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Abstract

An adaptive interconnect-length driven standard cell
placer (ILDP) is developed. The length bound for each
source-sink pair is employed to direct the placement of
each cell during recursive min-cut partitioning. Global
migration, gate resizing, and buffer insertion are
performed to make length bounds easier to satisfy.
Bound re-computation is dynamically invoked to
generate more realizable bounds based on the current
partial placement. ILDP is integrated into a commercial
tool set. Experimental results show more than 20% delay
reduction can be achieved for some MCNC benchmark
circuits.

1. Introduction

Timing-driven placement has gone through a series of
evolution, starting from net-weight-driven to net-length-
driven, and to path-delay-driven. Net-weight-driven
placement [1,2] assigns higher weights to critical nets to
bias the positioning of a cell. The problem with this
approach is that a non-critical path can easily become a
critical one after layout. Path-delay-driven approach [3,4]
checks the satisfaction of path delay requirements during
a placement process. To handle path constraints easily,
the delay of a path is formulated as a linear combination
of timing variables of the nets and the logic gates on the
path. This approach is very time consuming for a design
with an enormous number of paths. Net-length-driven
approach employs a set of net-length bounds to direct
cell placement. It consists of two sub-problems, i.e.,
generating length bounds and positioning logic cells
without violating length bounds. In [5], critical nets are
given with net-length constraints prior to placement. A
new min-cut algorithm driven by net-length bounds is
proposed. In [6], a convex programming algorithm is
used to compute the upper and lower bounds on net
length. Macro-cells are placed at the appropriate locations
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to make the length of each net fall between its lower and
upper bounds.

The work done in [7-9] emphasizes more on the
generation of length bounds. The common procedure to
generate net-length bounds for all the nets in a circuit
works as follows. The slack of a path is first computed
by taking only gate delays and timing requirements into
account. Then, the path slack is distributed to the
constituent nets of the path as net delay bounds. Path-
slack distribution may take many iterations. Because
net-delay bound can be converted into net-length bound
based on a timing model, delay bound and length bound
will be used interchangeably in this paper.

Other approaches to addressing interconnect delay
problem include gate resizing, buffer insertion, and
coupling-awareness physical design, etc. Gate resizing
and buffer insertion can be performed pre-layout [10-12],
during layout [13-16] or post layout [17-21]. Wire
coupling can increase interconnect delay and produce a
coupling noise. The increase in interconnect delay can
elongate critical paths, whereas the coupling noise could
possibly cause false switching on a device [22]. Because
wire coupling is caused by the close proximity of wires
that run in parallel for a long distance, researches in
coupling-awareness physical design mainly focus on
developing routing strategies to reduce the length of
adjacent wires running in parallel [23-25].

A problem with net-length-driven approach is
whether a placer can make all the nets (source-sink pairs)
in a circuit satisfy their bounds. One approach to this
problem is to compute interconnect bounds according to
the circuit’s electrical and physical characteristics [8].
The length bounds so obtained may be more realizable,
but nets in a legal placement may sometimes still violate
their bounds. Another approach is to re-compute bounds
based on a bad layout and the placement task is
performed again based on the new bounds. This
approach is certainly very time consuming and may go
forever. Yet another viable approach, like the one
proposed in this paper, is to update bounds on the course
of placement based on a partial placement. The delay
bounds are adaptively modified according to the current
status of the placement process. To go one step further,
the proposed method employs global migration, gate



resizing, and buffer insertion to make delay bounds
easier to satisfy. Experimental results show more than
20% delay reduction can be achieved for some MCNC
benchmark circuits.

The rest of this paper is organized as follows. Section
2 details the methodologies used by /LDP. These
include the approaches to delay bound computation,
routing topology for a multi-pin net, min-cut partitioning,
global migration, gate resizing, buffer insertion, bound
re-computation, etc. Section 3 presents some
experimental results. Section 4 draws a conclusion.

