
Using Randomized Rounding to Satisfy Timing Constraints of Real-Time
Preemptive Tasks

Anupam Datta
Computer Science Dept.,

Stanford University, U.S.A
danupam@stanford.edu

Sidharth Choudhury
Dept. of Computer Sciences,

University of Texas at Austin, U.S.A
sidharth@cs.utexas.edu

Anupam Basu
Dept. of Computer Science & Engg.,

IIT Kharagpur, India
anupam@cse.iitkgp.ernet.in

Abstract

In preemptive real-time systems, a tighter estimate of the
Worst Case Response Time(WCRT) of the tasks can be ob-
tained if the layout of the tasks in memory is included in the
estimation procedure. This is because the Cache Related
Preemption Delay(CRPD) depends on the inter-task inter-
ference in the cache. We develop a response time analysis
framework which takes the layout of the tasks into account.
We present an ILP formulation which generates a layout
of the tasks such that all timing constraints are satisfied.
To overcome the issue of non-scalability associated with an
ILP solution, we also present a linear programming relax-
ation of the ILP formulation, which offers an approximate
solution. The performance of the proposed formulation is
demonstrated.

1. Introduction

In a real-time system, it is essential to guarantee that all
tasks meet their timing deadlines. This can be done by es-
timating the Worst Case Response Times(WCRTs) of the
tasks, and verifying that they are less than the corresponding
deadlines. In order to get a tighter estimate of the WCRTs,
the effect of the instruction cache has to be included in the
analysis. This causes some immediate complications. Let
us assume that an executing task is preempted. When it re-
sumes execution, it has to reload into the cache all those
blocks which were displaced by higher priority tasks in the
intervening period. This additional time, called the Cache
Related Preemption Delay(CRPD) should also be incorpo-
rated into the WCRTs of the tasks. Response time analysis

techniques, which take into account the CRPD are presented
in [2] and [3].

We observe that the CRPD depends on the layout of the
tasks in the memory, i.e., the actual address assignment to
the code. Including the task layout in the estimation of the
CRPD thus results in a tighter bound on the WCRTs. Task
sets which are not schedulable under an arbitrarily chosen
layout may become schedulable when the layout is decided
more carefully. We develop a response time analysis frame-
work which takes the layout of the tasks into account. The
objective is to find a layout of the tasks in memory (if it ex-
ists) such that the timing constraints of all the tasks are met.
An Integer Linear Programming (ILP) formulation of the
problem is detailed in [13]. While achieving the desired so-
lution to the constraint satisfaction problem, that approach
had an inherent drawback since ILP is NP-hard and all stan-
dard solutions take exponential time in the worst case. A
dynamic programming based solution to the same problem
is presented in [14]. Although that approach performs quite
well in practice, its worst case running time is exponential.
In this paper, we present an alternative approach for the so-
lution of the problem. We solve a Linear Programming (LP)
relaxation of the original problem and then apply the tech-
nique of randomized rounding ([4]) to restore integrality.
Since LP is solvable in polynomial time ([5]), this approach
scales up quite well.

2. Related Work

The problem of estimating the WCRT of tasks (includ-
ing the effect of the cache) in real-time systems has been
addressed in related research. There are two aspects of this
problem.

1

The first deals with estimating the Worst Case Execution
Time (WCET) of a task in a single task environment. This
problem is, in general, undecidable and is equivalent to the
halting problem ([7]). Some approaches for the solution of
this problem are presented in [8], and [9].

The second aspect of this problem is that of estimating
the inter-task interference in the instruction cache and is the
focus of this paper. This requires incorporating the cache re-
lated preemption cost into the schedulability analysis. For
fixed priority scheduling, the two main schedulability anal-
ysis techniques are the utilization bound approach ([10])
and the response time approach ([11], [12]).

