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Abstract— An architectural level technique for a high per-

formance and low energy cache memory is proposed in this

paper. The key idea of our approach is to divide a cache

memory into several number of cache blocks and to acti-

vate a few parts of the cache blocks. The threshold voltage

of each cache block is dynamically changed according to an

utilization of each block. Frequently accessed cache blocks

are woken up and others are put to sleep by controlling

the threshold voltage. Since time overhead to change the

threshold voltage can not be neglected, predicting a cache

block which will be accessed in next cycle is important.

History based prediction technique to predict cache blocks

which should be woken up is also proposed. Experimental

results demonstrated that the leakage energy dissipation in

cache memories optimized by our approach can be less than

5% of energy dissipation in a cache memory which does not

employ our approach.

1 Introduction
An important class of digital systems includes ap-

plications, such as video image processing and speech
recognition, which are extremely memory-intensive.
In such systems, a much power is consumed by mem-
ory accesses. In most of today’s microprocessors, a
cache memory is one of the main power consumers.
The on-chip caches of the 21164 DEC Alpha chip
dissipates 25% of the total power of the processor.
The StrongARM SA-110 processor from DEC, which
specifically targets low power applications, dissipate
about 27% of the power in the instruction cache[1].
Thus, employing low-power cache memory can greatly
reduce the overall energy dissipation in digital sys-
tems.

Historically, dynamic energy dissipation caused by
charging and discharging capacitive load has been
dominant. Therefore, most designers have relied on
scaling down the transistor supply voltage to reduce
chip’s energy dissipation. However, maintaining high
transistor switching speeds requires a down-scaling of
the transistor threshold voltage. This leads to a dis-
sipation of significant amount of leakage energy even
when the transistor is not switching. In [2], Borker
estimates that leakage current per total gate width on

the die increases about 5 times each generation. Since
dynamic energy remains constant (according to scal-
ing theory), static energy dissipation caused by leak-
age current will become a significant portion of total
energy dissipation. An increase of an on-chip cache
size makes this situation worse, because leakage en-
ergy is a function of the number of on-chip transis-
tors. In order to reduce this undesirable leakage cur-
rent, several methods have been reported. There has
been proposed some circuit techniques which cut off
this undesirable leakage current of logic circuits with
multiple threshold CMOS (MT-CMOS) when systems
are inactive[3]. However, these techniques are not ap-
plicable to memories, because they can not maintain
the data in memory when the power source is cut off.
Energy reduction technique maintaining the data in
memory is required for low power memory. Some other
techniques (e.g., variable threshold CMOS[4], auto-
backgate-controlled MT-CMOS[5]) utilize a backgate
bias effect to reduce the leakage current in the sleep
mode by rising up the threshold voltage when the cir-
cuit does not operate. These techniques, however, im-
pact circuit performance and are only applicable to
circuit sections that are not performance-critical. The
key technology to utilize these dynamically variable
threshold voltage schemes is to decide which part of
memory block should be woken up or put to sleep[6].

There are some papers which explore architectural
approach to reduce leakage energy[7, 8, 9]. However
there leaves still room for improving the leakage en-
ergy by controlling the threshold voltage. In this pa-
per, we propose an architectural level technique to re-
duce leakage current of deep-submicron cache memo-
ries. The key idea of our approach is to divide a cache
memory into several number of cache blocks and to
activate a few parts of cache blocks. The threshold
voltage of each cache block is dynamically changed
according to an utilization of each block. Frequently
accessed cache blocks are woken up and others are put
to sleep by a cache controller. Since time overhead
to change the threshold voltage can not be neglected,
predicting a cache block which will be accessed is im-
portant. History based prediction technique to pre-



dict cache blocks which should be woken up is also
proposed.

The rest of the paper is organized in the following
way. In Section 2, we discuss the motivations for our
work and present our concept to reduce leakage en-
ergy of the cache memories. We propose a selectively
activated cache (SAC) architecture and a technique to
reduce a leakage energy dissipation by using the SAC
architecture in Section 3. Section 4 presents experi-
mental results and discussion on the effectiveness of
our approach. Section 5 concludes this paper.

