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Abstract 
 

A new approach to synthesizing totally symmetric Boolean 
functions is presented. First, a novel cellular array is 
introduced for synthesizing unate symmetric functions. 
Using this module, a general symmetric function is then 
realized following a unate decomposition method. The 
cellular structure is simple and universal – it uses only 2-
input, 2-output AND-OR cells, and admits a recursive 
construction. The design provides a significant reduction in 
hardware cost compared to other existing techniques.  
 
1. Introduction 
 
Synthesis of symmetric Boolean functions is a classical 
problem in switching theory, and several techniques  are well 
known [1-4, 9]. Since symmetric functions play a key role in 
cryptology [5], design of easily testable circuits to realize 
them has received considerable attention recently. This paper 
presents a new approach to synthesizing totally symmetric 
functions. We first introduce a novel cellular logic array for 
realizing unate symmetric functions. These modules are 
constructed using  a simple iterative arrangement of 2-input, 
2-output AND-OR cells.  A similar network known as digital 
summation threshold logic (DSTL) array was reported earlier 
by Hurst [7] in connection to threshold logic. Testable logic 
design using DSTL arrays for detecting stuck-at and bridging 
faults appeared in [6]. In this work, we present a new and 
compact cellular structure that realizes the same set of logic 
functions as  that of a DSTL array with significant reduction 
in hardware cost and delay. Following a unate decomposition 
technique, we show that any totally symmetric function can 
be synthesized using these modules. Our design approach is 
universally applicable to any general symmetric function and 
hardware cost reduces drastically compared to other existing 
designs [2, 3]. 
 
2. Preliminaries 
 
A Boolean function is called unate, if each variable appears 
either in complemented or uncomplemented form (but not 
both) in its minimum sum-of-products (s-o-p) expression. A 
function is positive (negative) unate if each variable appears 
in complemented (uncomplemented) form in its minimum s-
o-p. A vertex (minterm) is a set of variables in which every 

variable appears once. The weight w of a vertex v is the 
number of uncomplemented variables appearing in v.  
 
A switching function f(x1, x2, ..., xn) is called totally 
symmetric with respect to the variables (x1, x2, ..., xn), if it is 
invariant under any permutation of the variables [4].  Total 
symmetry can be specified by a set of integers (called a-
numbers) A = (ai,.., aj,…, ak), where A ⊆ {0, 1, 2,…, n}; all 
the vertices with weight w ∈ A will appear as true minterms 
in the function. Henceforth, by a symmetric function, we 
would mean a function with total symmetry. An n-variable 
symmetric function is denoted as Sn(ai,..., aj, .., ak). A 
symmetric function is called consecutive, if the set A 
consists of only consecutive integers (al, al+1,..., ar). Such a 
consecutive symmetric function is expressed by Sn(al − ar) 
where l < r. For n variables, we can construct 2n+1-2 
different symmetric functions (excluding constant functions 
0 and 1). A totally symmetric function Sn(A) can be 
expressed uniquely as a union of maximal consecutive 
symmetric functions, such that Sn(A) = Sn(A1) + Sn(A2) 
+……..…..+ Sn(Am), such that m is minimum and   ∀ i , j ,  
l < i, j < m, Ai ∩ Aj = ∅, whenever i ≠ j. 
 

Example 1: The symmetric function S12(1,2,5,6,7,9,10) can 
be expressed as S12(1-2)+ S12(5-7)+ S12(9-10), where S12(1-
2), S12(5-7) and S12(9-10) are maximal consecutive 
symmetric functions.  
A function is called unate symmetric if it is both unate and 
symmetric. It can be shown that a unate symmetric function 
is always consecutive and can be expressed as Sn(al-ar), 
where either al = 0 or ar = n. If it is  positive unate, then it 
must be either Sn(n) or any of the following (n-1) functions: 
Sn(1-n), Sn(2-n), Sn(3-n),…., Sn((n-1) - n). We express Sn(n) 
as un(n), and Sn(al-ar) as ul(n) for 1 < l < (n-1).   
 