2. Interconnect-length driven placement

Figure 1 shows the proposed placement methodology,
ILDP. The interconnect delay bound generator computes
delay bounds for all the source-sink pairs in a circuit
with considering the influence of functional false paths
[26]. The global placer first generates the cut lines and
determines the cut sequence, and then recursively
performs circuit partitioning [27] until all the cut lines
are executed. On the course of partitioning, the source-
sink pair delay bounds are taken into account when one
cell is moved from one partitioning region to another. If
any of the source-sink pairs violates its bound, the cells
connected by the underlying net are globally migrated
from one partitioning region to another. This process is
called global migration. Although global migration can
reduce the distance between source-sink pairs, the delay
bounds for some source-sink pairs might be still too
tight to satisfy. In this situation, the global placer
automatically performs gate resizing or buffer insertion
to make the bounds easier to satisfy. Furthermore, delay
bounds are dynamically re-computed based on the
current partial placement when too many source-sink
pairs violate their bounds. As the partitioning process
goes, the partial placement will give more accurate cell
positions such that the new delay bounds will be more
realizable. Finally, detailed placement decides the exact
cell positions to minimize the total wire length.

2.1. Net-length bound generator

The bound generator, though employing MIMP [8] as
a basis, can distribute path slack to the constituent
source-sink pairs of a path instead of the constituent nets.
It can also assign a minimal bound to each source-sink
pair based on the cells connected to the underlying net.
In general, we would like a critical source-sink pair as
shorter as possible. However, from the bound realization
viewpoint, we would like a bound as larger as possible.
In this work, the weights used in distributing path slacks
can support both viewpoints and are chosen to be a
function of fanout. Other parameters such as driving
capability can be used along with fanout to derive the
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Figure 1. Overview of ILDP

weights. The bound generator calculates gate delay
using a non-linear delay model [28] in terms of input
slope and output load. To improve the efficiency of
bound computation, the PCL [29] (path constraint list)
created during false path identification is employed to
exclude false paths during bound computation. Basically,
a delay bound generator should take the coupling delay
into account, but it is not necessary for us to do so in
placement.

For initial bound computation prior to placement, the
capacitance derived from the minimum delay bound is
used to adjust gate delays to make delay bounds more
accurate. When bound re-computation is performed
during min-cut partitioning, gate delays should be
recalculated due to the change of wire capacitance
derived from a partial placement. An interconnect delay
is computed for each source-sink pair by using the
distributed RC Elmore delay model. Timing analysis
takes the estimated interconnect delay into account when
it calculates the latest arrival time for each source-sink
pair. If the slack of the longest path traversing the
source-sink pair is positive, MIMP algorithm is
employed to distribute the remaining slack. The final
delay bound is taken as the sum of the estimated
interconnect delay and the newly assigned slack.
Otherwise, negative slack should be distributed to each
source-sink pair f on the underlying path according to
the following rule:

If the estimated delay of f is smaller than the old bound,
bound ., (1) = estimated delay of f ; otherwise,

bound ,,,, (f) = estimated delay + path _ slack
Xviolation z / violation 1 .

Where violation, is the amount of bound violation on f

and violation,,, is the total amount of bound violations

on the longest path traversing /- Redistributing negative

path slack in this way can have the following effects:

(a). A source-sink pair that does not violate its bound
will continue to satisfy the new bound during



subsequent partitioning,

(b). A source-sink pair that has a small amount of
violation will be very likely to satisfy the new bound
during subsequent partitioning.

(c). A source-sink pair that has a large amount of
violation will very likely continue to violate the new
bound so that global migration, gate resizing or
buffer insertion is invoked to eliminate the violation
during subsequent partitioning.

Our bound generator is efficient, for example, the
benchmark circuit s38584 with 11392 cells taking only
185 seconds on a SUN UltraSparc 10 with 128 Mb
memory.

2.2. Multi-pin net topology and timing model

A multi-pin net routing problem can be solved by
constructing an optimal rectilinear Steiner tree (RST).
Because it is an NP-hard problem [30], the problem is
approximated by using a simpler routing topology model
shown in Figure 2. Given the terminal points of a net,
the minimum bounding box enclosing all the terminal
points is first created. Suppose the longer side of the
bounding box is in the horizontal direction. Then, a
routing tree is formed by drawing a trunk (i.e., AB)
across the center of the shorter side and by drawing
vertical wire segments to connect all the terminal points
to the trunk. Clearly, the maximum length of a &-pin net
is not greater than L + 0.5k and the estimation for a
two-pin net is optimal. Here, we assume that a pin is
located at the center of a partitioning region.
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Figure 2. A multi-pin net routing topology
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To compute the RC delay for each source-sink pair,
the topology model is employed to create a routing tree
whose root and leaves represent respectively the source
node and the sink nodes of a net. Each wire segment is
then modeled as a 7 -type circuit and the interconnect
delay is estimated based on the distributed RC Elmore
delay model.

