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Abstract

Our target is automation of analog circuit’s layout, which is
a bottleneck in mized-signal’s design. We formulate the lay-
out explicitly considering manufacturing process, and propose
an algorithm that consists of simultaneous expression and op-
timization of placement and routing. The key is that all the
cells and wires are represented by rectangles. The algorithm
is combined into a commercial tool, and the performance con-
vinced us that the utilization shortens the design time.

1 Introduction

Recently, demand of wireless instruments becomes rapidly
growing, so we are being requested to make progress in design
productivity of analog circuits e.g. RF modules. A system
scale LSI called SoC (System on a Chip) becomes including
not only a digital circuit but also such an analog circuit, that
is, almost of types of SoCs come to mixed-signals.

Generally, a scale of the analog part is small, while the de-
sign period is long. It is that manual process is still dominant
through the design flow, and it is the only way to empiri-
cally design by experts. The features of analog circuits are
that the performance is very sensitive to noise or other elec-
trical factors, and that it is also close to the manufacturing
process. These cause complicated constraints in the layout
design [1, 2]. We face to an issue that a layout by any au-
tomation tool cannot overcome a manual design. Because the
manual design simultaneously handles placement and routing,
the quality is sophisticated in considering the contraints.

However, we note an available feature that the scale is com-
paratively small, for example, one module consists of a few
hundreds of cells and nets. Therefore, we can handle care-
fully the design rules and specifications in both placement
and routing.

This paper provides a break-through such that placement
and routing are executed simultaneously. This brings us an
approach close to a manual design. [4] also proposes an al-
gorithm of simultaneous placement and routing which uses
the BSG, but it is far from practical design rules of analog
circuits.

Our algorithm explicitly takes the design rules into consid-
eration. It is based on the Sequence-Pair algorithm (denoted
by SPa) which is a rectangle placement[3]. A key of our idea
is in representing wires by a sequence-pair as well as cells.
Each wire is divided into a set of rectangles, and the follow-
ing two extensions are introduced in order to maintain the
connection; One is to impose a condition of orders of rect-
angles on a sequence-pair, and the condition is called Wire-
connectivity. The other is to generate horizontal and vertical

constraint graphs for compaction. We add special edges to
the conventional constraint graphs which are extracted from
a sequence-pair.

We lead a theorem that our expression of a sequence-pair
with Wire-connectivity is not redundant (i.e. optimal) with
respect to area. We can seek an optimal placement and rout-
ing on the expression. Thus, we attain the way to simultane-
ously place and route.

We complete our idea by implementation. We embedded
our algorithm into a commercial tool for analog IC layouts.
The performance was sufficed for design specification and
computation time. A comment of the designer is that uti-
lization of the tool shorten design time for 30-50%. Further-
more, we demonstrate that the algorithm is flexible to the
existing techniques [5, 6, 7] based on SPa, which are to han-
dle coordinates-fixed or symmetric cells. This means that our
algorithm can optimize placement and routing simultaneously
under such constraints.

2 Shape-Based Formulation
2.1 Multiple Outline Circuitry Model

In order to explicitly handle design rules of analog circuits,
we introduce Multiple Outline Clircuitry Model. First, we
define cells which correspond to transistors, resistors, con-
densers, diodes, vias and so on. A set of cells is denoted
by C = {c1,¢2,...,¢n, }. The cell consists of multiple out-
lines which depend on manufacturing process, and the out-
lines are rectangles which correspond to layers. A terminal
is considered as one of outlines. A set of layers is denoted
by L = {l1,la,...,l;}, and a set of the outlines in a cell ¢ is
denoted by O(c) = {01, 02,...}. The width and height of an
outline o; are denoted by w(o;) and h(o;), respectively. The
layer to which o; corresponds is denoted by I(0;) (€ L). A
cell ¢ has x- and y-coordinate, which are x(c) and y(c), re-
spectively. o; belonging to ¢ has relative coordinates to c,
regarding ((x(c),y(c)) as the origin. Accordingly, the coordi-
nates of o; on the plane are (z(c) + x(0;),y(c) + y(0;)).