In [1], Basumallick and Nilsen extend the rate monotonic
analysis to take into account the effect of the inter-task in-
terference. Another technique, based on the response time
approach, is presented by Busquets-Mataix et al. in [2].
They use the following equation to compute the WCRT of
a task:

Ri = Ci +Σjεhp(i)�Ri
Tj
�(Cj + γj)

Here, Ri = WCRT of τi
Ti = Period of τi
hp(i) = Set of tasks which have higher priority than τi

γj is the cache related preemption cost that task τj might
impose on lower priority tasks. It is given by the product of
the cache refill time and the number of cache blocks used
by τj . In [3], the concept of usefulness of cache blocks is
introduced. A useful cache block at an execution point is
defined as a cache block that contains a memory block that
may be rereferenced before it is replaced by another cache
block. The number of useful cache blocks at an execution
point is taken as an upper bound on the cache-related pre-
emption cost that may be incurred if the task is preempted
at that point. The augmented response time equation used
in [3] is given by:

Ri = Ci +Σjεhp(i)�Ri
Tj
�Cj + PCi(Ri)

where PCi(Ri) is the total CRPD of task τi duringRi, i.e.,
the total cache reloading times of τ1, τ2, · · · , τi duringRi.

There is a pertinent issue which has not been addressed
in any of these approaches. It is to be noted that if a cache
block used by a task is not used by any other task which has
a higher priority, then that cache block will not contribute to
the CRPD of that task. Thus, increasing the number of such
blocks for a task will effect a reduction in the WCRT of that
task. Also, if we are able to identify the number of such
blocks, a tighter estimate of the WCRT can be obtained.
We observe that this can be achieved by placing the tasks in
memory in such a way that their interference in the cache is
reduced.

3. Preliminaries

3.1. Randomized Rounding

Randomized rounding([4]) is a probabilistic technique to
construct a provably good solution for a 0 − 1 integer pro-
gram from a solution of its rational relaxation. We now give
a general outline of the technique. Let ΠI be a 0− 1 linear
program with xiε{0, 1}. Let ΠR be its rational relaxation
with xiε[0, 1]. The basic algorithm consists of the follow-
ing two phases: a) solveΠR; let the variables take on values
x̂iε[0, 1]; b) set the variables xi randomly to one or zero ac-
cording to the following rule: Pr[xi = 1] = x̂i. The idea is
to ensure that E[xi = 1] = x̂i.

3.2. Execution Environment

We make the following assumptions about the execution
environment: a) the priorities of the tasks are static and de-
creases successively from τ0 to τN−1; b) a priority based
preemptive scheduling policy is followed; c) all the tasks
are periodic; d) the deadline of each task is equal to its pe-
riod; e) the worst case execution time (WCET) excluding
the cache related preemption delay is known for each of the
tasks; f) the instruction cache is direct mapped; g) the place-
ment of the tasks in memory is static; h) all the memory
blocks used by a task are contiguous. This paper focuses
only on the instruction cache, and effects of the data cache
are ignored.

3.3. Response Time Equation

The response time equation for the ith task is given by:

Ri = Ci +
∑

j<i

�Ri
Tj
�(Cj + γij) (1)

where Ri denotes the WCRT for τi, Ci the WCET for
τi without preemption, Tj the time period for τj , and γij
the CRPD that task τj imposes on the lower priority tasks
(τj+1, τj+2, · · · , τi).

We define γij as follows. Let Uk be the set of cache
blocks that are used by task τk and |Uk| denote the number
of elements in the set Uk. Then γij is given by:

γij = CRT × |Uj ∩ (Uj+1 ∪ Uj+2 ∪ · · · ∪ Ui)| (2)

where CRT denotes the cache refill time. Thus, to ob-
tain the CRPD imposed by τj during the response time of
τi, we compute the number of cache blocks that are used
by τj and atleast one of τj+1, τj+2, · · · , τi. This number
gives an upper bound on the number of cache blocks that τj
causes to be reloaded in this time. That number multiplied

by the cache refill time yields the desired upper bound on
the CRPD.

We observe that γij depends on the layout of the tasks
τj , τj+1, · · · , τi in memory. An attempt is made to generate
a layout such that the timing constraints of all tasks are met.

4. An ILP Formulation to Find Task Layout in
Cache

In this section, an ILP formulation is presented which
finds a layout of the tasks in the cache. Since the reverse
mapping from cache to memory is trivial, this is quite suf-
ficient for our needs. Also, since the cache is much smaller
than the memory, it helps reduce the number of variables in
the formulation substantially.

