
Improvement of ASIC design processes

Vineet Sahula C. P. Ravikumar D. Nagchoudhuri
Deptt. of ECE Texas Instruments Deptt. of EE

Regional Engg. College, Jaipur Asia Research Center,Bangalore Indian Institute of Technology, Delhi

sahula@ieee.org ravikumar@india.ti.com dnag@ee.iitd.ernet.in

Abstract
With device counts on modern-day ASICs crossing the 10

million mark, careful planning of an ASIC design project is
necessary to meet time deadlines. Two problems arise in
this context. The first is the estimation of man-months for
a project, with the knowledge of the ASIC design flow that
will be followed for project execution. The second problem
is that of making incremental changes to the design flow
in order to reduce the time to complete a project. We con-
sider these two problems in a theoretical framework. Start-
ing from a textual description of the design flow, a model
known as the hierarchical concurrent flow graph (HCFG)
model is constructed to capture the concurrency in the ex-
ecution of an ASIC design flow and the inherent hierarchy
in such a flow. The HCFG model allows us to (a) quickly
estimate the project execution time and (b) analyze the ef-
fect of introducing AND and OR concurrency in the flow to
improve the execution time. We illustrate the use of the pow-
erful estimation technique through two examples. The first
example shows the use of AND concurrency in a back-end
flow and the second example shows the use of OR concur-
rency in a software design flow.

1 Introduction

Project managers in ASIC design houses grapple with
the problem of estimating the manpower requirement of de-
sign projects. Currently, manpower estimation is more of
an art than a science. A manager bases the estimate on past
experience and the size and complexity of the new project.
However, these estimates can be grossly incorrect, throw-
ing the project plan off the balance and creating practical
difficulties in resource scheduling. Adding to this complica-
tion is the complex nature of modern-day ASIC design: the
design flow is iterative, hierarchical, and concurrent. The
flow has well-defined steps such as RTL design, Verifica-
tion, Synthesis, Physical Design, and Physical Verification.
Design steps may have to be iterated more than once in or-
der to achieve timing closure or due to constraints on area,
test cost, and reliability. Concurrency in the design flow is
introduced by the project manager in order to speed up the

project execution. For example, the manager may subdivide
the design into smaller subdesigns and exploit spatial par-
allelism. Accurate prediction of the project execution time
will require careful calibration of the design process to es-
timate the parameters associated with the design flow, such
as the probability of iteration. In addition to the problem
of predicting the manpower requirement for a project, the
manager must also consider altering the design flow in or-
der to speed up project execution. A "what if" analysis tool
will be invaluable during the project planning phase.

In this paper, we consider the problem of project time
prediction and project flow improvement in a theoretical
framework. We describe the use of a model known as the
hierarchical concurrent flow graph (HCFG) to capture the
iterative, hierarchical, and concurrent nature of ASIC de-
sign flows. The model can be constructed from a textual
description of the process flow and can efficiently predict
the project execution time. Using two examples from the
VLSI system design domain, we illustrate the power of the
HCFG model in the improvement of process flows.

The paper is organized as follows. In the next section,
we briefly discuss the HCFG model and the associated an-
alytical techniques. In Section 3, we consider a physical
design flow and estimate the improvement in the execution
time of the flow when the design is partitioned. Section 4
considers a software design flow and illustrates the use of
HCFG in predicting the improvement in the flow execution
time when OR concurrency is introduced in the flow. Con-
clusions are presented in Section 5.

2 HCFG approach
A node in an HCFG corresponds to a task in the ASIC

design flow. Two special nodes I and F in the HCFG de-
note the initial task and the final task in the design flow. A
weight Tj is associated with the node j and corresponds to
the completion time of the task. Since task completion time
can rarely be predicted with point accuracy, we treat T j as a
discrete random variable with a specified distribution. No-
tation E

�
Tj � or Tj is used to denote the expected value of Tj.

A directed edge � i � j � in the HCFG represents a sequencing

of task i followed by task j. A weight pi j associated with
the edge � i � j � denotes the probability that task j is executed
after task i. Mason’s flow graph technique, well known in
Control theory, is used to compute the transmittance TI � F
of the HCFG [3]. Before computing the transmittance, the
weight of edge � i � j � is calculated as zTj , where z is the vari-
able of the z-Transform. The graph transmittance can be
used to obtain various attributes of TP like E

�
TP � , E

�
T 2

P � and
variance of TP as given below [3].