Next, we define wires. A set of wires is denoted by
I = {m,7m2,...,™m}. A wire connects two or more ter-
minals. When it connects two terminals, it has a sequence
of coordinates. The sequence is called path and denoted by
p = (z1,21)(z2,y2)(x3,¥3) . . .. The coordinates correspond to
a corner or an end on the path, and the length of p is the num-
ber of the corners and ends. A path consists of vertical and
horizontal segments, where if x; = x;41 then y; # y;+1, other-
wise ¥; = ¢i+1. A wire may connect three or more terminals,
and ends of a path may lie not at a terminal but in the middle



of another path. Such an end is called Steiner point. A wire
consists of a set of paths, that is P(w) = {p1(n), pa(7), ..., }.
A path p belongs to one of layers denoted by I(p), and it has
the width denoted by w(p). Thus, a wire represented by a set
of paths is called path-based wire.

We are also given a design rule, which is a set of distances
to any pair of layers in order to make an edge of a layer apart
from that of the other layer. These distances are defined hor-
izontally and vertically according to manufacturing process.
The minimal vertical and horizontal distances for layers I; and
l; are denoted dy (1;, ;) and dp(1;, 1), respectively. The design
rule is kept if d > dp(l;,1;) or d' > dy(l;,1;), where d and d’
are the horizontal and vertical distances between edges of [;
and [;, respectively.

Then, our target problem is defined as follows.

General Shaped-Based Layout Problem

input: C and II

output: the coordinates of C' and II
(i.e. placement and routing)

subject to:

design rules with respect to C' and II are kept
objective:

minimize area of the minimal rectangle (bounding box)

enclosing C' and IT

2.2 Rectangular Dissection of Wire

To handle wires and cells simultaneously in layout automa-
tion, we introduce rectangle-based wire model, where a wire
is represented by a set of rectangles. Each rectangle is called
wire-rect.

Let a path be p. The corresponding set of wire-rects
is denoted by R(p) = {ri(p),r2(p),...,}. FEach wire-
rect r has the coordinates, width, and height, denoted by
(z(r),y(r), w(r), h(r)), respectively.

The set of wire-rects to p is obtained as follows.

1. Let two terminals of p be t, and ¢, respectively.

2. Divide p into segments and put the order to them along
p from t, to tp.

3. For each segment (x;,y;)(x;,y;), expand it into such a
rectangle that

(a) the left-bottom corner is (min(z;, z;) — w(p)/2,
min(yi, y;) — w(p)/2),

(b) the width is x; — x; if the segment is horizontal,
w(p) otherwise, and

(c) the height is z; —
w(p) otherwise.

x; if the segment is horizontal,

4. Put the same order to each rectangle that of the seg-
ment, and let the sequence of rectangles be {ry,r2,...}.

5. Extract area where r; overlaps with r;41, and delete the
area.

6. Extract area where r; overlaps with ¢, and ¢, and delete
the area.

An example of the procedure is described in the following
and in Figure 1. Assume that p has two ends (z1,y1), (24, y4),
and two corners (x2,¥2), (73,y3). Let terminals connected
with p at (x1,y1) and (x4,y4) be t, and tp, respectively. t,
and t; belong to the same layer as that of p. Let the coordi-
nates, width, and height of ¢, and t; be (4, Ya, Wa, ha) and
(b, yu, Wy, hp), respectively. Let three segments along p be sq,
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Figure 1: Rectangle-based wire model

s2, and s3, where s; is horizontal (s1 = (21, y1)(z2,y2), (1 <
x2)), sz is vertical (s2 = (z2,y2)(z3,¥3), (2 < ¥3)),
and s3 is horizontal (s3 = (z3,y3)(z4,y4), (3 <
x4)). Let three wire-rects be 71, ro, and r3, and they
(%o + e, 91— W(P)/2, T2 — W(p)/2 — T4, W(D)),
are  (z3 —w(p)/2, v — w(p)/2, w(p), y2 — ys), and
(z3 —w(p)/2, ys —w(p)/2, x5 —w(p)/2 — s, w(p)),
respectively.

Hence, we can obtain a set of wire-rects which corresponds
to any path, where any pair of wire-rects does not overlap as
well as any wire-rect does not overlap with any terminal.

