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Abstract 

 
    Steiner tree is a fundamental problem in the automatic 
interconnect optimization for VLSI design. We present a 
probabilistic analysis method for constructing rectilinear 
Steiner trees. The best solution under statistical sense is 
obtained for any given set of N points. Experiments show 
that our results are better than those by the previous 
technique or very close to the optima. 

 
1. Introduction 

    One of the key problems in VLSI interconnect design is 
the topology construction of signal nets with the minimum 
cost. The Steiner tree problem is to find the tree structure 
which connects all pins of the signal net such that the wire 
length (i.e., cost) can be minimized. If all edges of the tree 
are restricted to the horizontal and vertical directions as are 
the case in VLSI design, the problem is called rectilinear 
Steiner tree (RST). In general, the RST can contain, in 
addition to the pins of the net, some more points which are 
called Steiner points. In particular, the RST without Steiner 
points is called rectilinear minimum spanning tree (RMST) 
which has been well studied [1].  While the RST can lead to 
better results than the RMST in terms of wire length, it has 
been shown that the RST problem is NP-complete [2]. 
Several effective heuristic approaches have been proposed 
towards the optimal or sub-optimal solutions. For example, 
Hanan [3] showed an optimal algorithm when the net 
contains no more than four pins. Cohoon [4] proposed an 
optimal algorithm when the pins of a net lie on the perimeter 
of a rectangle. Hwang [6] proved that the ratio of tree 
lengths between an RMST and an RST is no worse than 3/2. 
An o(N log N) algorithm for the RST was also proposed in 
[5], while the results were far from the optimal solution. A 
good survey on Steiner tree problems can be found in [7]. 
For a comprehensive survey of the interconnect design, the 
readers are referred to [10]. 
    In this paper we provide probabilistic analysis for the 
rectilinear Steiner tree problem. By considering all possible 
topologic structures connecting every pair of pins, we can 
calculate the probability of the structures passing over 
individual edges. The optimal Steiner tree under statistical 
sense is the tree with maximum sum of the probabilities for 
all edges of which the tree is comprised. Experiment shows 

that the obtained tree topology is very close to the optimal 
RST. In the next section, some background together with a 
probabilistic model is described. Then, we show the Steiner 
tree construction algorithm in Section 3, followed by the 
experiments given in Section 4. Finally, Section 5 concludes 
the paper. 

 
2.  Probabilistic model for rectilinear steiner 
trees 

    In this section, we introduce some preliminaries and 
propose a probabilistic model for rectilinear Steiner trees. 

2.1.  Grid graph 

    Consider a set of N points, P = {p1, p2, …, pN} in a plane, 
where the location of pi is denoted by (xi, yi). Assuming xi ≠ 
xj and yi ≠ yj for i ≠ j (discussions will be given later on if 
this is not the case), we can construct a grid graph which 
consists of the intersections (or, segments) of horizontal and 
vertical lines through all points. It was shown [3] that only 
those segments within the smallest rectangle enclosing all 
points need to be considered in obtaining the RST. An 
optimal RST is a subset of segments, T, such that T is a tree 
for given points and the total wire length over all segments 
in T is minimum. Figure 1 illustrates the grid graph for a set 
of three points, P = {p1, p2, p3}. An optimal Steiner tree of 
Figure 1 is shown in Figure 2, where S1 is a Steiner point.  

 

 

 

    If we number the columns and rows of the grid graph, the 
symbol R(i, j) can be used to represent the horizontal 
segment which lies on row i and between columns j and j+1. 
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Figure 1.  The grid graph for 
a set of three points 

Figure 2.  An optimal  
Steiner tree of Figure 1 



  

Similarly, we use C(i, j) to represent the vertical segment 
which lies on column j and between rows i and i + 1. For 
instance, the segments l1 and l2 in Figure 1 can be denoted 
by R(2, 1) and C(2, 2), respectively. Note that the rows are 
numbered from bottom to top in the graph, and the columns 
are numbered from left to right. Before going further, we 
have the following definitions. 

