compiler opti-
mizations under the input sub-space constraint [22]. The transfor-
mations used in this step include constant propagation, strength
reduction, and algebraic transformations.

3.2.3 Sub-programs and Input Sub-spaces
The concept of sub-program and input sub-space was first intro-
duced in [15]. We will revisit this problem in the context of soft-
ware synthesis. From Equation (7), we see that the energy saving
is directly related to the energy difference of the original and op-
timized sub-programs. Unfortunately, we do not have the exact

energy consumption number of the optimized sub-program with-
out knowing the input sub-spaces. What we can do is to define a
metric to evaluate the optimization potential of the sub-program,
as discussed next.

In Section 3.1, we claimed that, for a given set of input vec-
tors, a lower output entropy value implies that the outputs have
lower information content [20, 21], and can hence be realized
by a simpler (more energy-efficient) program. We calculate the
word-level entropy. This step is performed only once during the
simulation step. The average entropy value of the outputs of �
is computed using Equation (8), where M is the number of the
word-level outputs, Oi, belonging to �.

avg entropy(O) = Q�(O) =
1

M
�M
i=1Ent(Oi) (8)

In cases where the output, O, of a sub-program is optimized to be
proportional to one of its inputs, I, Ent(O

I
) = 0 since O

I
is a con-

stant, while Ent(O) = Ent(I) might be high. Obviously, this is
a good candidate for our technique. Therefore, we also take into
account the relative entropy, i.e., the entropy of the ratio of the
word-level values of the output and input. A sub-program with
more instructions clearly has more potential to be optimized by
our technique. We use instr count, C(�), to represent the num-
ber of instructions executed when � is encountered. Equation (9)
shows the metric we use to select the sub-program. The larger the
value of metric1(�), the higher the potential of � for input space
adaptive software synthesis.

metric1 (�) =
C(�)

min(Q�(O); Q�(
O
I
))

(9)

In selecting the sub-programs to be optimized, a bottom-up
method is employed, which means that each sub-program is ini-
tially formed from a single instruction. Each time we group a
neighboring instruction, we evaluate metric1, until the value of
metric1 is maximized. The sub-program generated is saved for
later optimization. We then start with an instruction outside the
generated sub-programs and repeat the above process until all the
instructions are in one of the sub-programs, and p sub-programs
with the largest metric1 are chosen, where p is a user-provided
parameter to control the aggressiveness of optimization.

The next step is to identify q input sub-spaces for each selected
sub-program. In Equation (7), we observe that the probability
that the input sub-space is executed directly affects the energy
savings. We define another metric, metric2, for selecting the input
sub-spaces:

metric2 (�; �) = metric1(�; �)� p(�; �) (10)

where metric1(�; �) represents the metric1 value for sub-
program � under input sub-space � and p(�; �) represents the
probability that � is executed under sub-space �.

It is computationally too expensive to try all the possible input
sub-spaces. In our algorithm, the input conditions (input sub-
spaces, in our terminology) we employ include =; <;>; 6=;�
;�. The optimization conditions we use include: (i) one-term:
Ii = 0; 2t; t = 0; 1; 2; : : :, where Ii is one of the S inputs of the
sub-program, and (ii) two-term: Ii = (6=; <;>;�;�)Ij ; i; j =
1; 2; : : : ; S, where Ii and Ij are two of the S inputs of the sub-
program. For each sub-program, we select q conditions (one-term
or two-term) that result in the largest metric2 value.