2 Motivations
2.1 Energy and Delay Model

So far, analysis of energy consumption considers
only dynamic energy consumption, and most VLSI
designer relied on scaling down the supply voltage to
reduce chip’s energy dissipation. Leakage energy con-
sumption has not been highly significant in the past,
but it will be significant in the future, because of the
following reasons.

It is well-known fact that lowering the supply volt-
age causes an increase of circuit delay as shown in (1).

tpd ∝ Vdd

(Vdd − Vth)α
(1)

tpd denotes propagation delay, Vdd and Vth denotes
supply voltage and threshold voltage of the device,
respectively. α is a factor depending on the carrier ve-
locity saturation and is about 1.3 in advanced MOS-
FETs.

It is clear from (1) that the circuit delay (tpd)
in CMOS circuits can be improved by lowering the
threshold voltage (Vth). However, this causes explo-
sive increase of subthreshold leakage current. The sub-
threshold leakage energy dissipation can be given by

Eleak ∝ 10−
Vth

S · Vdd (2)

where S is subthreshold factor and its smallest limit
at room temperature is 60 mV/dec. Considering these
design tradeoffs in CMOS circuits, scaling down the
Vth of only a small part of cache block is effective way
to reduce energy consumption of memory without per-
formance degradation.
2.2 Dual Vth SRAM

Figure 1 shows an example of a dual threshold volt-
age SRAM[5]. This circuit can dynamically change
the threshold voltage of SRAM cells and reduce sub-
threshold leakage current when the memory is in a
sleep mode. Here Q1, Q2, Q3, and Q4, which are
higher threshold transistors than those for the inter-
nal memory circuit, behave as a switch to cut off the
subthreshold leakage current. While the memory cir-
cuit is operating (which called the ”active mode”),
Q1, Q2, and Q3 are turned on. The virtual source
line, VVDD, becomes 1.7V supplied by the voltage
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Figure 1: An example of dual Vth SRAM structure

source Vdd1 through Q1. The substrate bias, BP, is
also forced 1.7V through Q3. Another virtual source
line, VGND, is forced to ground level through Q2. In
the sleep mode, the VVDD and VGND are connected
to Vdd2, and ground respectively, through diodes.
The static leakage current, which flows from Vdd2 to
ground, decreases significantly compared with that of
the active mode, because the threshold voltage of the
internal transistors increase by its backgate bias ef-
fect. The results of SPICE simulation demonstrate
that the leakage current in sleep mode is reduced by
about 1/1000 compared with that of the active mode,
and we regards the leakage current in sleep mode can
be neglected.
2.3 Our Approach

Modern cache architectures are designed to satisfy
the demands of the most memory-intensive applica-
tion. The actual cache utilization, however, varies
widely both within and across applications [7]. This
means that frequently referred cache lines are dynam-
ically changed according to the condition of the appli-
cation program and rarely referred cache lines waste
large amount of leakage energy for only maintaining
data.

In this paper we propose a novel power manage-
ment cache architecture, a selectively activated cache
(SAC) architecture, which can dynamically activate a
small number of cache lines and put to sleep the re-
maining cache lines. The key idea of our approach is to
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Figure 2: The selectively activated cache architecture



partition a cache memory into several number of cache
blocks and to activate only a few parts of cache blocks.
The threshold voltage of each cache block is dynami-
cally changed according to an utilization of each cache
block. To vary the threshold voltage of cache blocks,
we employ the variable Vth structure as shown in Fig-
ure 1.

3 Selectively Activated Cache Archi-
tecture

At first, we present assumptions for our proposed
cache architecture. Next, we formally define a problem
of leakage energy reduction in deep-submicron cache
memories.

3.1 Target System
Our work targets systems which assume the follow-

ing.

1. The target system consists of a processor and a
main memory. The processor has a CPU, and
an instruction cache (i-cache) and a data cache
(d-cache).

2. The number of clock cycles per memory (main
memory) accesses is 1.3.

3. Cache miss penalty for each of a read miss and a
write miss is 10 cycle.

4. Cache memory is partitioned into several blocks
and each of them can independently selects an
active mode or a sleep mode.

5. The number of clock cycles per read access to
active cache blocks is 1.

6. Transition time to wake up the slept cache blocks
is less than a clock cycle time. Thus, a prediction
miss penalty is 1 cycle.