E
�
TP ��� z

dTI � F
dz

����
z 	 1

E
�
T 2

P �
� z
d
dz

�
z

dTI � F
dz � ���� z 	 1

σ2
TP � E

�
T 2

P �� � E � TP � � 2
2.1 Process improvement approaches

There are many options that a project manager will con-
sider to reduce the expected project completion time. These
can be summarized as follows. (1) Process model param-
eters can be tuned to reduce E

�
TP � . Improving the design

parameters will result in an improvement in E
�
TP � . (2) Shuf-

fling the order of tasks may result in reduction in E
�
TP � . It is

feasible only when the interdependency of the tasks allows
for such reshuffling [4]. (3) Decomposing an activity into
smaller tasks and deploying them concurrently using a re-
assignment of manpower. The AND Concurrency construct
of HCFG is useful in expressing this type of concurrency.
(4) Identifying alternate ways to solve a problem and exe-
cuting all of these sub-flows concurrently. The best of these
solutions will be actually used. The OR concurrency con-
struct in an HCFG is useful in expressing this option.

In this paper, we shall consider the third and the fourth
options for design time improvement. We develop a frame-
work for decision making, which uses quantitative analysis
of E

�
TP � . We consider two example design flows to illus-

trate the process improvement paradigm- timing driven lay-
out design flow of Figure 1 and the flow of Figure 4 for a
software design process. This software design flow may be
considered as a subflow of a larger hardware-software code-
sign flow. We also describe a method for task time parame-
terization in terms of design and designer characteristics.

3 Improving physical design flow
As the first example, we consider a timing-driven phys-

ical design flow and consider how the estimated execution
time for the flow can be improved through the use of AND
concurrency. Since interconnect delays play a dominant
role in determining the performance of deep submicron in-
tegrated circuits, it is common to use a timing-driven physi-
cal design flow, with the objective of improving the chances

(a)

Clock tree generation

Placement

Routing

Tape out

Gate level netlist

Timing optimization
and analysis

Layout verification
(DRC, LPE, simulation)

Timing driven
placement

TLV

TT P

TR

�
1 � p �

I

F

zTT P

zTR

zTLV
p � zTTP

(b)

Figure 1. (a) Flow for timing driven Layout design
(b) HCFG equivalent

of timing closure by considering timing constraints during
the various phases of physical design. Figure 1 shows a de-
sign flow that may be useful in the physical design of high-
performance chips. The design tasks in the flow are timing-
driven placement, routing, and layout verification. Timing-
driven placement consists of the three subtasks, namely, ini-
tial placement, timing analysis and optimization, and clock-
tree generation. Since the complexity of these design tasks
increases superlinearly with the size of the netlist, there
is a definite benefit in partitioning the circuit into several
blocks and carrying out the physical design flow separately
on these blocks. The layouts of the different blocks can
then be merged together to result in the complete chip lay-
out. Techniques such a buffer insertion, gate resizing, wire
resizing, and fanout decomposition can be used to improve
the timing of paths that are local to blocks as well as the
paths that cut across different blocks if some paths are found
to violate the timing constraints.

The parameters that affect the execution time of the dif-
ferent tasks are the number of partitions and the average
size of each partition. Figure 1(b) shows the HCFG for the
flow of Figure 1(a). We use the notation TTP, TR, and TLV

to denote the completion times of the timing-driven place-
ment task, the routing task, and the layout verification task
respectively. Let p be the probability of repeating the en-
tire flow due to timing failure detected during layout ver-
ification. Figure 2 shows the HCFG for a flow that uses
design partitioning to speed up the original design flow.
We assume that the partitioning task subdivides the orig-
inal circuit into n � 1 blocks. In the HCFG of Figure 2,
two new tasks, namely, Partitioning and Module Integra-
tion & Verification have been added. In addition, two spe-
cial nodes called AND Concurrency nodes have also been
added (nodes marked with a �). We make n copies of the
flow corresponding to the flow of Figure 1 and insert these
as subflows between the two AND concurrency nodes. Note

that a layout verification step is carried out on the complete
chip layout after the merging step. Let pI indicate the prob-
ability of detecting timing violations after this final verifi-
cation step. Let TT Pj , TR j , and TLVj indicate the time taken
for timing-driven placement, routing, and layout verifica-
tion for the block j. Let p j indicate the probability of de-
tecting timing violations at the block-level in block j. Let
Tpart and TIV indicate the completion time for partitioning
and module integration & verification tasks, respectively.