Let L denote the number of blocks in the instruction
cache, M the number of blocks in the primary memory, N
the number of tasks, and s(i) the size of τi. Then, the ob-
jective function of the ILP formulation to be minimized is
defined by the following formula:

Rk+1i = Ci +
∑

j<i

�R
k
i

Tj
�(Cj + γij) (3)

Below we describe a set of constraints all of which have to
be satisfied.

First, we define new variables y(i, l)’s. y(i, l) is 1 if
τi is placed starting from the lth cache block. Otherwise,
y(i, l) is 0. From this definition, we derive the following
constraints:

y(i, l) ∈ {0, 1} (4)

L−1∑

l=0

y(i, l) = 1 (5)

Next, we define a matrix b(i, l, k) whose elements are
constants where 0 ≤ l ≤ L − 1 and 0 ≤ k ≤ L − 1.
b(i, l, k) is 1 if the kth cache block contains the code of τi,
where τi is placed in cache starting from the lth block.

Define c(i, k) = 1 if cache block k is used by task τi.
We have the following constraints.

c(i, k)ε{0, 1} (6)

c(i, k) =

L−1∑

l=0

b(i, l, k)y(i, l) (7)

We further define variables e(i, j, k)’s. e(i, j, k) is 1 if the
kth cache block is used by atleast one task whose priority
is less than that of τj and is not less than that of τi, i.e., by
atleast one of the tasks τj+1, τj+2, · · · , τi. Thus, e(i, j, k)

is 1 if and only if
∑i
h=j+1 c(h, k) is greater than 0. Oth-

erwise, e(i, j, k) is 0. Now we derive the following con-
straints:

e(i, j, k) ∈ {0, 1} (8)

i∑

h=j+1

c(h, k)− e(i, j, k) ≥ 0 (9)

i∑

h=j+1

c(h, k)− e(i, j, k).(N − 1) ≤ 0 (10)

We define variables f(i, j, k)’s. f(i, j, k) is 1 if the kth

cache block is used by τj and atleast by one of the tasks
τj+1, τj+2, · · · , τi. Otherwise, f(i, j, k) is 0. In other
words, f(i, j, k) is 1 if both c(j, k) and e(i, j, k) are 1. Con-
sequently, the following constraints are arrived at:

f(i, j, k) ∈ {0, 1} (11)

c(j, k) + e(i, j, k)− 2f(i, j, k) ≥ 0 (12)

c(j, k) + e(i, j, k)− f(i, j, k) ≤ 1 (13)

We define g(i, j) as the total number of cache blocks
used by τj and atleast one of τj+1, τj+2, · · · , τi. Thus, to
use the notation introduced previously, g(i, j) = |Uj ∩
(Uj+1 ∪ Uj+2 ∪ · · · ∪ Ui)|. Clearly, g(i, j) is defined as
follows:

g(i, j) =

L−1∑

k=0

f(i, j, k) (14)

Then, we reach the definition of the CRPD γij as shown
below:

γij = CRT × g(i, j) (15)

The other constraints are obtained from the task deadlines
and the response time equations as follows:

Rk+1i = Ci +
∑

j<i

�R
k
i

Tj
�(Cj + γij) (16)

Rk+1i ≤ Ti (17)

4.1. The Complete Procedure

The iterative procedure used for computing the response
times is detailed below.

1. ∀i, R0i = Ci

2. k = 0

3. Solve the ILP problem presented in this section to ob-
tain a layout and Rk+1i for all tasks.

4. Terminte if Rk+1i = Rki for all tasks. Otherwise, set
k = k + 1 and goto step 3.

Thus, this procedure terminates when all the Ri’s con-
verge to stable values. These values of the Ri’s are com-
pared with the deadlines of the corresponding tasks to verify
the schedulability of the task set.

5. An Approximation Approach

We note that the formulation presented in Section 4 re-
quires the ILP problem to be solved iteratively a number of
times. In this section, we propose an approximation tech-
nique in which the ILP problem is solved only once. It is
to be noted that if the task set is schedulable, then Ri is
less than Ti. Thus, substituting Ti for Ri in formula (1),
we obtain a more pessimistic estimate of the response time
of τi. If this estimate satisfies the timing constraints, then
the actual task will certainly meet its deadline. Since Ti
is a constant, this substitution helps transform the recursive
equation into a linear one which is amenable to an ILP for-
mulation.