7. The number of clock cycles per read access to
slept cache blocks are 2, because it needs 1 clock
cycle to wake up and needs one more cycle to
read.

8. The number of clock cycles per write access to
both slept and active cache blocks are 1, be-
cause write time depends on the drive capability
of driver circuits.

Feasibility of transition time to wake up the slept
cache block is verified by SPICE simulation. The sim-
ulation result is shown in Figure 3. We have designed
a 4bits × 128word SRAM circuit with 0.5µm CMOS
technology. The SPICE simulation demonstrates that
it takes about 9 nanoseconds (which is less than a
clock cycle) to wake up the slept memory block.
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block

3.2 Wake-up Block Prediction
Let us introduce a new term, Rhit. The Rhit can

be defined as (3).

Rhit =
# of accesses to the active blocks

A total cache access count
(3)

If a cache access to the sleep blocks is occurred fre-
quently, performance is terribly degraded. Therefore,
it is necessary to increase Rhit for the SAC architec-
ture to improve performance. To increase the Rhit, we
employ a prediction table as shown in Figure 4. Cache
blocks which are registered in the prediction table are
activated and others are put to sleep. For example in
Figure 4, when the CPU is reading data from a cache
block 0 (current block), block 32, block 1, · · ·, and
block 19 are woken up. The entries of the prediction
table are decided by history information. As the num-
ber of entries (ne) in the prediction table is increased,
Rhit will increase, and performance is improved. How-
ever this causes increase of leakage energy, because
the number of the active blocks is increased. There-
fore the number of the entries of the prediction table
(ne) should be decided considering tradeoffs between
performance and leakage energy consumption.

31 1 19
Current block predicted  blocks

0
2 11 61
18 1 32

1 19 3031

# of blocks (nb)

# of entries (ne)

Figure 4: Prediction table

Figure 5 shows a timing diagram of a read access for
the prediction table. The prediction table has an ad-
dress register, named a previous block address register
(PBR) which keeps previously accessed block address.
And also, each cache block has a sleep flag which is
set to 1 when the corresponding cache block is acti-
vated (see Figure 2). If the current memory address is
different from the value of the PBR, the sleep flag of



the currently accessed block is set to 1, and this block
starts to wake up if it was slept. The value of the PBR
is also set to the current address. In the same cycle,
data of the prediction table is read out and the sleep
flag is set to 1. Predicted cache blocks start to wake
up in the next cycle, if they were slept.

If  (a current block address) != (a previous block address)

Read data from the prediction table

then, set a sleep flag of the current block

Wake up the current block, 
if the current block was slept 

clock

address

predicted
address
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sleep

Current Block Address

Set sleep flag of predicted blockssleep
flags

Wake up the predicted bolks, 
if the predicted blocks were slept sleep

Figure 5: Timing diagram of a read access

3.3 Problem Formulation
In this section, we present a problem formulation

for a leakage energy reduction problem. Firstly, we
give notations used in the formulation. Next, we
present a problem formulation.

• nei : The number of entries of the prediction table
for the i-cache (see Figure 4)

• ned : The number of entries of the prediction
table for d-cache memory (see Figure 4)

• nbi : The number of divided blocks of the i-cache
memory (see Figure 4)

• nbd : The number of divided blocks of the d-cache
memory (see Figure 4)

• PMi(nei, nbi) : Prediction miss count of the i-
cache memory. This variable is a function of nei
and nbi.

• PMd(ned, nbd) : Prediction miss count of the d-
cache memory. This variable is a function of ned
and nbd.

• LS (= 256 bits) : Cache line size.

• IX (= 128) : Cache index size.

• TW (= 20 bit) : Bit width of the TAG memory.