2.3. Global placer

The global placer places logic cells at the various
regions such that the total wire length is minimized and
each source-sink pair can satisfy its delay bound. Figure

3 shows the global placement algorithm. Violation(n)
denotes the bound violation of net n, which is the sum
of the bound violations of the source-sink pairs that
constitute net #,, and € is a user-specified threshold. The
global placer performs the following main tasks: min-cut
partitioning, global migration, gate resizing, buffer
insertion, and invoking delay bound re-computation.

Generate cut lines and determine a cut sequence;
For each cut line {
Perform min-cut partitioning with bound constraints;
If ( too many source-sink pairs violate their delay bounds )
Perform bound re-computation;
Else {
For each net 7, if any of its source-sink pairs violates the
bound {
Perform global migration;
it ( 0<wviolation(n) <E ')
Apply gate resizing;
Else
Perform buffer insertion;

1

Figure 3. Global placement

2.3.1. Min-cut partitioning. Min-cut partitioning, in
addition to satisfying size constraints and maximizing
gains, has to consider length bounds when moving a cell
to another partitioning region. Whether a selected cell m
can be moved is determined by the following criteria:
(a). If violation_difffm) < 0, then cell m can be moved to

another region.
(b). If violation difffm)> 0 and gain(m) <0, then cell m

must be kept in the original region.
(¢). If violation_diff{im)>0, gain(m)>0, and

wXx gain(m)—(1—w)xviolation _diff (m)> 0, then

cell m can be moved to another region; otherwise,

cell m is kept in the original region.
Where gain(m) and violation diff{m) are respectively
the cut-size reduction and the change of total bound
violations for moving cell m to another region. A net has
a violation if any of the source-sink pairs of this net
violates its delay bound. The bound violation of this net
is computed as the sum of the bound violations of the
source-sink pairs that constitute this net. By varying a,
0<w <1, we can adjust the role of delay bounds during
min-cut partitioning. Note that criterion (c) allows a
source-sink pair to violate its delay bound when the gain
is considerably large. The violation will be eliminated
later by global migration, gate resizing, or buffer
insertion.

2.3.2. Global migration. The global placer could
migrate the cells connected by a net to other partitioning
regions in order to eliminate a violation. Moving these
cells to another partitioning regions may make some




other source-sink pairs connected to these cells also
violate their delay bounds. So, violation diff(im) defined
above is used to determine whether a cell m can be
moved. If it is smaller than zero, cell m can be moved to
the desired region. Global migration is terminated when
the violation is eliminated or all of the underlying cells
can not be moved.

2.3.3. Gate resizing. When some source-sink pairs can’t
satisfy their delay bounds, gate resizing is tried to solve
this problem. Driving gate and/or the driven gates can be
resized to increase delay bounds. We consider only
driving gate resizing, which is done by using a gate with
higher driving capability. Although scaling up a driving
gate can increase the delay bounds of its source-sink
pairs, the delay bounds of the source-sink pairs driven
by the preceding gate would be decreased because the
gate capacitance of the driving gate has already
increased. Theoretically, gate-resizing should be
conducted backward toward the source of a path. But if
the increase in the driving gate capacitance is much
smaller than the wiring capacitance of a net, we do not
have to perform backward gate resizing. In fact, if we
have to do so, it probably indicates that buffer insertion
is required.

2.3.4. Buffer insertion. When a buffer is inserted into a
long net, three important issues must be addressed:
where to insert the buffer, how large the buffer size is
and how to re-distribute the original delay bound to the
newly created source-sink pairs. The insertion position
is selected as the point along the most critical source-
sink path on a routing tree such that bound violations
can be greatly reduced. The size of the inserted buffer
depends on its output load capacitance. In general, the
greater its output load capacitance, the larger is its size.
But a buffer of proper size should be used just enough to
eliminate bound violations. After buffer insertion, a net
is separated into two shorter nets and bound
redistribution should be made based on the buffer’s
position and driving capability.