    Definition 1:  Given two points pi, pj ∈ P, the distance m 
= |c(i) − c(j)| is called the horizontal grid-distance between 
them , where c(i) and c(j) are the column numbers of pi and 
pj , respectively. Similarly, the vertical grid-distance 
between them is defined to be n = |r(i) − r(j)|, where r(i) and 
r(j) are the row numbers of pi and pj, respectively. 

    Definition 2:  If 0 ≤ c(j) − c(i) ≤ 1 for points pi, pj ∈ P, 
then H(k) = xj − xi is called the k-th horizontal physical-
length of the grid graph, where k = c(i). If 0 ≤ r(j) − r(i) ≤ 1 
for points pi, pj ∈ P, then V(l) = yj − yi is defined to be the l-
th vertical physical-length of the graph, where l = r(i). 
 
2.2.  Probabilistic model 

    Consider two points  pi, pj ∈ P in the grid graph as shown 
in Figure 3. Without loss of generality, we assume c(i) < c(j) 
and r(i) > r(j). Let I = r(j), and J = c(j). The horizontal and 
vertical grid distances between pi and pj are m = c(j) − c(i), 
and n = r(i) − r(j), respectively. Let M be the number of all 
possible shortest paths from pi to pj . The number of those 
paths which pass through the segment R(I, J − 1) (i.e., R2 in 
Figure 3) only depends on m and n, and is denoted by F(m, 
n). The number of those paths which pass through the 
segment C(I, J) (i.e., C2 in Figure 3) is also a function of m 
and n, denoted by G(m, n). Obviously, we have M = F(m, n) 
+ G(m, n). In particular, for any positive integer q, we have 
F(1, q) = G(q, 1) = 1, and F(q, 1) = G(1, q) = q. From a 
statistical point of view, the probability of a shortest path 
between the two points passing through R(I, J − 1) (or, C(I, 
J)) is given by F(m, n)/M (or, G(m, n)/M). Furthermore, 
from Figure 3, F(m, n) and G(m, n) can be written as: 

)1(),1(),1(),( nmGnmFnmF −+−=  
and                      )2()1,()1,(),( −+−= nmGnmFnmG  

or,  

)3()1,1()1,1()1,( −−+−−=− nmGnmFnmF  
and     )4()1,1(),1()1,1( −−−−=−− nmGnmGnmF  
 
    Theorem 1:  If we define F(q, 0) = G(0, q) = 1 for any 
integer q > 0, then F(m, n) and G(m, n) can be computed 
recursively as follows: 

 
 
 

 
 

Figure 3.  Probabilistic analysis for the segments through 
which the shortest paths between points (pi and pj) pass 
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and 
)1,(),1( +=+= nmGnmFM  

where m, n > 1, and F(m, n), G(m, n), and M are defined as 
earlier. 
    Proof :  The second part of the theorem is 
straightforward, and we prove the first part only. Adding 
equations (3) and (4) gives 
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From (1) and (5), we have 
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Since F(m, 1) = m and F(q, 0) = 1, equation (7) can be 
rewritten as 
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From (6) and (8), we have 
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    The values of F(m, n) and G(m, n) for m, n ≤ 6 are shown 
in Table 1 and Table 2, respectively. 

Table 1.  F(m, n) 

 
1 2 3 4 5 6 

1 1 1 1 1 1 1
2 2 3 4 5 6 7 
3 3 6 10 15 21 28 
4 4 10 20 35 56 84 
5 5 15 35 70 126 210 
6 6 21 56 126 252 462 

Table 2.  G(m, n) 

 
1 2 3 4 5 6 

1 1 2 3 4 5 6
2 1 3 6 10 15 21 
3 1 4 10 20 35 56 
4 1 5 15 35 70 126 
5 1 6 21 56 126 252 
6 1 7 28 84 210 462 

 