Theorem 1[3]: A consecutive symmetric function Sn(al-ar), 
al ≠ ar, l < r, can be expressed as a composition  of  two 
unate and consecutive symmetric functions as follows:  
 

(i)  Sn(a1-ar) = Sn(a1-an)Sn(ar+1-an) 
 

 

      (ii) Sn(a1-ar) =Sn (0-al-1)Sn (ar+1-an) 
                                                                                                       

 

                (iii) Sn(a1-ar) = Sn(0-ar) Sn (0-al-1) 
 

              (iv) Sn(a1-ar) = Sn(0-ar) S
n (a1-an). 
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3. DSTL array 
 
The DSTL array proposed by Hurst [7] is an n-input and n-
output cellular array, consisting of an iterative arrangement 
of identical cells having a uniform interconnection pattern 
among them. The design is shown in the Fig. 1a, where each 
cell consists of a two-input AND gate and an OR gate as 
shown in Fig. 1b. There are n-inputs lines x1, x2, x3,….., xn, 
and n output lines u1(n), u2(n), u3(n),….., un(n) in the array. 
Each output ui, implements a unate symmetric function as 
described below: 
                                                            

  u1(n) = Sn(1, 2, 3,…., n) = x1 + x2 + x3+……………+ xn                                  
 

 

 u2 (n) = Sn(2, 3, 4….., n) = x1x2 + x1x3 +……………+ xn-1 xn  
 

 u3 (n) = Sn(3, 4,…, n) = x1x2x3 + x1x2x4 +………+ xn-2 xn-1xn 

 

  un(n) =  Sn(n) = x1x2……xn-1 xn  

 

4. Proposed technique 
 

4.1 Synthesis for unate symmetric functions 
 
We first introduce a basic logic module, which is similar to 
DSTL array in functionality, but more compact in structure. 
 
4.1.1 Basic module  
Our basic component Module(n) is a logic block with n input 
lines and n output lines (Fig. 2a). It consists of an iterative 
arrangement of cells, where each cell consists of a two-input 
AND gate and a two-input OR gate as in a DSTL array [7]. 
For ease of representation, we redraw the cell as shown in 
Fig. 2b. Though we use the same cells as in [7], our design 
differs significantly from  the DSTL structure as far as the 
interconnections of cells are concerned.  
 

Example 2: For n = 4, the DSTL array and the proposed logic 
module are shown in Figs. 3a and 3b.  The new design needs 
fewer cells and has less delay compared to the DSTL array.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.2    Basic structures  
 
We use the following basic structures for our design. 
 
Interconnect(n): Let n = even. The module Interconnect(n) 
provides a one-to-one and onto connection from n inputs a1, 
a2, a3,…., an to n outputs b1, b2, b3,…., bn. The mapping, 
which is analogous to shuffle-exchange, can be expressed as 
 
   (i)  for i <  n/2, bi = a2i -1 
 and (ii) for i > n/2, bi = ai -n/2  
 
An example is shown in Fig. 4.  
 
 

 
Network of  2-input 
AND-OR cells          

      xn         xn-1                               x1 

     un   un-1                 u1 

Fig. 2a: Module(n) Fig. 2b: AND-OR cell 

P Q

 x4               x3            x2             x1 

     u4   u3  u2  u1 

Fig. 3a: 4-variable DSTL array        Fig 3b: 4-variable proposed  
      array               

     x4           x3                     x2         x1 

        u4           u3  u2      u1 

a1 a2 a3    a4  a5         an/2 an-4  an-3  an-2  an-1  an  

   b1 b2 b3  b4     bn/2 bn/2+1 bn/2+2   bn-2 bn-1  bn 

Fig. 4: Interconnect(n) 

1 2 MM-1 

 

               un  un-1 u2 u1 

Fig. 1a: Basic DSTL array          

xn   xn-1      xn-2                  x3            x2          x1 

Fig. 1b: A DSTL cell  

S = PQ 

P              Q 

R =P+Q 

                        Fig. 5: Cell-cluster(M) 
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Cell-Cluster(M): This consists of M cells in parallel (see Fig. 
5), where each cell is shown in Fig. 2b. The value of M may 
be even or odd. 
 

Connection[n: 1-to-2] : This uses Interconnect(n-4), and is 
shown in Fig. 6. 
 
Connection[n: 2-to-3]: This depends on the number of 
variables. The outputs of stage-2 are divided into two parts, 
each having (n/2) inputs. The corresponding outputs of each 
partition are paired together. 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
4.1.3 Complete module (for n = even) 
 
The details of Module(n) are shown in Fig. 7. It consists of 
three  stages, each having n inputs and n outputs.  
 
 

First-stage: This is first defined for n = even. It consists of  
log n levels as shown in Fig. 8. Each level consists of 
several cells in parallel.  

 

Example 3: The first-stage for n = 8 and 6 are shown in Figs. 
9a and 9b respectively. 
 

For n = odd, we first design the first-stage for (n+1) inputs. 
Then, we set one input variable to logic 0 and remove the 
affected logic cells from the circuit level by level. 
 

Example 4: The first-stage for n =7 is shown in Fig. 10a.  An 
equivalent realization is shown in Fig. 10b. 
 
Hardware requirement: For n = even, the number of cells in 
the first-stage circuit is n/2 log n. 
 

Second-stage: The second stage consists of two parts, each 
implemented with a Module((n-2)/2). It is shown Fig. 11. 
Outputs of this stage are connected to the third-stage. 
 