2.3.5. Delay bound re-computation. When the number
of bound violations is larger than a user-specified
threshold, it indicates that the global placer with the
current set of delay bounds will not be able to obtain a
timing-satisfied design. In this situation, the global
placer stops the placement process and bound re-
computation is invoked. The information passed from
the global placer to the bound generator includes the
estimated delay of each source-sink pair derived from
the current partial placement. The bound generator uses
this information to generate a set of more realizable
bounds. Then, the global placer continues the placement
process with these new bounds. If it goes well, the

frequency of bound re-computation should be limited.

2.4, Detailed placer

Detailed placement decides the exact positions for the
cells located in each of the partitioning regions. Since
each cell is located within a small region, length bounds
are no longer used here to direct the positioning of a cell.
The detailed placement performs a two-phase linear
ordering [31]. The first phase divides all the cells within
a partitioning region into r subsets, where r is the
number of cell rows within this region. This phase
minimizes the number of wires among rows in a region,
whereas the second phase minimizes the total wire
length on the same row.

3. Experimental results

ILDP is integrated into a commercial tool set called
CMT. The placements obtained respectively from /LDP
and CMT placer are routed by CMT router. Post-layout
resistance and capacitance are used to compute the
interconnect RC delay. The interconnect delay and cell
delay are employed to produce a SDF (Standard Delay
Format) file which is used by Synopsys Design Time to
perform post-layout timing analysis.

In order to make interconnect delay more significant,
we increase the sheet resistance of each routing layer
such that a small increase in interconnect length would
significantly increase the interconnect delay, but would
slightly increase the gate delay. The purpose is to see
how effective /LDP can manage interconnect length.
Three MCNC benchmark circuits, s5358, s13207, and
$38584 are employed for this study. These circuits are
synthesized by Synopsys Design Compiler with an in-
house 0.25um cell library. The results are presented in
Tables 1, 2, and 3, where placement strategy indicates
what kind of weighting method is used in bound
computation, whether global migration is applied, or
whether gate resizing is employed. N/ indicates that the
weight of the source-sink pairs that constitute a net is set
proportional to the square root of the fanout of this net,
whereas /nv indicates that the weight is set proportional
to the inverse of the square root of the fanout. A path
between memory cells is called a memory path, whereas
a path starting from or ending at an IO pin is called an
10 path. “\” indicates the associated placement strategy
is employed, whereas “X” indicates otherwise. The
longest path delay produced by CMT is given in the last
TOW.

In Tables 1 and 2, the delays of the longest memory
paths and the longest 10 paths produced by /LDP are
smaller than that produced by CMT. It is found for s5378
that the placement results produced by /LDP employing
NI strategy are better than that by /LDP employing /nv



strategy. But, the phenomenon is opposite for s13207.
This reminds us of the argument that a critical source-
sink pair should be routed as shorter as possible, but a
bound should be made as larger as possible from the bound

Table 1. The longest path delays of s5378 after routing

Longest Memory | Longest 10 Path
ILDP Placement Strategy Path

Weighting| Global Gate |Delay| Delay |Delay| Delay

method | Migration |Resizing | (ns) | improved | (ns) |improved
NI X X 536 | 294% |5.18| 02%
Inv X X 540 | 289% |492| 52%
NI N X 491 353% 430 17.2%
Inv N X 514 | 323% |486| 64%
NI N v ]488] 357% [3.84] 260%
Iny N N 554 27.0% [458] 118%

CMT 7.59 0% 5.19 0 %

Table 2. The longest path delays of s13207 after routing

Longest Memory | Longest I/0O Path
ILDP Placement Strategy Path

Weighting | Global Gate |Delay| Delay |[Delay| Delay

method | Migration |Resizing| (ns) |improved | (ns) | improved
NI X X 12.05| 99% | 736 | 244%
Inv X X 11.41] 147% | 643 | 340%
NI \ X 10.81| 192% | 635 | 34.8%
Inv v X 10.65| 204% | 582 | 40.3%
NI N V 9.96 | 256% | 7.18 | 263 %
Inv N V 931 | 304% |5.76 | 409%

CMT 13.38] 0% % |9.74 0%

Table 3. The longest path delays of s38584 after routing

realization viewpoint. Because these two viewpoints
contradict to each other, it is reasonable to expect that
NI strategy can not totally outperform Inv strategy or
vice versa.