5.1. AnAlternative ILPFormulation of the Problem

This formulation is also along the same lines as the one
presented in the previous section. The new objective func-
tion is defined by:

Ri = Ci +
∑

j<i

�Ti
Tj
�(Cj + γij) (18)

The new ILP formulation inherits the constraints (3)–
(14) from the previous one. Instead of constraints (15) and
(16), the following two constraints are derived:

Ri = Ci +
∑

j<i

�Ti
Tj
�(Cj + γij) (19)

Ri ≤ Ti (20)

6. Linear Programming Relaxation

In this section, we present a linear programming relax-
ation of the ILP problem discussed in Section 5. We use the
technique of randomized rounding to restore integrality. We
prove that all constraints are satisfied in the expected sense.
First, we note that constraints (19), (20) can be rewritten as

Σj<iwijγij ≤ Bi (21)

(Here Bi is a constant.) Consider the LP problem derived
from the ILP formulation where all the integrality con-
straints are removed and the above mentioned constraint is
changed to:

Σj<iwijγij ≤ Bi/(N − 1) (22)

Also constraints (12) & (13) are replaced by:

f(i, j, k) = 1/2(c(j, k) + e(i, j, k)) (23)

The idea is to solve this LP problem and then use ran-
domized rounding to round the y(i, l)′s. Once the y(i, l)′s
are fixed, all other values can be computed and it can be ver-
ified whether all the timing constraints are satisfied in the
original ILP problem. Thus, we desire that after applying
randomized rounding constraint (1) is satisfied. Indeed, the
expected value of the response time for each task obtained
through this process is less than the corresponding deadline
as we prove next.
Claim: E[Σj<iwijγij] ≤ Bi
Proof:
We will use x∗ to denote the solution obtained from the LP
solution for variable x .
E[y(i, l)] = y(i, l)

∗

E[c(i, k)] = c(i, k)
∗

E[e(i, j, k)] ≤ Σih=j+1c(h, k)∗ ≤ (i− j)e(i, j, k)
∗

E[f(i, j, k)] ≤ 1/2(E[c(j, k)] + E[e(i, j, k)]) ≤ (N −
1)f(i, j, k)

∗

E[γ(i, j)] ≤ (N − 1)γ(i, j)∗
E[Σj<iwijγij] ≤ (N − 1)Σj<iwijγ∗ij ≤ Bi

Although a high probability bound cannot be obtained
through the standard union bound method, based on a recent
result [6], we conjecture that positive correlation between
the inequalities can be exploited to prove a tighter bound.

7. Alternative Linear Programming Relax-
ation

A problem with the LP relaxation of the previous section
is that scaling down theB′is by a factor ofN−1might make
the problem infeasible. Instead, in this section we solve an
LP problem where each of the B′is are scaled by a factor
of λ and we change the objective function to minimize λ.
Since theB′is are constants, the resulting constraints remain
linear.

Thus, the new LP problem is:
minimize: λ

Σj<iwijγij ≤ λBi
The other constraints remain unchanged from Section 6.
The idea is to solve this LP problem and then use ran-

domized rounding to round the y(i, l)′s. The following
claim can be easily proved.

Claim: E[Σj<iwijγij] ≤ (N − 1)λ∗Bi

Note that if λ∗ ≤ 1/(N −1), then E[Σj<iwijγij] ≤ Bi.
So, the value of λ∗ is an indicator of the ”chance” of getting
a feasible solution to the ILP problem.

8. Experimental Results

In this section, we validate the effectiveness of the ap-
proaches presented in the previous sections by comparing
the predicted WCRT with the measured/observed WCRT.
We also compare our estimated WCRT values with those
obtained by applying the approach proposed by Busquets-
Mataix et al in [2].

