

1

A New Synthesis of Symmetric Functions

Hafizur Rahaman
Computer Sc. & Tech.

A. P. C. Roy Polytechnic College
Kolkata –700 032, India

rahaman_h@hotmail.com

Debesh K. Das
Computer Sc. & Engg.

Jadavpur University
Kolkata –700 032, India
debeshd@hotmail.com

 Bhargab B. Bhattacharya
 Computer Sc. & Engg.
University of Nebraska-Lincoln
 Lincoln, NE 68588, USA
 bhargab@cse.unl.edu

Abstract

A new approach to synthesizing totally symmetric Boolean
functions is presented. First, a novel cellular array is
introduced for synthesizing unate symmetric functions.
Using this module, a general symmetric function is then
realized following a unate decomposition method. The
cellular structure is simple and universal – it uses only 2-
input, 2-output AND-OR cells, and admits a recursive
construction. The design provides a significant reduction in
hardware cost compared to other existing techniques.

1. Introduction

Synthesis of symmetric Boolean functions is a classical
problem in switching theory, and several techniques are well
known [1-4, 9]. Since symmetric functions play a key role in
cryptology [5], design of easily testable circuits to realize
them has received considerable attention recently. This paper
presents a new approach to synthesizing totally symmetric
functions. We first introduce a novel cellular logic array for
realizing unate symmetric functions. These modules are
constructed using a simple iterative arrangement of 2-input,
2-output AND-OR cells. A similar network known as digital
summation threshold logic (DSTL) array was reported earlier
by Hurst [7] in connection to threshold logic. Testable logic
design using DSTL arrays for detecting stuck-at and bridging
faults appeared in [6]. In this work, we present a new and
compact cellular structure that realizes the same set of logic
functions as that of a DSTL array with significant reduction
in hardware cost and delay. Following a unate decomposition
technique, we show that any totally symmetric function can
be synthesized using these modules. Our design approach is
universally applicable to any general symmetric function and
hardware cost reduces drastically compared to other existing
designs [2, 3].

2. Preliminaries

A Boolean function is called unate, if each variable appears
either in complemented or uncomplemented form (but not
both) in its minimum sum-of-products (s-o-p) expression. A
function is positive (negative) unate if each variable appears
in complemented (uncomplemented) form in its minimum s-
o-p. A vertex (minterm) is a set of variables in which every

variable appears once. The weight w of a vertex v is the
number of uncomplemented variables appearing in v.

A switching function f(x1, x2, ..., xn) is called totally
symmetric with respect to the variables (x1, x2, ..., xn), if it is
invariant under any permutation of the variables [4]. Total
symmetry can be specified by a set of integers (called a-
numbers) A = (ai,.., aj,…, ak), where A ⊆ {0, 1, 2,…, n}; all
the vertices with weight w ∈ A will appear as true minterms
in the function. Henceforth, by a symmetric function, we
would mean a function with total symmetry. An n-variable
symmetric function is denoted as Sn(ai,..., aj, .., ak). A
symmetric function is called consecutive, if the set A
consists of only consecutive integers (al, al+1,..., ar). Such a
consecutive symmetric function is expressed by Sn(al − ar)
where l < r. For n variables, we can construct 2n+1-2
different symmetric functions (excluding constant functions
0 and 1). A totally symmetric function Sn(A) can be
expressed uniquely as a union of maximal consecutive
symmetric functions, such that Sn(A) = Sn(A1) + Sn(A2)
+……..…..+ Sn(Am), such that m is minimum and ∀ i , j ,
l < i, j < m, Ai ∩ Aj = ∅, whenever i ≠ j.