4 Experimental Results
We applied our technique to several embedded software pro-
grams. Typical input traces were assumed to be available for all
the programs. Note that it is only the input statistics of the input

Table 1: SPARClite results: delay(10�3s), energy(10�3J) and energy�delay(10�6J�s)
program original optimized

energy delay E*D energy E.S.(%) delay P.I.(%) E*D E*D.R. (%) C.O. (%)
DG 104.2 113.3 11805.9 57.4 44.9 62.1 45.2 3564.5 69.8 3.4
LP 128.1 139.6 17882.8 37.9 70.4 40.9 70.7 1550.1 91.3 20.9
MUL 5.3 5.7 30.2 0.7 86.8 0.8 86.0 0.6 98.2 1.3
DFT 26.0 28.0 728.0 3.5 86.5 3.9 86.1 13.7 98.1 0.8
FINITE 21.2 23.3 494.0 9.1 57.1 9.9 57.5 90.1 81.8 8.5
COSINE 15.6 16.9 263.4 3.8 75.6 4.2 75.2 16.0 94.0 8.6
GCD 70.1 77.2 5411.7 30.0 57.3 35.6 53.9 1068.0 80.3 1.0
CHKSUM 28.2 31.0 874.2 9.6 66.0 10.5 66.1 100.8 88.5 2.8

Table 2: StrongARM results: delay(10�6s), energy(10�6J) and energy�delay(10�9J�s)
program original optimized

energy delay E*D energy E.S.(%) delay P.I.(%) E*D E*D.R. (%)
DG 648.8 1799.0 1167.2 392.5 39.5 1076.0 40.2 422.3 63.8
LP 539.1 1491.0 803.8 203.1 62.3 558.0 62.6 113.3 85.9
MUL 61.9 160.1 9.9 27.3 55.9 72.1 55.0 2.0 80.2
DFT 232.7 673.0 156.6 30.1 87.1 79.0 88.3 2.4 98.5
FINITE 788.0 2020.4 1592.1 353.2 55.2 912.0 54.9 322.1 80.0
COSINE 130.9 337.0 44.1 54.8 58.1 139.2 58.8 7.6 82.7
GCD 900.7 2422 2181.5 316.3 64.9 854 64.7 270.1 87.6
CHKSUM 183.1 490.2 89.8 47.0 74.3 125.1 74.5 5.9 93.5

traces that are important, not the traces themselves. The original
programs were optimized by applying the procedure described in
Section 3. We compiled the programs to Fujitsu SPARClite and
Intel StrongARM SA-1100 embedded processors and performed
instruction-level energy estimation [17, 18] to evaluate the en-
ergy savings. The accuracy of these energy estimation techniques
has been confirmed earlier (e.g., an accuracy of 97% in [18]).
The resulting programs were compared with respect to the fol-
lowing metrics: performance, energy, energy-delay product and
code size. The results obtained are summarized in Tables 1 and
2. Of our benchmarks, DG, which implements the transformation
of Directed Graph, was discussed in Section 2. LP represents
a linear predictor program. MUL performs multiplication of two
polynomials. Discrete Fourier transform (DFT), finite impulse re-
sponse (FINITE) filter and discrete cosine transform (COSINE)
are well-known signal processing benchmarks [23]. GCD repre-
sents the program which computes the greatest common divisor
of two integers. CHKSUM stands for the widely used checksum
program.

In Tables 1 and 2, major column program represents the name
of the software programs. Columns energy, delay and E*D repre-
sent energy consumption, execution time, and energy-delay prod-
uct, respectively. Columns E.S., P.I. and E*D.R. represent the en-
ergy savings, performance improvement and energy-delay prod-
uct reduction, respectively.

By employing our technique, the average energy reductions
for SPARClite and StrongARM processors are 68.1% (i.e., 3.1X)
and 62.1% (i.e., 2.6X), respectively (the averages were calcu-
lated based on comparing the sum of the values in the respec-
tive columns). Note that our techniques result in simultaneous
energy savings and performance improvements. Hence, we also
present performance results for our technique. The average per-
formance improvements for SPARClite and StrongARM proces-
sors are 67.6% (i.e., 3.1X) and 62.4% (i.e., 2.7X), respectively.
Note that energy consumption savings closely follow improve-
ments in performance. This is because the variation in power

consumption of different instructions in the instruction set is typ-
ically small [18].

The energy � delay results for the programs (product of the
energy column and delay column from Tables 1 and 2) are cal-
culated and shown in columns E*D and E*D.R.. The product is
reduced by an average of 87.8% (i.e., 8.2X) for the SPARClite
processor, and 84.1% (i.e., 6.3X) for the StrongARM processor.