The above procedure is available in both cases of three or
more terminals and multiple layers by applying simple exten-
sions.

3 Simultaneous Expression of Placement
and Routing

Our inputs which consist of cells and rectangle-based wires
are all sets of rectangles. We provide an extension of the
Sequence-Pair [3] which is an algorithm to place rectangles
into as small area. Hereinafter the Sequence-Pair is denotes
by SPa.

For SPa, an input and an output are a set of rectangles
and the placement without overlapping, respectively. The
objective is to minimize the area of bounding box of the rect-
angles. The algorithm uses a pair of sequences of rectangle’s
name called sequence-pair which represents a placement. A
sequence-pair is denoted by («, 3), where a and ( are se-
quences of names of rectangles. « is denoted by ajas ..., and
6 is by blbg e

In applying SPa, for simplicity of description, we assume
that all the wire-rects belong to the same layer. An extension
to multiple layers is described later.

In our definition of a sequence-pair, o and 3 are sequences
of names of cells and wire-rects. The length of each sequence

' 1+ S {(ength of p) — 1} .

well pe P(m)

The order in « () with respect to a cell or a wire-rect is
given by a reverse function a1 (371).

3.1 Wire-Connectivity
We have to keep the adjacency such that a wire is re-
trieved by connecting the wire-rects after compaction. We
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Figure 3: J-connectivity

introduce a condition to keep the adjacency, which is de-
fined on a sequence-pair. The condition is called Wire-
connectivity, and it consists of sub-conditions J-connectivity
(at jog), T-connectivity (at terminal), and S-connectivity (at
Steiner point).

J-Connectivity: This condition guarantees retrieval with
respect to a pair of wire-rects in a path. Let an adjacent pair
of wire-rects at a corner of a path be r, and r, where a < b.
The number of patterns for connection of r, and r is eight.
These patterns are shown in Figure 2.

In the case of (a)left-down in the figure, we describe the
condition for r, and 7, on a sequence-pair. Assume that,
after compaction, r, and r, are placed as shown in Figure
3(a). We retrieve the connection of r, and 7y as in (b), but
the other rectangle z may interrupt the retrieval, as shown in
(c) and (d). Then (f) and (g) show sequence-pairs represented
by the oblique line grids. If z lies in the shadow regions, then
z may interrupt the retrieval. Otherwise z does not.

Thus, if r,, 75, and any other rectangle z are put in a
sequence-pair such that S~1(2) < B71(rp), 371 (2) > B71(r4),
or a~1(z) > a=1(r,) then z does not interrupt in the retrieval
procedure.

Analogously, in the other patterns in Figure 2, condition
for r,, 7, and z on a sequence-pair are obtained. We omit
them here for the space.

T-Connectivity: We provide the condition for retrieval
with respect to a terminal and a wire-rect. Let a terminal
and the connecting wire-rect be ¢ and r, respectively. After
compaction, t and r are placed as shown in Figure 4(a). To
retrieve the connection as shown in (b), the other rectangle
z is as in (c) may interrupt the retrieval. If z does not lie in
the shadow regions in (d), z does not interrupt. Therefore,
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Figure 4: T-connectivity

Figure 5: A conflict of retrieval

condition is: B71(2) < B7L(¢), B7(z) > B~ (), a™

Lz) <
a=1(t), or a71(2) > a7 (r).

Furthermore, we have to prevent retrieval from conflicting
with respect to two terminals as shown in Figure 5(a) (The
sequence-pair is shown in (b)). The figure shows the conflict
of two connections between terminals and wire-rects. Thus,
the sequence-pair must satisfy a=1(r,) < a™(ta), a " 1(ry) <
a=Nty), B () < B (ra)), or 871 (ra) < B7H(rp))

We also have to keep a similar condition for retrieval of
terminal-to-wire-rect not to conflict with that of terminal-to-
terminal.

S-Connectivity: Let two wire-rects connected at a Steiner
point be r, and rp. As the discussion of T-connectivity, in
retrieving the connection of r, and rp, condition for the other
rectangle z not to interrupt are as follows. 371(z) < 87 1(r4),
B7Hz2) > B7L(m), a7 l(2) < a7l(ry), or a7(2) > a”i(ry).