I

F

�
1 � p1 �p1z

TT P1

z
TT P1

z
TR1

z
TLV1 �

1 � pi �p1z
TTPi

z
TTPi

z
TRi

z
TLV i

z
TT Pn

z
TRn

z
TLV n

p1 � zTTPn

Tpart

zTI

TI

.

.

�
1 � pn �

TLDi

.... ...

TLDn

AND node

AND node

TLD1

pI � zTpart

Figure 2. HCFG for flow of Figure 1 with AND con-
currency introduced

3.1 Process completion time
Using the techniques described in [3], the graph trans-

mittance TI � F and the expected run time TP for the flow of
Figure 1 can be found as

TI � F � � 1 p � z � TT P � TR � TLV �
1 pz � TTP � TR � TLV �

TP � TT P � TR � TLV

1 p
(1)

Let T �I � F indicate the graph transmittance for the modified

flow depicted in Figure 2, and let T �P indicate the expected
run time for the flow given by the following equations.

T �I � F � � 1 pI ��� z � Tpart � TAND � TIV �
1 pI � z � Tpart � TAND � TIV �

T �P � Tpart � TAND � TIV

1 pI
(2)

In the above equations, we use the notation TAND to indi-
cate the expected time for the entire sub-flow that appears
between the two AND node pairs of Figure 3. The dis-
crete density function (DDF) of TAND can be found using

the technique of [3], and we primarily focus on the expected
value TAND. This quantity is the expected value of the max-
imum of the random variables TLD j , where TLD j denotes the
run time of the subflow j. We can approximate TAND by
the maximum of the expected values of TLD j (see equation
below).

TAND � E � MAX
i � 1 ��� n � TLD j �!#"� MAX

i � 1 ��� n � E $ TLD j %&
Now, using the earlier result for the expected completion
time for the flow of Figure 1, we can write TLD j as

TLD j � TT Pj � TR j � TLVj

1 p j� x j � � TT P � TR � TLV �
1 p j

� x j � � 1 p
1 p j

! � TP

Here, x j denotes the normalized size of block j with respect
to the size of the complete circuit. Clearly, the largest sized
block will dictate the execution time of the AND subflow.
This is expressed by the following equation.

TAND � xm �'� � 1 p �� 1 pm � ! � TP

3.2 Characterizing model parameters
We now consider the tasks Partitioning and Module In-

tegration & Verification and analyze the execution time of
these tasks. Our experience with a partitioning tool indi-
cates that the time for partitioning depends mainly on the
size of the original netlist. Since this size is a constant for
a given problem, we can treat Tpart as a constant. The time
for module integration depends on the number of partitions
n and the number of modules N in the original netlist. It
also depends on the Rent’s coefficient q, which relates the
number of IO pins of a block with the number of gates in the
block [1]. We noticed that the time for the module integra-
tion & verification task can be described using the following
equations, which give TIV for different ranges of n.

TIV (*)++++, ++++-
Nq . 1

nq / q
n 0 . n / 1

N / 1 0 TP n 1 n12
TIV 3 n 4 n2 / TIV 3 n 4 n1

n2 / n1 576 n / n1 8:9 TIV 3 n 4 n1
n1 ; n 1 n2

b
TP1 < ∑n � 1

i 4 1 ∑n
j 4 i = 1 TLDi > TLD j n2 ; n 1 N

(3)

The probability pI is characterized as pI �@? n
N A r � p, where

r B 1. As this expression indicates, pI is no greater than
the probability p of the original flow shown in Figure 1(b).
When n is large, the module integration task essentially
boils down to the chip-level layout verification task. Thus,
in the limit as n approaches the number of modules N, pI

approaches p. The value of the constant r depends on the
circuit and the quality of the partitioning tool; we tuned the
value of r to 1.9 in our experimentation. We also assumed
that p j is proportional to the size of the block j; this is based
on the intuition that the layout of larger blocks is more likely
to involve several timing iterations.