The energy results are also shown in Figure 5, in which the
energy consumption of the original case is normalized to 1 for all
examples. Cases1-4 represent, respectively: case1: the original
program, which corresponds to the original columns in Tables 1
and 2; case2: the optimized program without the compiler pre-
processing step; case3: the original program after compiler opti-
mization (preprocessing step); and case4: the optimized program
with the compiler preprocessing step, which corresponds to the
optimized columns in Tables 1 and 2. For all the examples, case4
leads to the best program in terms of energy and performance.
Measurements on Itsy pocket computer: To verify the validity
of our experimental results, we measured the energy consump-
tion for the original and optimized versions of LP, FINITE, and
CHKSUM by running them on the Itsy v2.2 pocket computer [1].
The Itsy features a StrongARM SA-1100 processor running at 206
MHz, under the embedded Linux Operating System. The Na-
tional Instruments 6035E Data AcQuisition (DAQ) system was
used to sample the current consumption of the processor, and
the samples were fed into the LabView software and analyzed to
compute the energy consumption for the time window of interest.
The measured energy savings resulting from input space adap-
tive software synthesis were as follows: 66.2% for LP, 54.1% for
FINITE, and 80.2% for CHKSUM. These correspond closely to
the E.S. percentages in Table 2.
Code size overhead: To see the overhead of our technique, we
also compiled all the examples with the gcc compiler, and com-
pared the executable code size of the optimized program and that
of the original one. The result is shown in column C.O. in Ta-
ble 1 only, because we observed the overhead to be processor-

independent and compiler-dependent. The overall increase in
code size is very small (average of 5.9%).

(a)

0

0.2

0.4

0.6

0.8

1

1.2

DG LP MUL DFT FINITE COSINE GCD CHKSUM

En
er
gy

Co
ns
um
pt
io
n

case1 case2 case3 case4

(b)

0

0.2

0.4

0.6

0.8

1

1.2

DG LP MUL DFT FINITE COSINE GCD CHKSUM

En
er
gy
 C
on
su
mp
ti
on

case1 case2 case3 case4

Figure 5: Energy results for input space adaptive software
synthesis: (a) SPARClite processor, (b) StrongARM proces-
sor

Sensitivity to input statistics: As explained in Section 2, our
technique is trace driven. However, as mentioned earlier, the
extent of energy and performance improvements are dependent
upon the characteristics of the input trace, rather than the ex-
act input trace itself. Specifically, the probability with which
the chosen input sub-space occurs is the primary factor in de-
termining the improvements. In order to study this dependency,
we compiled the original and optimized programs for the DG
and LP examples to Fujitsu SPARClite processor, and performed
instruction-level energy estimation to evaluate the energy sav-
ings under different input traces. For the DG example (case2
vs. case1), when the input sub-space occurred with probabili-
ties of 87:5% (as in Example 1), 50%, and 10:9%, the energy
reductions were 27:2%, 17:3%, and 6:9%, respectively. For the
LP example (case4 vs. case1), under sub-space probabilities of
85:7%, 42:9%, and 14:3%, the energy reductions were 70:4%,
44:3%, and 24:6%, respectively. Similar results were obtained
in the case of the Intel StrongARM processor, and for the other
example programs we considered.

From the above experiment, we can conclude that the energy
and performance improvements are quite robust to variations in
the input trace or input statistics. Hence, we believe that input
space adaptive software synthesis can be quite useful even if only
partially accurate information is available about the operating en-
vironment of the program (i.e., its typical input traces).

5 Conclusions
In this paper, we presented an input space adaptive software op-
timization technique for improving performance and energy con-
sumption. We presented algorithms to perform the different op-

timization steps, including application of compiler transforma-
tions as a preprocessing step, selection of the sub-programs to
be optimized and the targeted input sub-spaces, and transforma-
tions of the embedded software by optimizing the sub-programs.
Experimental results demonstrated that our techniques produce
optimized programs which perform significantly faster and, si-
multaneously, consume significantly less energy than the original
programs, leading to over an order-of-magnitude improvement in
the energy-delay product.