    More generally, let us consider the specific horizontal 
segment R (I + k , J − l − 1) in Figure 3, where 0 ≤ k ≤ n , 0 
≤ l ≤ m − 1. Among all M shortest paths from pi to pj , the 
number of paths passing through this segment is given by  

F(m − l, n − k)⋅[F(l, k) + G(l, k)] = F(m − l, n − k)⋅F(l + 1, k) 

Thus, the probability of a shortest path passing through this 
segment is expressed as 

)10(
),1(

),1(),(
)1,(

nmF

klFknlmF
lJkIPR

+
+⋅−−=−−+  

    Similarly, the probability of a shortest path between pi 
and pj passing through the specific vertical segment C (I + k 
, J − l) (refer to Figure 3) is expressed as 
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where 0 ≤ k ≤ n − 1, and 0 ≤ l ≤ m.  
 

    When we account for the shortest paths for all N⋅ (N − 
1)/2 pairs of points in the grid graph, two probability 
matrices, (denoted by PR and PC), can be defined to 
represent the probabilities of all horizontal and vertical 
segments, respectively, through which the shortest paths 
would pass. The element PR(i, j) in PR (or PC(i, j) in PC) 
corresponds to a horizontal (or vertical) segment R(i, j) (or 
C(i, j)) in the graph. PR is an N × (N − 1) matrix, and PC is 
an (N − 1) × N matrix. The contributions of each pair of 
points to the matrices are determined by the equations (10) 
and (11). Intuitively, the greater value of an element implies 
higher probability that the corresponding segment is to be 
used in obtaining a shortest path/tree. Therefore, one can 
construct an optimal tree under statistical sense by finding a 
tree such that the sum of probabilities of all segments in the 
tree is maximized.  
 
3. Algorithm 

    Based on the probabilistic model of RST, we describe an 
algorithm for Steiner tree construction as follows. 

    Probabilistic Analysis Algorithm: 

Step 1:  Given P = {p1, p2, …, pN}, construct its grid graph, 
and compute the row number r(i) and column number c(i) 
for pi , i = 1, 2, …, N; 

Step 2:  Compute the horizontal and vertical physical-
lengths, i.e., H(k) and V(k) for k = 1, 2, …, N − 1; 

Step 3:  Compute F(m, n) and G(n, m) for m = 1, 2, …, N, 
and n = 0, 1, …, N − 1; 

Step 4:  Obtain the probability matrices, PR and PC, using 
equations (10) and (11) for all N⋅ (N − 1)/2 pairs of points; 

Step 5:  Normalize all elements of PR and PC by setting 

              PR(i, j) ← PR(i, j) / H(j),   1 ≤ i≤ N, 1 ≤ j ≤ N − 1, 
and 
             PC(i, j) ← PC(i, j) / V(i),   1 ≤ i ≤ N − 1, 1 ≤ j ≤ N ; 

Step 6:  Construct a tree T by selecting the segments one by 
one in the decreasing order of their corresponding 
probabilities in PR and PC, and performing the following 
three operations during the selection:  

(i) Ignore the current segment if selecting it would leads 
to a loop which contradicts the tree definition; 

(ii)  Delete all redundant segments once all points in P 
have been connected by the tree; 

(iii) Calculate the total wire length of the obtained 
Steiner tree after the selection is completed. 

 

    Most of the above algorithm is self-explanatory. In 
particular, the matrix normalization in Step 5 is necessary 
since the segments with same probability need to be treated 
differently, depending on their physical lengths. The shorter 
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segment is selected first in the tree construction so that the 
total wire length can be minimized. If there are points with 
same X-coordinate, i.e., H(j) = 0, which implies that no 
horizontal segments in the j-th column are required, then we 
delete the j-th column of PR (instead of dividing it by H(j) 
as shown in Step 5). Similarly, if some points have same Y-
coordiate, i.e., V(i) = 0, meaning that no vertical segments 
in the i-th row are required, the i-th row of PC can be 
deleted. 
    In this algorithm, the most expensive computation occurs 
in Step 4 which takes o(N4) time. We have the following 
theorem without proof: 

    Theorem 2:  The time complexity of the probabilistic 
analysis algorithm for Steiner trees is o(N4), where N is the 
number of given points. 
 