Furthermore, as well as T-connectivity, we have to keep a
condition to prevent retrieval from conflicting with the other.

3.2 Extension of Compaction under Wire-
Connectivity

Given a sequence-pair which meets Wire-connectivity, we
try to get the corresponding placement and routing by com-
paction. In order to guarantee connections after the com-
paction, we introduce additional directed edges to G} and
Gy. The compaction is called WC-compaction.

In our problem, cells consist of several outlines (rectan-
gles). We provide a pre-procedure before compaction to cal-
culate the minimal horizontal and vertical distances between
cells ¢, and ¢,. These distances are denoted by dp(cq, ),
dy(ca,cp) (Ca,c € E, a+#b), respectively.

dn(ca,cp) = x(cp) — x(Ca) =

z(
v egr::gg;e%{x(oz + w(o;) + dp(l(0s), l(oj)) - x(oj)}
y(ev) — y(ca

dv(ca; Cb)

v eg}%;;e%{y(oﬁ h(os) +

An example is shown in Figure 6(a). The horizontal dis-
tance between two cells ¢ and ¢ is dp (¢, ') = x(02) +w(o2) +

dn(l(02),1(04)) — z(04).
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Figure 6: The distance between ¢ and ¢’ and weighting di-
rected edges

As for the distances between cell ¢ and a wire-rect r, they
are to be calculated in the following two cases. Omne is
the distances from ¢ to r, which are dp(c,r) and dy(c, 7).
dp(c,r) = z(r) — z(c) = \gnaex{ac(oi)—l—w(oi)—l—d}, where

o;&cC

if 0; is not a terminal connecting with r then d = 0,
otherwise d = dp(l(0;),l(r)). du(e,7) = ylr) — yle) =
\gnaex{y(oi) + h(0;) + d}, where if o; does not connect with
o;&cC

r then d = 0, otherwise d = d,,(I(0;),1(r)).
The other is the distances from to r to ¢. dp(r,¢) =
z(c)—z(r) = w’—l—\gnaex {d — x(0;)} where if 0; is not a terminal
o;&ccC

connecting with r then d = 0, otherwise d = dx(I(r),(0;)),

and if r corresponds to a horizontal segment then w’ = 0, oth-

erwise w' = w(r). dy(r,c) = y(c)—y(r) = h’—l—\gnaex{d —y(o;)}
o;&cc

where if 0; does not connect with r» then d = 0, otherwise
d = dy(I(0;),1(r)), and if r corresponds to a vertical segment
then b’ = 0, otherwise h' = h(r).

Similarly, the distances between two wire-rects r; and r;
which are dj(r;,7;) and d,(r;, r;) are calculated, but we omit
the ways here.

In [3], each vertex of G, corresponds to a rectangle and is
given to the width of the rectangle as a weight. And each
vertex of G, also corresponds to a rectangle and is given to
the height.

In this paper, we give not a vertex but each directed edge
the distance which is between two rectangles connected by the
edge. An example of weightening in G}, is shown in Figure
6(b). Furthermore, we introduce additional directed edges
to keep Wire connectivity. These edges are categorized into
three types of J-edge(at terminal), T-edge(at terminal), and
S-edge(at Steiner point). For simplicity, we describe such ad-
ditional edges by using examples in the following.

J-Edge: To keep connection as shown Figure 7(A)(a), the
width of ro must be positive, that is, z(r;) < z(rs) must hold.
Then we add an edge to G, which is from r; to r3 and given
the weight 0 (See Figure 7(A)(b)).

T-Edge: To retrieve connection of a wire-rect and a ter-
minal, relative distance between the wire-rect and the cell to
which the terminal belongs must be maintained after com-
paction.

In Figure 7(B)(a), distance between cell ¢ and wire-rect r
is d. We add two edges; (i)one is from r to ¢ with the weight
of —d. (ii)the other is from ¢ to r with the weight of d. (See
Figure 7(B)(b)).

Note that to add those two edges means that Gj becomes
directed cyclic. However, when there exist a placement and
a routing which corresponds to the sequence-pair, the sum of

weights of edges on the cycle is not positive. Hence we can
calculate the longest path length of G}, in polynomial time.