Third-stage: The third stage consists of a cascade of cells 
whose strucure is shown in Fig. 12.  
 

Example 5: The overall designs for Module(6) and 
Module(8) are shown in Figs. 13a and 13b.  
 
Example 6: Module(16) is shown in Fig. 14. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Interconnect(n-4) 
 

 

Fig. 6: Connection[n: 1-to-2]  

a1  a2     a3             an-2         an-1 an 

       b1   b2                                                                      bN-1   bN 

 Cell-Cluster(n/2) 

  Interconnect (n/2) 

 Cell-Cluster(n/2) 

  Interconnect (n/2) 

1st level 

2nd level 

 Cell-Cluster(n/2) 

log(N) 

level 
  Interconnect (n/2) 

Fig. 8: First-stage of Module(n) 

Fig. 9a: First-stage for n = 8  Fig. 9b: First-stage for n = 6 

         x1      x2                xn-1   xn 
Fig. 7: Structure of Module(n) 

First-stage 

Connection(1-to-2) 

Second-stage 

Connection(2-to-3) 

Third-stage 
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    x7      x6      x5    x4     x3  x2      x1 x7   x6          x5  x4                x3  x2   x1 

Fig.10: Two realizations of first-stage for n = 7 

 

   u8    u7     u6      u5    u4   u3     u2      u1  u6        u5     u4  u3    u2  u1 

Second
Stage

Fig.  13a: Module(6)  Fig.  13b: Module(8) 

First 
stage

 

  u7   u6    u5     u4  u3    u2   u1 
 

    
    Fig.  15a: Module(7) 
 

 x7      x6  x5       x4  x3    x2 x1 

  u7     u6     u5   u4      u3    u2    u1 
 

 

Fig.  15b: Module(7) 

 x7  x6              x5  x4         x3  x2   x1 

 x16 x15 x14  x13   x12 x11     x10   x9       x8  x7   x6 x5     x4  x3    x2  x1  

      u16 u15 u14 u13 u12   u11 u10    u9  u8         u7     u6 u5   u4 u3 u2   u1  

Third 
stage 

(a) 
(b) 

Module((n-2)/2) Module((n-2)/2) 

Fig. 11: Second-stage 

Fig. 12 Third-stage 

Fig. 14: Module(16) 

3rd 
stage 

First-stage 

Module-7 Module-7 
2nd 
stage 
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4.1.4 Designing  for odd values of n  
 
In this case, we first design the Module(n+1). Then, we set 
one variable to logic 0 and remove the affected logic cells in 
Module(n+1) to realize Module(n). These logic cells are 
removed only from the 1st stage. 
 

Example 7: Module(7) is obtained from Module(8) of Fig. 
13b by removing one variable and  some cells. We can 
realize it in two ways as shown in Figs. 15a and 15b. 
 
4.1.5 Hardware cost and delay  
 
Let C(n) denote the number of 2-input cells in Module(n). 
Then C(n) <  nlog n + 2C(n/2) +  O(n). 
Hence, C(n) = O(nlog2n).   
 
Circuit delay  
 
We assume unit gate delay through a 2-input gate. For an n-
input function, the minimum delay through the circuit is 
log(n),  and for or n = 2k, the maximum delay is (n - 1).  
 
4.2 Synthesis of general symmetric functions 
 

To synthesize a consecutive symmetric function which is not 
unate, we use the result stated in Theorem 1 that Sn(a1 - ar) 
can be expressed as a composition  of  two unate symmetric 
functions.  
 
Hence, Sn(a1-ar) = ul(n) ur+1(n).  
 
The unate functions u1(n) and ur+1(n) are produced by the 
Module(n).  The complete circuit is shown in Fig. 16a.  
 

Example 9:  S6(3,4) is realized as S6(3,4) = S6(3-6)S6(5-6)  

= u3(3)u5(5).  The circuit is shown in Fig. 16b. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Since a non-consecutive symmetric function Sn(A) can be 
expressed uniquely as a union of maximal consecutive 
symmetric functions, a general symmetric function can be 
realized by OR-ing together the outputs of constituent 
consecutive symmetric functions. 

 
5.  Experimental results 

 
We compare the hardware cost and delay of the proposed 
design  with a DSTL array [7]. For an n-input DSTL array, 
one has the following parameters: 
 

 (i) number of cells = n(n-1)/2;   
(ii) minimum delay = n;  
(iii) average delay = 0.5(3n-1);   
(iv) maximum delay =2n - 1. 