Example 1: The symmetric function S12(1,2,5,6,7,9,10) can
be expressed as S12(1-2)+ S12(5-7)+ S12(9-10), where S12(1-
2), S12(5-7) and S12(9-10) are maximal consecutive
symmetric functions.
A function is called unate symmetric if it is both unate and
symmetric. It can be shown that a unate symmetric function
is always consecutive and can be expressed as Sn(al-ar),
where either al = 0 or ar = n. If it is positive unate, then it
must be either Sn(n) or any of the following (n-1) functions:
Sn(1-n), Sn(2-n), Sn(3-n),…., Sn((n-1) - n). We express Sn(n)
as un(n), and Sn(al-ar) as ul(n) for 1 < l < (n-1).

Theorem 1[3]: A consecutive symmetric function Sn(al-ar),
al ≠ ar, l < r, can be expressed as a composition of two
unate and consecutive symmetric functions as follows:

(i) Sn(a1-ar) = Sn(a1-an)Sn(ar+1-an)

 (ii) Sn(a1-ar) =Sn (0-al-1)Sn (ar+1-an)

 (iii) Sn(a1-ar) = Sn(0-ar) Sn (0-al-1)

 (iv) Sn(a1-ar) = Sn(0-ar) S
n (a1-an).

2

3. DSTL array

The DSTL array proposed by Hurst [7] is an n-input and n-
output cellular array, consisting of an iterative arrangement
of identical cells having a uniform interconnection pattern
among them. The design is shown in the Fig. 1a, where each
cell consists of a two-input AND gate and an OR gate as
shown in Fig. 1b. There are n-inputs lines x1, x2, x3,….., xn,
and n output lines u1(n), u2(n), u3(n),….., un(n) in the array.
Each output ui, implements a unate symmetric function as
described below:

 u1(n) = Sn(1, 2, 3,…., n) = x1 + x2 + x3+……………+ xn

 u2 (n) = Sn(2, 3, 4….., n) = x1x2 + x1x3 +……………+ xn-1 xn

 u3 (n) = Sn(3, 4,…, n) = x1x2x3 + x1x2x4 +………+ xn-2 xn-1xn

 un(n) = Sn(n) = x1x2……xn-1 xn

4. Proposed technique

4.1 Synthesis for unate symmetric functions

We first introduce a basic logic module, which is similar to
DSTL array in functionality, but more compact in structure.

4.1.1 Basic module
Our basic component Module(n) is a logic block with n input
lines and n output lines (Fig. 2a). It consists of an iterative
arrangement of cells, where each cell consists of a two-input
AND gate and a two-input OR gate as in a DSTL array [7].
For ease of representation, we redraw the cell as shown in
Fig. 2b. Though we use the same cells as in [7], our design
differs significantly from the DSTL structure as far as the
interconnections of cells are concerned.

Example 2: For n = 4, the DSTL array and the proposed logic
module are shown in Figs. 3a and 3b. The new design needs
fewer cells and has less delay compared to the DSTL array.

4.1.2 Basic structures

We use the following basic structures for our design.

Interconnect(n): Let n = even. The module Interconnect(n)
provides a one-to-one and onto connection from n inputs a1,
a2, a3,…., an to n outputs b1, b2, b3,…., bn. The mapping,
which is analogous to shuffle-exchange, can be expressed as

 (i) for i < n/2, bi = a2i -1
 and (ii) for i > n/2, bi = ai -n/2

An example is shown in Fig. 4.

Network of 2-input
AND-OR cells

 xn xn-1 x1

 un un-1 u1

Fig. 2a: Module(n) Fig. 2b: AND-OR cell

P Q

 x4 x3 x2 x1

 u4 u3 u2 u1

Fig. 3a: 4-variable DSTL array Fig 3b: 4-variable proposed
 array

 x4 x3 x2 x1

 u4 u3 u2 u1

a1 a2 a3 a4 a5 an/2 an-4 an-3 an-2 an-1 an

 b1 b2 b3 b4 bn/2 bn/2+1 bn/2+2 bn-2 bn-1 bn

Fig. 4: Interconnect(n)

1 2 MM-1

 un un-1 u2 u1

Fig. 1a: Basic DSTL array

xn xn-1 xn-2 x3 x2 x1

Fig. 1b: A DSTL cell

S = PQ

P Q

R =P+Q

 Fig. 5: Cell-cluster(M)

3

Cell-Cluster(M): This consists of M cells in parallel (see Fig.
5), where each cell is shown in Fig. 2b. The value of M may
be even or odd.