We present simulation results for two different archi-
tectures: the TMS320C5x series of microprocessors and
DEC’s Alpha AXP processor. The simulators take the task
layout, the WCET and periods of the tasks as input , and
generate the WCRT of the tasks. These values will be re-
ferred to as the observed WCRTs of the tasks in the subse-
quent discussion. The estimated WCRTs were obtained by
plugging into formula (1) the γij values obtained by solving
the linear programs. The linear programs were solved using
the public domain software lp solve 1).

For TMS, we have two sets of results. In one set, the
layout was obtained by solving the ILP problem described
in Section 5. For the other set, the layout was obtained by
solving the LP problem detailed in Section 7. The bench-
mark task sets used are detailed in Table 1. Three tasks
were used: Matrix Multiplication (MM), a 128 taps Adap-
tive FIR, and a 16 point FFT. The WCET of a task includes
the time taken to execute it and the blocking time of the task,
i.e., the overhead imposed on it by lower priority tasks. Ta-
ble 2 summarizes the experimental results. In these experi-
ments we tried to minimize the WCRT of τ1, while satisfy-
ing the constraints of al l other tasks. The primary memory
and cache sizes where set to 150 and 40instruction memory
blocks. We deliberately used a small cache to ensure that
the CRPD made a significant contribution to the WCRT of
a task. All timing resul ts are in units of processor cycles.
We see that a tight estimate of the WCRTs of the tasks is
obtained. The maximum difference between the estimated
and observed WCRTs is less than 1%. Also, the observed
WCRTs for the layout obtained by solving the ILP problem
is only marginally better than the ones obtained by solving
the LP relaxation. The approximation seems to work quite
well in practice.

Table 1. Benchmark Task Sets for TMS
Task Task Period WCET # instruc.
Set without memory

preemption blocks
Γ1 τ0 : FIR 200000 115037 10

τ1 : FFT 600000 133422 34

Γ2 τ0 : MM 50000 8769 6
τ1 : FIR 200000 115037 10
τ2 : FFT 600000 133422 34

The benchmark task sets for the DEC Alpha experiments
are detailed in Table 3. Three tasks were used: INSERT-
SORT, COMPRESS and LAPLACE. The primary memory

1ftp://ftp.es.ele.tue.nl/pub/lp solve

Table 3. Benchmark Task Sets for DEC Alpha
Task Task Period WCET # instruc.
Set without memory

preemption blocks

Γ1 τ0 : COM 100000 74368 76
τ1 : LAP 500000 106928 114

Γ2 τ0 : INS 50000 19296 105
τ1 : COM 200000 74368 76
τ2 : LAP 600000 106928 114

Table 4. Results for DEC Alpha
Task Task WCRT WCRT WCRT
Set (observed) (estimated) BM

Γ1 τ0 : COM 74360 74368 74368
τ1 : LAP 478720 479148 479148

Γ2 τ0 : INS 19288 19296 19296
τ1 : COM 130688 132310 132571
τ2 : LAP 535944 542756 543758

and cache sizes were set at 512 and 128 instruction memory
blocks for the first task set and at 1024 and 256 for the sec-
ond. For these task sets, the ILP problem presented in Sec-
tion 5 was intractable. The results obtained by solving the
linear programming relaxation of Section 7 are presented
in Table 4. We see that a tight estimate of the WCRTs of
the tasks is obtained. The maximum difference between the
estimated and observed WCRTs is less than 1.5%.

The column labelled WCRT-BM gives the estimated
value of the WCRT of the corresponding task using the ap-
proach proposed by Busquets-Mataix et al in [2]. We note
that in all cases, our estimation is atleast as tight as theirs.
The difference between the two estimation procedures will
be more tangible when the task sets include more and larger
tasks.

9. Conclusions and Future Work

The cache related preemption delay in a multitasking en-
vironment depends on the layout of the tasks in memory.
We have proposed a technique based on randomized round-
ing an LP problem to find a layout which minimizes the
WCRT of one task, while satisfying the deadlines of all the
other tasks. We have proved that all the constraints will
be satisfied in the expected sense under this scheme. Our
experimental results for two different architectures show
that observed values of the WCRTs of the tasks are within
1.5% of the estimated values indicating that the estimation
technique is tight. Our approach also seems to give tighter
bounds than the approach presented by Busquets-Mataix et
al in [2].