 

Table 1 shows that the number of cells (where each cell 
consists of two two-input gates) and circuit delay for our 
design compared to those in [7].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5.2. Comparison for non-unate Symmetric functions 
 
 
 
 
For general consecutive symmetric functions, we compare 
hardware cost with those in [2] and [3] in terms of the 
number of gate inputs (Table 2). The results show a drastic 
reduction in cost. While these earlier methods use fixed 
number of logic levels, for instance, at most 4 [2], or at 
most 5 [3], the  proposed method reduces logic significantly 
at the cost of increasing the number of logic levels.  

 
6. Conclusion 

 
We have introduced a new technique for synthesizing a 
symmetric function using a cellular structure. The proposed 
module for realizing unate symmetric functions needs less 
hardware and delay compared to a DSTL array. For general 
symmetric functions,  our synthesis method based on unate 
decomposition yields very low cost circuits compared to 
earlier methods [2, 3]. Testability issues of this design, and 
extending the technique for synthesizing an arbitrary 
Boolean function by multi-threshold partitioning [8], will be 
reported in a future work.  
 

Module(n) 

xn   xn-1                     x1 

   un  un-1  ur+1      ul         u2  u1 

Fig.  16: Realization of  (a) Sn(al - ar)   (b) Sn(3,4) 
 

Sn(al-ar) 

Module(6) 

    u6   u5  u4      u3  u2 u1 

S6(3,4) 

 x6   x5  x4  x3 x2 x1 

 n          #  cells                        delay 
 

            As     Proposed         As in [7]                 Proposed Method                                                  

 
            in [7]  Method   Min    Avg        Max   Min    Avg       Max  

 
   2    1 1            2    2.5   3         1 1             1 
   3        3 3 3 4 5 2 2.67        3 
   4    6 5 4 5.5 7 2 2.5          3 
   5     10 9 5 7 9 3 4.2          5 
   6   15 12 6 8.5 11 3 4             5 
  7        21 16 7 10 13 3 5.57        7 
  8        28 19 8 11.5 15 3 5.25        7 
  9        36 29 9 13 17 4 10.44     10 
  10   45         32 10 14.5 19 4 9.8         10 
  11       55         43 11  16  21   4 9.09       12 
  12       66         47 12 17.5 23 4 8.67       12 
  13       78         54        13 19 25 4 9.69       13 
  14       91         58          14 20.5 27 4 9.28       13 
  15      105  71            15 22 29 4 11.07     15 
  16      120        75            16 23.5 31 4 10.63     15 

Table 1: Cost and delay for realizing unate 
symmetric functions 

(a) (b) 
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Functions      Number of gate inputs 
 

Sn(al-ar)       As in [2]     As in [3]     Proposed 
    Method 

 
 

S5(3,4)       47 32 38 
S5(2,3)       50 38 38 
S5(1,2)       47 32 38 
S6(4,5)       83 56 50 
S6(1,2)        83 56 50 
S6(3,4)      112 73 50 
S6(2,3)      112 73 50 
S7(4,5)      219 138 66 
S7(1-5)        72 42 66 
S7(1,2)      135 83 66 
S7(3,4)      245 150 66 
S7(2,3)      219 138 66 
S8(5,6)      394 228 78 
S8(2-6)     140 80 78 
S8(2,3)     394 228 78  
S8(4,5)     520 306 78 
S8(3,4)     520 306 78 
S9(5,6)   1010 566 118 
S9(2-6)     410 217 118 
S9(2,3)     662 381 118 
S9(4,5)   1134 656 118 
S9(3,4)   1010 566 118 
S10(6,7)   1832 1009 130 
S10(3-7)     840 466 130 
S10(3,4)   1832 1009 130 
S10(5,6)   2354 1296 130 
S10(4,5)   2354 1296 130 
S11(6,7)   4556 2433 174 
S11(3-7)   2147 1108 174 
S11(3,4)   3137 1675 174 
S11(5,6)   5082 2740 174 
S11(4,5)   4556 2433 174 
S12(7,8)   8318 4330 190 
S12(4-8)   4455 2340 190  
S12(4,5)   8318 4330 190 
S12(6,7) 10430 5463 190  
S12(5,6) 10430 5463 190 
S13(7,8) 20165 10261 218 
S13(4-8) 10584 5336 218 
S13(4,5) 14445 7430 218 
S13(6,7) 22308 11518 218 
S13(5,6) 20165 10261 218 
S14(8,9) 37039 18596 234 
S14(5-9) 22022 11262 234  
S14(5,6) 37039 18596 234 
S14(7,8) 45476 22877 234 
S14(6,7) 45476 22877 234 
S15(8,9) 87947 43198 334 
S15(5-9) 50052 24671 286 
S15(5,6) 65067 32312 286 
S15(7,8) 96525 47950 286 
S15(6,7) 87947 43198 286 

   Table 2: Cost of general symmetric functions 
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