4. Experiments and discussions 

    We implemented the proposed algorithm and carried out 
experiments with different number of points for Steiner tree 
construction. The results indicate that the obtained Steiner 
trees are better than those by the previous method, or very 
close to the optimal solutions. Several of our test examples 
are shown in Figures 4 through 6. While the optimal RST is 
unknown in general, especially, for the big problems with 
large value of N, the effectiveness of our approach can still 
be evidenced by inspection of these small-size problems. 
Particularly, for the case of Figure 6 which was taken from 
[5], the result due to the algorithm from [5] is shown in 
Figure 6(a) with the total wire length of 32, compared to the 
length of only 30 by our algorithm as shown in Figure 6(b).  
    In the following, we use Figure 6 to demonstrate the 
procedure of our algorithm presented in Section 3. From 
Steps 1 and 2, we can obtain four vectors which denote the 
row number, column number, horizontal physical-length 
and vertical physical-length. They are respectively: r = [2 6 
5 1 3 4], c = [1 2 3 4 5 6], H = [2 3 1 7 1], and  V = [2 2 1 1 
5]. The values of F(m, n) and G(n, m) have been shown in 
Tables 1 and 2. After performing Steps 4 and 5, we have the 
probability matrices: 

 

 

 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 



























=

067.0036.0648.0651.0100.0

517.0174.0245.2568.0150.0

031.3301.0712.1283.0224.0

038.1388.0786.1391.0469.0

248.0139.0374.1590.0432.1

100.0105.0236.1183.0125.0

PR
 

 
 

























=

013.0037.0080.0261.0570.0040.0

583.0883.0426.1964.2643.1500.0

386.1038.2610.1788.1231.1948.0

174.0681.0026.1636.0540.0943.0

050.0317.0515.1344.0149.0125.0

PC
 

 
 

Figure 4.  An example with N = 5 

Figure 5.  An example with N = 11 
(note that replacing R1 and C1 with R2 can lead to a 

better result) 

Figure 6.  Comparison of the results by (a) algorithm from 
[5] and (b) our algorithm based on probabilistic analysis 

(a) total wire length: 32 (b) total wire length: 30 
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Finally, Step 6 gives the Steiner tree T = {R(2, 1), R(2,2), 
R(2, 3), R(3, 3), R(3, 4), R(4, 5), R(5, 2), C(1, 4), C(2, 4), 
C(3, 3), C(3, 5), C(4, 3), C(5, 2)}, as shown in Figure 6(b) 
which turns out to be an optimal RST. We claim that while 
the proposed algorithm produces promising results, it is 
generally not optimal. In Figure 5, for instance, a better 
solution could be found by replacing the segments R1 and C1 
with the segment R2 (shown as dotted line). 
    The main characteristics of our approach are two-fold. 
First, it is simple to implement and applicable to Steiner 
trees with any given set of points. Second, it can be 
extended easily to the more general Steiner problems with 
the obstacles or blockages (within their grid graphs) where 
any segment is prohibited [8], or with the routing congested 
regions where the segments are discouraged [9]. This can be 
done by properly assigning additional weights to the related 
elements of the probability matrices, so that the segments 
falling into these restricted areas would be less likely to be 
selected in the tree construction. 
 
5. Conclusions 
 
    We have described an approach to Steiner tree problems 
based on probabilistic analysis. The best solution under 
statistical sense has been obtained for any given set of 
points. The results are better than those by the previous 
technique or very close to the optima. Further work includes 
comprehensive study and test on our model, so as to obtain 
the average performance of the algorithm on a large number 
of benchmarks. We also would like to extend the 
probabilistic model to applications for timing-driven 
interconnect optimization. 
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