Table 2. Results for TMS
Task Task WCRT-ILP WCRT-LP WCRT WCRT-BM
Set (observed) (observed) (estimated) (estimated)
Γ1 τ0 : FIR 115034 115034 115037 115037

τ1 : FFT 363407 363423 363516 363516

Γ2 τ0 : MM 8766 8766 8769 8769
τ1 : FIR 141236 141236 141359 141362
τ2 : FFT 583201 583233 583839 583863

However, we have not been able to prove that the linear
programming constraints will be satisfied with high proba-
bility after integrality is restored by applying the random-
ized rounding technique. Although there seems to be some
evidence towards this claim ([6]), a complete proof is desir-
able. Another possible extension of this work would be to
combine the idea of task layout with the notion of the use-
fulness of cache blocks ([3]) to obtain even tighter bounds
on the WCRTs of the tasks. Also, these ideas could possi-
bly be applied towards building a similar framework for the
analysis of data cache behaviour.

References

[1] S. Basumallick, K. Nilsen, ”Cache issues in real-time
systems”, Proc. ACM SIGPLAN Workshop on Lan-
guage, Compiler, and Tool Support for Real-Time Sys-
tems, June 1994.

[2] J.V. Busquets-Mataix, J.J. Serrano-Martin, R. Ors,
P.Gil, A.Wellings, ”Adding instruction cache effect
to schedulability analysis of preemptive real-time sys-
tems”, RTAS, June 1996.

[3] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang
Lyul Min, Rhan Ha, Seongsoo Hong, Chang Yun Park,
Minsuk Lee, Chong Sang Kim, ”Analysis of cache-
related preemption delay in fixed-priority preemptive
scheduling,” IEEE Transactions on Computers, vol.
47, no. 6, June 1998.

[4] P.Raghavan, C.D.Thompson, ” Randomized rounding:
a technique for provably good algorithms and algorith-
mic proofs,” Combinatorica , vol. 7, no. 4, 1987, pp.
365-374.

[5] N.Karmakar, ” A new polynomial time algorithm for
linear programming,” Combinatorica , vol. 4, 1984,
pp. 373-396.

[6] A.Srinivasan, ”Improved approximation guarantees
for packing and covering integer programs,” SIAM
Journal of Computing, vol. 29, no. 2, 1999, pp. 648-
670.

[7] Jyh-Charn Liu, Hung-Ju Lee, ”Deterministic upper-
bounds of the worst-case execution times of cached
programs,” RTSS, December 1994, pp. 182-191.

[8] Jai Rawat, ”Static analysis of cache performance
for real-time programming,” Master’s Thesis, Iowa
State University of Science and Technology, Novem-
ber 1993.

[9] Yau-Tsun Steven Li, Sharad Malik, Andrew Wolfe,
”Performance estimation of embedded software with
instruction cache modeling,” ICCAD, November
1995.

[10] C.L. Liu, J.W. Layland, ”Scheduling algorithms for
multiprogramming in a hard real-time environment,”
Journal of the ACM, vol. 20, January 1973, pp. 46-61.

[11] M. Joseph, P. Pandya, ”Finding response times in a
real-time system,” The BCS Computer Journal, vol.
29, October 1986, pp. 390-395.

[12] K. Tindell, A. Burns and A. Wellings, ”An extendible
approach for analyzing fixed priority hard real-time
tasks,” The Journal of Real-Time Systems, vol. 6,
March 1994, pp. 133-151.

[13] A. Datta, S.Choudhury, A.Basu, H.Tomiyama,
N.Dutt, ”Task Layout Generation to Minimize Cache
Miss Penalty for PreemptiveReal-Time Tasks: An ILP
Approach,” Proc. Workshop on Synthesis and Systems
Integration of Mixed Technologies, April 2000.

[14] A. Datta, S.Choudhury, A.Basu, H.Tomiyama,
N.Dutt, ”Satisfying Real-Time Constraints of Pre-
emptive Real-Time Tasks Through Task Layout Tech-
niques”, Proc. 14th International Conference on VLSI
Design , January 2001.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