Connection[n: 1-to-2] : This uses Interconnect(n-4), and is
shown in Fig. 6.

Connection[n: 2-to-3]: This depends on the number of
variables. The outputs of stage-2 are divided into two parts,
each having (n/2) inputs. The corresponding outputs of each
partition are paired together.

4.1.3 Complete module (for n = even)

The details of Module(n) are shown in Fig. 7. It consists of
three stages, each having n inputs and n outputs.

First-stage: This is first defined for n = even. It consists of
log n levels as shown in Fig. 8. Each level consists of
several cells in parallel.

Example 3: The first-stage for n = 8 and 6 are shown in Figs.
9a and 9b respectively.

For n = odd, we first design the first-stage for (n+1) inputs.
Then, we set one input variable to logic 0 and remove the
affected logic cells from the circuit level by level.

Example 4: The first-stage for n =7 is shown in Fig. 10a. An
equivalent realization is shown in Fig. 10b.

Hardware requirement: For n = even, the number of cells in
the first-stage circuit is n/2 log n.

Second-stage: The second stage consists of two parts, each
implemented with a Module((n-2)/2). It is shown Fig. 11.
Outputs of this stage are connected to the third-stage.

Third-stage: The third stage consists of a cascade of cells
whose strucure is shown in Fig. 12.

Example 5: The overall designs for Module(6) and
Module(8) are shown in Figs. 13a and 13b.

Example 6: Module(16) is shown in Fig. 14.

Interconnect(n-4)

Fig. 6: Connection[n: 1-to-2]

a1 a2 a3 an-2 an-1 an

 b1 b2 bN-1 bN

 Cell-Cluster(n/2)

 Interconnect (n/2)

 Cell-Cluster(n/2)

 Interconnect (n/2)

1st level

2nd level

 Cell-Cluster(n/2)

log(N)

level
 Interconnect (n/2)

Fig. 8: First-stage of Module(n)

Fig. 9a: First-stage for n = 8 Fig. 9b: First-stage for n = 6

 x1 x2 xn-1 xn
Fig. 7: Structure of Module(n)

First-stage

Connection(1-to-2)

Second-stage

Connection(2-to-3)

Third-stage

4

 x7 x6 x5 x4 x3 x2 x1 x7 x6 x5 x4 x3 x2 x1

Fig.10: Two realizations of first-stage for n = 7

 u8 u7 u6 u5 u4 u3 u2 u1 u6 u5 u4 u3 u2 u1

Second
Stage

Fig. 13a: Module(6) Fig. 13b: Module(8)

First
stage

 u7 u6 u5 u4 u3 u2 u1

 Fig. 15a: Module(7)

 x7 x6 x5 x4 x3 x2 x1

 u7 u6 u5 u4 u3 u2 u1

Fig. 15b: Module(7)

 x7 x6 x5 x4 x3 x2 x1

 x16 x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1

 u16 u15 u14 u13 u12 u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1

Third
stage

(a)
(b)

Module((n-2)/2) Module((n-2)/2)

Fig. 11: Second-stage

Fig. 12 Third-stage

Fig. 14: Module(16)

3rd
stage

First-stage

Module-7 Module-7
2nd
stage

5

4.1.4 Designing for odd values of n

In this case, we first design the Module(n+1). Then, we set
one variable to logic 0 and remove the affected logic cells in
Module(n+1) to realize Module(n). These logic cells are
removed only from the 1st stage.

Example 7: Module(7) is obtained from Module(8) of Fig.
13b by removing one variable and some cells. We can
realize it in two ways as shown in Figs. 15a and 15b.