S-Edge: As shown in Figure 7(C), paths p; and po are
connected at the Steiner point on 5. In this case, we add an
edge from ry to r4 with the weight 0.

This constraint may be too severe. We already have how
to cancel it. To apply that way, however, we need complex
discussion, so omit it here.

Constructing G, and G, taking the extensions of J-, T-, and
S-edges, coordinates of cells and wires-rects are determined
as follows; For each cell ¢ (each wire-rect r), x(c) (x(r)) is
the longest path length in G, from the source to the vertex
corresponding to ¢ (r). Similarly, y(¢) ((y(r))) is determined
by G,.

Corners and ends on a path p are determined according to
the coordinates of wire-rects and terminals.

1. Let each of segments into which p is divided be s, and
let a wire-rect corresponds to s be 7.

2. If s is horizontal, y-coordinates of both ends of s are
y(r) +w(p)/2. Otherwise, x-coordinates of both ends of
s are z(r) + w(p)/2.

3. Select one in the following cases whether an end of s is
to be connected with a terminal ¢ and wire-rect r' (# 7).

(a) If the end is to be connected with ¢ at right- or left-
side of t, x-coordinate of the end is z(c) + x(t) +
w(t)/2 where c is a cell to which ¢ belongs.

(b) If the end is to be connected with ¢ at top-
or bottom-side of ¢, y-coordinate of the end is

y(e) +y(t) + h(t)/2.
(c) If the end is to be connected with a vertical 7.
x-coordinate of the end is z(r’) + w(r’)/2.

(d) If the end is to be connected with a horizontal r'.
y-coordinate of the end is y(r’) + h(r')/2.

4. Make each path p so thick that the width of p is w(p).

Through the above operation (WC-compaction), we get the
x- and y-coordinates of all the cells and wires without any
design rule errors.

4 Optimality of Expression and Extension to
Multiple Layer Routing

Our simultaneous expression brings us the following signif-
icant theorem.

Theorem 1 For General Shaped-Based Layout Problem, ev-
ery solution X can be mapped to a sequence-pair (o, B) which
satisfies Wire-connectivity, and WC-compaction((a, 8)) out-
puts a solution with not more than the area of X.

We complete the proof of the theorem, but we omit it here
for the space.

Furthermore, we release an assumption that a layer of ev-
ery wire is the same. Let the number of layers for the rout-
ing be k', and these are denoted by mety, mets, ..., mety.
We prepare k' + 1 sequence-pairs, and these are denoted by
Sp1, SP2, - - -, SPrr+1- We define each sequence-pair sp; such
that sp; consists of wire-rects and cells which include met;.
sp; satisfies Wire-connectivity. spp/41 consists of cells which
does not include any layers for the routing.
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Next, let a horizontal constraint graph given by sp; be
Gr(sp;), to which is added J-, T-, and S-edges. For a cell
¢ which includes both met; and met; (i # j), let a vertex
to ¢ be v in Gi(sp;), and let a vertex to ¢ be v’ in Gy (sp;).
Add a pair of edges with a weight of 0 such that one is from
v to v’ and the other is from v’ to v. Collect sources of all the
graphs to one, and collect sinks to one.

An example is shown in Figure 8. The cell ¢ belongs to
met; and mety. The wire-rects r, and 1, belong to met,
and 1, and r. belong to mets. Two vertices to the cell ¢
are connected by a pair of directed edges. As the results,
we obtain G}, which is combined those graphs from Gp,(sp1)
to Gr(spgs). Analogously, G, is obtained. The procedure of
WC-compaction is the same. Significantly, Theorem 1 holds
as for thus multiple sequence-pairs and WC-compaction.

5 Optimization of Placement and Routing
Our framework of the optimization is based on an iterative
improvement strategy, as well as SPa.

1. Construct an arbitrary solution X, that is, a placement
and a routing without any violation of the design rule.

2. Extract a sequence-pair (o, ) from X which keeps
Wire-connectivity.

3. Repeat the following steps until a terminative condition
is satisfied.

(a) Apply WC-compaction to (a, ) to create a new
solution X’.

(b) Evaluate area of the bounding box of X’ and keep
the best solution so far.