References
[1] “The Compaq Itsy Pocket Computer Project.

(http://www.research.compaq.com/wrl/projects/itsy/index.html).”.
[2] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded

software: A first step towards software power minimization,” IEEE
Trans. VLSI Systems, vol. 2, pp. 437–445, Dec. 1994.

[3] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis, “Archi-
tectural and compiler support for energy reduction in the memory
hierarchy of high performance microprocessors,” in Proc. Int. Symp.
Low Power Electronics & Design, pp. 70–75, Aug. 1998.

[4] T. Simunic, G. De Micheli, and L. Benini, “Energy-efficient design
of battery-powered embedded systems,” in Proc. Int. Symp. Low
Power Electronics & Design, pp. 212–217, Aug. 1999.

[5] E. Macii, A. Macii, M. Poncino, and L. Benini, “Selective in-
struction compression for memory energy reduction in embedded
systems,” in Proc. Int. Symp. Low Power Electronics & Design,
pp. 206–211, Aug. 1999.

[6] H. Lekatsas, J. Henkel, and W. Wolf, “Code compression for
low power embedded system design,” in Proc. Design Automation
Conf., pp. 294–299, June 2000.

[7] D. Marculescu, “Profile-driven code execution for low power dis-
sipation,” in Proc. Int. Symp. Low Power Electronics and Design,
pp. 253–255, Aug. 2000.

[8] S. Manne, D. Grunwald, and A. Klauser, “Pipeline gating: Specu-
lation control for energy reduction,” in Proc. Int. Symp. Computer
Architecture, pp. 1–10, June 1998.

[9] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye, “Influ-
ence of compiler optimization on system power,” in Proc. Design
Automation Conf., pp. 304–307, June 2000.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. McGraw Hill, New York, 1990.

[11] J. A. Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE Trans. Computers, vol. 30, pp. 478–490, July
1981.

[12] B. Calder, P. Feller, and A. Eustace, “Value profiling and optimiza-
tion,” J. Instruction-level Parallelism (http://www.jilp.org/), vol. 1,
pp. 1–6, Mar. 1999.

[13] R. Muth, S. Watterson, and S. Debray, “Code specialization based
on value profiles,” in Proc. Int. Static Analysis Symposium, pp. 340–
359, June 2000.

[14] E. Chung and L. Benini, “Automatic source code specialization for
energy reduction,” in Proc. Int. Symp. Low Power Electronics &
Design, Aug. 2001.

[15] W. Wang, G. Lakshminarayana, A. Raghunathan, and N. K. Jha,
“Input space adaptive design: A high-level methodology for energy
and performance optimization,” in Proc. Design Automation Conf.,
pp. 738–743, June 2001.

[16] R. Sedgewick, Algorithms in C++. Addison-Wesley, Reading, MA,
1992.

[17] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha,
“Power analysis of embedded operating systems,” in Proc. Design
Automation Conf., pp. 312–315, June 2000.

[18] A. Sinha and A. Chandrakasan, “JouleTrack - A web based tool
for software energy profiling,” in Proc. Design Automation Conf.,
pp. 220–225, June 2001.

[19] A. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA, 1985.

[20] D. Marculescu, R. Marculescu, and M. Pedram, “Information theo-
retic measures for energy consumption at the register-transfer level,”
in Proc. Int. Symp. Low Power Design, pp. 81–86, Apr. 1995.

[21] F. N. Najm, “Towards a high-level power estimation capability,” in
Proc. Int. Symp. Low Power Design, pp. 87–92, Apr. 1995.

[22] G. Lakshminarayana and N. K. Jha, “FACT: A framework for ap-
plying throughput and power optimizing transformations to control-
flow intensive behavioral descriptions,” IEEE Trans. Computer-
Aided Design, vol. 18, pp. 1577–1594, Nov. 1999.

[23] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.
Prentice Hall, Englewood Cliffs, NJ, 1975.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