4.1.5 Hardware cost and delay

Let C(n) denote the number of 2-input cells in Module(n).
Then C(n) < nlog n + 2C(n/2) + O(n).
Hence, C(n) = O(nlog2n).

Circuit delay

We assume unit gate delay through a 2-input gate. For an n-
input function, the minimum delay through the circuit is
log(n), and for or n = 2k, the maximum delay is (n - 1).

4.2 Synthesis of general symmetric functions

To synthesize a consecutive symmetric function which is not
unate, we use the result stated in Theorem 1 that Sn(a1 - ar)
can be expressed as a composition of two unate symmetric
functions.

Hence, Sn(a1-ar) = ul(n) ur+1(n).

The unate functions u1(n) and ur+1(n) are produced by the
Module(n). The complete circuit is shown in Fig. 16a.

Example 9: S6(3,4) is realized as S6(3,4) = S6(3-6)S6(5-6)

= u3(3)u5(5). The circuit is shown in Fig. 16b.

Since a non-consecutive symmetric function Sn(A) can be
expressed uniquely as a union of maximal consecutive
symmetric functions, a general symmetric function can be
realized by OR-ing together the outputs of constituent
consecutive symmetric functions.

5. Experimental results

We compare the hardware cost and delay of the proposed
design with a DSTL array [7]. For an n-input DSTL array,
one has the following parameters:

 (i) number of cells = n(n-1)/2;
(ii) minimum delay = n;
(iii) average delay = 0.5(3n-1);
(iv) maximum delay =2n - 1.

Table 1 shows that the number of cells (where each cell
consists of two two-input gates) and circuit delay for our
design compared to those in [7].

5.2. Comparison for non-unate Symmetric functions

For general consecutive symmetric functions, we compare
hardware cost with those in [2] and [3] in terms of the
number of gate inputs (Table 2). The results show a drastic
reduction in cost. While these earlier methods use fixed
number of logic levels, for instance, at most 4 [2], or at
most 5 [3], the proposed method reduces logic significantly
at the cost of increasing the number of logic levels.

6. Conclusion

We have introduced a new technique for synthesizing a
symmetric function using a cellular structure. The proposed
module for realizing unate symmetric functions needs less
hardware and delay compared to a DSTL array. For general
symmetric functions, our synthesis method based on unate
decomposition yields very low cost circuits compared to
earlier methods [2, 3]. Testability issues of this design, and
extending the technique for synthesizing an arbitrary
Boolean function by multi-threshold partitioning [8], will be
reported in a future work.

Module(n)

xn xn-1 x1

 un un-1 ur+1 ul u2 u1

Fig. 16: Realization of (a) Sn(al - ar) (b) Sn(3,4)

Sn(al-ar)

Module(6)

 u6 u5 u4 u3 u2 u1

S6(3,4)

 x6 x5 x4 x3 x2 x1

 n # cells delay

 As Proposed As in [7] Proposed Method

 in [7] Method Min Avg Max Min Avg Max

 2 1 1 2 2.5 3 1 1 1
 3 3 3 3 4 5 2 2.67 3
 4 6 5 4 5.5 7 2 2.5 3
 5 10 9 5 7 9 3 4.2 5
 6 15 12 6 8.5 11 3 4 5
 7 21 16 7 10 13 3 5.57 7
 8 28 19 8 11.5 15 3 5.25 7
 9 36 29 9 13 17 4 10.44 10
 10 45 32 10 14.5 19 4 9.8 10
 11 55 43 11 16 21 4 9.09 12
 12 66 47 12 17.5 23 4 8.67 12
 13 78 54 13 19 25 4 9.69 13
 14 91 58 14 20.5 27 4 9.28 13
 15 105 71 15 22 29 4 11.07 15
 16 120 75 16 23.5 31 4 10.63 15