(c) Change the sequence-pair by a move to create
a new sequence-pair (a’,") keeping feasibility,
where feasibility means that Wire-connectivity is
satisfied and there is no positive cycle in Gy, and
Gh.

(d) (o, B) = (o', B").

(C) S-edge
WS Sun Ultra Sparcll 360MHz
0S Solaris 2.6
Domain EDA | Virtuso (Cadence Design Systems)
Engine Coded by C-Language
I/F & GUI Coded by SKILL
Design Leaf-Cells on Bipolar

Table 1: Platform of our interactive tool
4. Output the best solution so far.

In the framework, an initial solution is given by the exist-
ing shape-based algorithm, although the performance is not
enough. The move is very simple, and it is described as fol-
lows.

. Select a cell or wire-rect and let it be z.

. Select either sequence of « or .

. Remove z from the sequence (« or f).

. Imsert x into the sequence so as to keep feasibility.

=W N

Furthermore, we have to make it clear how to apply a move
keeping feasibility. The details are omitted here. An example
of two moves is shown in Figure 9. In the figure, (a) is an
initial solution, and (c) is the corresponding sequence-pair.
(d) shows that g is removed from § and inserted it between a
and d of . (e) shows that g is removed from «, and inserted
it behind d of a. (b) is the placement and routing which
corresponds to (e).

There does not exist a placement and a routing by infinite
iterations of these type moves, so we need different types of
moves. Note that a topology of each wire does not change
during the iterations. We already have several ideas to change
the topology, but we will introduce them in the next paper.

The algorithm is flexible to other extensions based on SPa,
because our expression and WC-compaction are fundamental
as well as SPa. For examples, we can adopt the following
extensions; to handle coordinates-fixed cells (not to move)
[5], to handle symmetric cells [7], and to handle rectilinear
cells [6]. Note that these techniques are applicable to wires
since we represent a wire by a set of rectangles.

6 Application to Analog IC Layouts

To complete our ideas, we implemented our algorithm em-
bedded into a commercial tool. The platform is described in
Table 1.

Our target designs are analog leaf-cells and blocks. An ex-
ample of the performance of our engine is shown in Figure 10
and 11. Figure 10 is an initial entry. The algorithm searches



(c) (aefbhgced, cbgdaefh)
(d) (aefbhged, cbdgaeth)

(e) (aefbhcdg, cbdgaefh)

Figure 9: An example of moves on a sequence-pair

calc.time(sec) 0.300
no. of trials 2400
no. of feasible solutions | 542

Table 2: The computation report of simultaneous placement
and routing

the best solution by iteration of moves. The result is shown in
Figure 11. We imposed symmetric constraints to five pairs of
cells and a pair of wires. Note that we can attain symmetric
wires by using the algorithm in [7], since a wire is represented
by a set of rectangles.

The computation report is described in Table 2. A feasible
solution means that the corresponding sequence-pair meets
Wire-connectivity.

The layout is compacted, and our optimization process was
executed very quickly, although the number of cells is small.
A comment of a designer is that utilization of the tool en-
ables him to shorten design time for 30-50%. The result can
convince us that the tool also has sufficient potential to full-
automation design of analog circuit layout.

7 Concluding Remarks

We aimed to shorten analog circuit design time which is a
bottle-neck in the whole design period. We formulated the
layout problem, and proposed an algorithm to solve it, which
is based on SPa. The features of the proposals are: (i) mul-
tiple outline circuitry model, (ii) simultaneous expression on
a sequence-pair by rectangle-based wire model, (iii) condi-
tion on a sequence-pair to guarantee connection of wires (iv)
compaction under wire’s connectivity, and (v) simultaneous
optimization of placement and routing. We also led a theo-
rem that our expression is not redundant (i.e. optimal) with
respect to area. Furthermore, we demonstrated the perfor-
mance of the engine embedded on a commercial tools. The

a @ RiB43 il

Figure 10: An initial placement and routing
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Figure 11: The result by simultaneous optimization

results convinced us that utilization of our tool shortens the
design time. The algorithm is flexible to other techniques
based on SPa, which are to handle symmetric, coordinates-
fixed, and rectilinear cells. These techniques are also applica-
ble to wires since we represent a wire by a set of rectangles.
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