In Table 3, the longest 1O path delays produced by
ILDP are smaller than the one produced by CMT7. But
the longest memory path delays produced by /LDP are
longer than that produced by CMT7. This is because the
[O paths of s38584 are much longer than the memory
paths. As a consequence, the delay bounds of the source-
sink pairs on the 10 paths are tighter than that on the
memory paths. Therefore, ILDP would tend to minimize
the length of each source-sink pair on the IO paths while
make the delays of the memory paths satisfy the timing
specifications.

[deally, the longest path delay produced by /LDP
employing both global migration and gate resizing
should be smaller than that by ILDP simply employing
global migration; the longest path delay produced by
ILDP employing only global migration should be
smaller than that by ILDP employing neither global
migration nor gate resizing. For s5378 and s13207, this
is almost true except for a few special cases, but it is not
true for s38584. The possible reason for this is that we
can not control the routing process so that the actual
interconnect delay after routing may be very far from the
one predicted by ILDP.

The results obtained by ILDP with buffer insertion in
Table 4 show that buffer insertion can further reduce the
longest path delay. Here, NI strategy is used to derive

Longest Memory | Longest 1/O Path weights for computing delay bounds. The number of

[LDP Placement Strategy Path buffers inserted is quite limited, at most 5% of the total

Weighting| Global | Gate | Delay | Delay Delay) Delay cell area. Note that CMT does not perform any buffer
method |Migration|Resizing| (ns) |improved| (ns) | improved X X . . .

. - - insertion. For a fair comparison, we are currently working
NI x x| 32,02 | -592 %] 47.86 23.6% weighing of the gain and bound violation during min-cut
[y a X 3231 | 606 % 48.08 233 % artitioning is not properl erformed. Overl
NI v x 3335 -65.8%|3823| 39.0% P s properly. b o y
= 3 ~ 12789 | 386%[52.18 163% emphasizing bound violation can easily cause a
N J V12426 | 206 %|49.18 215% routability problem. We guess that this problem can be
Iny N N 2989 | -48.6 %|47.57 241% improved by using a more robust multi-way partitioning

CMT 20.12 0 %] 62.68 0% algorithm [32].
Table 4. The longest path delay and total cell area
CMT ILDP
Number | Longest | Total cell | Longest| Delay [Number of| Total cell Area

Number | Number | of 10 path |area (um”™2)] path |improved | Inserted area increased
Circuits\\] of cells | of nets ins dela dela buffers (um”2
S13207 3006 3367 155 |1332ns| 201130 | 8.12ns | -39.0% 18 202060 +0.46%
S15850 3767 4124 104 |14.55ns| 221940 |10.76 ns| -26.1% 32 223630 +0.76%
S38417 11110 | 11750 137 ]121.03ns| 666340 |15.49ns| -26.3% 359 684810 +2.77%
$35932 11544 | 12900 358 |59.15ns| 693190 ]40.30ns| -31.9% 339 710990 +2.57%
s38584 11392 | 12536 293 |54.74ns| 642170 |35.37ns| -35.4% 616 674180 +4.98%




4. Conclusion

An Interconnect-Length Driven standard cell Placer
(ILDP) employing source-sink pair delay bounds to
direct the positioning of cells during recursive min-cut
partitioning has been developed. Global migration, gate
resizing, and buffer insertion are performed to make
delay bounds easier to satisfy. When too many source-
sink pairs violate their bounds during min-cut
partitioning, more realizable delay bounds are
dynamically derived from the current partial placement.
ILDP is integrated into a commercial tool set. Results
from MCNC benchmark circuits show more than 20%
delay reduction can be achieved. In the future we will
apply delay bounds to wire sizing during placement.
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