Table 1: Cost and delay for realizing unate
symmetric functions

(a) (b)

6

Functions Number of gate inputs

Sn(al-ar) As in [2] As in [3] Proposed
 Method

S5(3,4) 47 32 38
S5(2,3) 50 38 38
S5(1,2) 47 32 38
S6(4,5) 83 56 50
S6(1,2) 83 56 50
S6(3,4) 112 73 50
S6(2,3) 112 73 50
S7(4,5) 219 138 66
S7(1-5) 72 42 66
S7(1,2) 135 83 66
S7(3,4) 245 150 66
S7(2,3) 219 138 66
S8(5,6) 394 228 78
S8(2-6) 140 80 78
S8(2,3) 394 228 78
S8(4,5) 520 306 78
S8(3,4) 520 306 78
S9(5,6) 1010 566 118
S9(2-6) 410 217 118
S9(2,3) 662 381 118
S9(4,5) 1134 656 118
S9(3,4) 1010 566 118
S10(6,7) 1832 1009 130
S10(3-7) 840 466 130
S10(3,4) 1832 1009 130
S10(5,6) 2354 1296 130
S10(4,5) 2354 1296 130
S11(6,7) 4556 2433 174
S11(3-7) 2147 1108 174
S11(3,4) 3137 1675 174
S11(5,6) 5082 2740 174
S11(4,5) 4556 2433 174
S12(7,8) 8318 4330 190
S12(4-8) 4455 2340 190
S12(4,5) 8318 4330 190
S12(6,7) 10430 5463 190
S12(5,6) 10430 5463 190
S13(7,8) 20165 10261 218
S13(4-8) 10584 5336 218
S13(4,5) 14445 7430 218
S13(6,7) 22308 11518 218
S13(5,6) 20165 10261 218
S14(8,9) 37039 18596 234
S14(5-9) 22022 11262 234
S14(5,6) 37039 18596 234
S14(7,8) 45476 22877 234
S14(6,7) 45476 22877 234
S15(8,9) 87947 43198 334
S15(5-9) 50052 24671 286
S15(5,6) 65067 32312 286
S15(7,8) 96525 47950 286
S15(6,7) 87947 43198 286

 Table 2: Cost of general symmetric functions
 References

[1] D. L. Dietmeyer, “Generating minimal covers of
symmetric function,” IEEE TCAD, vol. 12, no. 5, pp.
710-713, May 1993.

[2] W. Ke and P. R. Menon, “Delay-testable
implementations symmetric functions,” IEEE TCAD, vol.
14, pp. 772-775, 1995.

[3] S. Chakraborty, S. Das, D. K. Das and B. B.
Bhattacharya, “Synthesis of symmetric Functions for
path-delay fault testability,” IEEE TCAD, vol. 19, pp.
1076-1081, September 2000.

[4] Z. Kohavi, Switching and Finite Automata Theory. New
York: McGraw-Hill, 1977.

[5] Y. X. Yang and B. Guo, “Further enumerating Boolean
functions of cryptographic significance,” J. Cryptology,
vol. 8, no. 3, pp. 115-122, 1995.

[6] A. Pal and B. B. Bhattacharya, “Syndrome-testable logic
design using DSTL arrays for detecting stuck-at and
bridging faults,” IEE Proc., vol.132, Pt. E, no. 5, 1985.

[7] S. L. Hurst, “Digital summation threshold logic gates: a
new circuit element,” IEE Proc., vol. 120, no. 11, pp.
1301-1307, 1973.

[8] S. Ghosh and A. K. Choudhury, “Partitions of Boolean
functions for realizations with multi-threshold elements,”
IEEE Trans. Computers, vol. C-22, pp. 204-215, 1973.

[9] J. Ja′Ja′ and S.-M. Wu, “A new approach to realize
partially symmetric functions,” Tech. Rep. SRC TR 86-54,
Dept. EE, University of Maryland, 1986.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