OBJ =
(LS + TW ) · IX

nbi
·(nei+1)+nei ·nbi · log(nbi)

+
(LS + TW ) · IX

nbd
· (ned +1)+ned ·nbd · log(nbd) (4)

PMi(nei, nbi) + PMd(ned, nbd) ≤ Nconst (5)

Table 1: Description of benchmark programs
Benchmark Program size in words

Arithmetic Calculator 11,451
TV Remote Controller 15,360
Espresso 62,156

Table 2: Active data size (byte)
Benchmark Data1 Data2 Data3
Arithmetic Calculator 14,816 15,240 15,164
TV Remote Controller 19,232 19,216 19,220
Espresso 29,260 71,192 151,072

An object function and constraint of this optimiza-
tion problem are (4) and (5), respectively. The vari-
ables to be determined are nbi, nei, nbd, and ned. The
object function represents total number of total active
bits. We neglect leakage energy of sleep block. Thus,
total leakage energy dissipation is in proportional to
the number of total active bits. We assume that the
prediction table always dissipates leakage current, be-
cause it is always active. The dynamic energy dissipa-
tion of the prediction table is also negligible, because
the prediction table is rarely accessed and its energy is
small enough compared with that of the cache mem-
ory. The first term of the object function represents
total active bits of the i-cache. The second term of
the object function is the total bits of the prediction
table for the i-cache. The third and fourth terms rep-
resent the total bits of d-cache and the total bits of the
prediction table for d-cache, respectively. Formula (5)
represents that the total prediction miss count must
be equal or less than the Nconst.

The leakage energy reduction problem is formally
defined as follows. “For a given constraintNconst, find
nei, nbi, ned, and nbd, which minimize OBJ under the
constraint”.

4 Experimental Results
We use three benchmark programs: Arithmetic

calculator, TV remote controller, and Espresso (a
boolean function optimizer). Descriptions of the
benchmark programs are as shown in Table 1. The
benchmark programs are compiled by gcc-dlx com-
piler which is based on GNU CC Ver. 2.7.2 for DLX
architecture [10]. We got address traces by using fast
simulator Ver. 0.97 [11] for DLX architecture. Table 2
shows description of three kinds of sample data used
as input for each benchmark program. Active data
size means the number of accessed addresses. The ad-
dress size of CPU, cache line size, cache index size,
and TAG bit width are 32 bits, 256 bits (8 words),
128, and 20 bits, respectively. A direct mapped cache
architecture is assumed in this paper.

At first, we evaluate OBJ , PMi(nbi, nei), and
PMd(nbd, ned) for different nbi and nbd. Only Data1
is used for each benchmark program. The results are



shown in Table 3. Leakage energy, and execution time
of both an i-cache and a d-cache are presented. Since
leakage energy dissipation is independent of the kinds
of application programs and input data in our model,
only a single table for leakage energy is appeared in
Table 3. The results shown in Table 3 are normalized
to the results of the conventional cache architecture
which does not employ SAC architecture. The results
show that our approach can reduce leakage energy
drastically with a small performance degradation. Es-
pecially for the i-cache, leakage energy can be reduced
by 1/15 at the sacrifice of only 3% of performance.

Table 3: Experimental results for different nbi and nei

Leakage Energy
nbi nei = 0 nei = 1 nei = 2 nei = 3
8 12.5% 25.07% 37.64% 50.20%
16 6.25% 12.68% 19.11% 25.54%
32 3.13% 6.70% 10.26% 13.86%

Execution Time (instruction cache)
Arithmetic Calculator

nbi nei = 0 nei = 1 nei = 2 nei = 3
8 104.10% 102.12% 101.54% 101.17%
16 105.41% 102.80% 102.12% 101.59%
32 107.56% 103.07% 102.12% 101.58%

TV Remote Controller
nbi nei = 0 nei = 1 nei = 2 nei = 3
8 102.21% 101.18% 100.74% 100.27%
16 103.13% 101.61% 101.05% 100.52%
32 104.73% 101.94% 101.12% 100.62%

Espresso
nbi nei = 0 nei = 1 nei = 2 nei = 3
8 102.12% 101.13% 100.81% 100.53%
16 102.97% 101.39% 100.96% 100.70%
32 104.74% 101.92% 101.40% 100.92%

Execution Time (data cache)
Arithmetic Calculator

nbd ned = 0 ned = 1 ned = 2 ned = 3
8 117.60% 106.58% 101.08% 100.88%
16 117.76% 106.66% 101.45% 101.09%
32 118.17% 107.39% 102.16% 101.66%

TV Remote Controller
nbd ned = 0 ned = 1 ned = 2 ned = 3
8 113.12% 105.95% 101.87% 101.09%
16 114.32% 107.99% 103.73% 102.35%
32 115.70% 108.58% 104.69% 102.78%

Espresso
nbd ned = 0 ned = 1 ned = 2 ned = 3
8 112.89% 107.66% 104.59% 102.43%
16 114.30% 109.85% 106.89% 104.76%
32 116.43% 111.82% 109.24% 107.73%

Comparatively, performance degradation of d-cache is
large. This is because a reference locality of data mem-
ory is smaller than that of instruction memory. How-
ever, the prediction table effectively works to improve
the performance. For example, if the ned is increased
form 0 to 1, performance degradation is reduced by
half. This demonstrates a high prediction hit ratio.

Table 4: The results of performance degradation

Instruction cache
Arithmetic Calculator

Predicted for Data1 Data2 Data3
input data
Data1 101.58% 101.77% 101.59%
Data2 101.92% 101.73% 101.81%
Data3 101.76% 101.76% 101.66%

TV Remote Controller
Predicted for Data1 Data2 Data3

input data
Data1 100.62% 100.68% 100.68%
Data2 100.65% 100.72% 100.72%
Data3 100.64% 100.71% 100.71%

Espresso
Predicted for Data1 Data2 Data3

input data
Data1 100.92% 101.07% 101.03%
Data2 101.33% 100.95% 101.41%
Data3 101.00% 101.29% 100.69%

Data cache
Arithmetic Calculator

Predicted for Data1 Data2 Data3
input data
Data1 101.66% 101.70% 101.69%
Data2 102.18% 102.05% 102.04%
Data3 102.04% 101.91% 101.91%

TV Remote Controller
Predicted for Data1 Data2 Data3

input data
Data1 102.78% 102.85% 102.78%
Data2 102.30% 102.33% 102.30%
Data3 102.53% 102.60% 102.53%

Espresso
Predicted for Data1 Data2 Data3

input data
Data1 107.73% 108.91% 110.99%
Data2 112.62% 110.49% 114.61%
Data3 121.53% 120.41% 115.67%

Next, we evaluate performance of cache memories
with different prediction tables’ entries. The results
are shown in Table 4. In the previous experiment, en-
tries of the prediction tables are determined by the



history information of Data1, and the prediction hit
counts are also evaluated by using Data1. However,
determining optimal entries of the prediction table is
one of the key points of our technique. The second
line of each sub-table in Table 4 represents the in-
put data which are used for determining the entries
of the prediction tables. The results shown in Table 4
demonstrate that the performances of cache memories
weakly depend on the kinds of data which are used for
determining the entries of the prediction tables. This
means that we can successfully determine the entries
of prediction tables by a trace information of randomly
selected input data.

Finally, we evaluated leakage energy of cache mem-
ories under performance constraints. The results are
shown in Figure 6. The leakage energy results are
mean values of the leakage energy of the i-cache and
the d-cache. All execution time results shown in Table
3 and Table 4 are calculated by (6).

Tc + PMi(nei, nbi) + PMd(ned, nbd)
Tc

× 100(%) (6)

Here, Tc denotes execution time of conventional sys-
tem which does not employ SAC architecture. The
PMi(nei, nbi) and PMd(ned, nb) are explained in Sec-
tion 3.3. The results demonstrated that the leakage
energy dissipation in cache memories optimized by our
approach can be less than 5% of energy dissipation in
cache memory which does not employ our approach.
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5 Conclusion
As device size is shrunk, supply voltage of CMOS

circuits also is scaled down. In near future, 1.5V or
1.0V supply voltage will become common. In such era,
scaling the threshold voltage becomes to have strong
impacts on both energy consumption and circuit de-
lay. In this paper, we have proposed a selectively ac-
tivated cache (SAC) architecture, and a technique to
reduce leakage energy dissipation by using the SAC

architecture. Experimental results demonstrated that
the leakage energy dissipation in cache memories opti-
mized by our approach can be less than 5% of energy
dissipation in cache memory which does not employ
our approach. Our approach will become more im-
portant for complex and low-power system on a chip
(SOC) design in near future, because current semicon-
ductor technology enables integrating larger memories
on a single chip. This results in the need for a tech-
nique to reduce leakage energy dissipation.

Our future work will be devoted to extend the pro-
posed technique considering general cache models such
as a set associative cache memory.
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