3.3 Results
We conducted experiments in order to compare the ex-

ecution times of the the flows of Figures 1(b) and 2. In
our experimentation, we assumed the following. TT P � 120,
TR � 24, TLV � 80, Tpart � 4. We considered four different
values for n, namely, 1,2,4, and 8. We repeated the com-
putation for five different values of p, viz, 0.1, 0.2, 0.3, 0.4
and 0.5. We observe that partitioning load imbalance has a
negative effect on T �P. In our further discussion we assume
a balanced partition, i.e. x j � 1

n for all j. The results of
the computation of process completion times TP and T �P are
shown in Table 1. The value of n � 1 pertains to flow of
Figure 1. The HCFG analysis provides the discrete density
function for the completion times from which various other
attributes of completion time can be computed.

Table 1. Layout-Design time for TMS320C30
p n TI T CP σT CP LB and UB on T CP

1 0 448 315 224-1568

0.5 2 1 306 110 229-687

4 2 273 72 230-622

8 5 301 139 233-951

HCFG analysis indicates that opting for second flow re-
sults in reduced completion time. There is a value of n, de-
noted by nopt , at which T �P is minimum. T �P increases when
n either decreases or increases around nopt . For large p,
the second flow is a better alternative for a large range of n
(2 D n E nopt) whereas for small p, the second flow is still
a better choice but range of n is restricted i.e. nopt is small.
We performed an analysis based partly on HCFG approach
to compute nopt . We made use of equations 1-3 to obtain
an analytical expression for T �P in the following manner. We
substituted TIV from equation 3 and pI into equation 2 to
obtain the expressions for TAND and T �P given in equations 4
and 5 as functions of n.

TAND � 1
n F 1 G p

1 G pi H TP � 1
n G p � TT P � TR � TLV � (4)

T �P � Tpart �JI 1 G p
n G p K � TP � Nq ? 1

nq q
n A � n G 1 �� N G 1 � � TP

1 L? n
N A r � p (5)

The optimum value nopt can now be obtained by solving the

expression d
dn F T �P � n � H � 0 for n. The optimum value for T �P

is obtained from equation 5 for n � nopt . The variation of
T �P with respect to n, expressed in equation 5, is graphically
illustrated in Figure 3, for N � 50, p � 0 � 5, q � 0 � 77 and
r � 1 � 9. The value of nopt is graphically obtained as 5.

4 Improving a software design flow
For our next illustration, we consider the flow of Figure

4(a) for a software design process for an Application Spe-
cific Instruction-set Processor (ASIP) or a DSP [2, 5]. The

0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68

2 3 4 5 6 7 8

C
om

pl
et

io
n

tim
e

- T
’ P

/- T
P

Number of partitions n

p=0.5, q=0.77
N=30

-T’P/-TP

Figure 3. Time and probability variations with n

HW/SW
 partitioning

Architecture
 & Code

Code generation

Code compilation

Simulation and Test

(Partioning & scheduling)

Code Translation
(2 units)

0.20.8

(10 units)

(4 units)

(2 units)

(a)

p � zTCG

zTTC

zTCG

zTCC

zTST�
1 � p �

I

F

(b)

Figure 4. (a) Flow for Software Design of ASIPs
(b) HCFG equivalent

chief concern here is one of retargetable code generation.
The specifications of the SW part of the system, obtained
after hardware-software partitioning, are translated into a
high level language. The requirements of the application
guide the selection of processor architecture and the num-
ber of processors required. The code is first partitioned and
the scheduling of the processes is carried out on multiple
processors. Once the appropriate architectures are chosen,
the code assigned to respective architectures is translated
into architecture-specific assembly code. It is then followed
by a verification step which is done either through SW em-
ulation of the target architecture or by running the code on
an actual processor.

4.1 Introducing OR concurrency
For the design flow in Figure 4(a), we consider two al-

ternate execution scenarios. In Scenario 1, the flow gets ex-
ecuted as a purely sequential and iterative design flow. The
HCFG equivalent is shown in Figure 4(b). In Scenario 2, a
team of n designers is provided with the same specifications
to execute the design flow of Figure 4(b). In this situation,
we assign the design task to n designers with each of them
working concurrently on a separate but identical subflow.
In the HCFG equivalent of the flow, we introduce a pair of
OR node which encloses all the subflows executed by these

individual designers. Such a graph is shown in Figure 5 for
n � 2. We assume that the ith designer provides a design of
quality Qi. Qi can be characterized in terms of (a) perfor-
mance of the system, (b) power, (c) the software execution
time and (d) the number of defects in the code.

�
1 � p2 ��

1 � p1 �
z
TTC1

z
TCC1

z
TCG1

z
TST 1

z
TTC2

z
TCC2

z
TCG2

zTD

z
TST2

TSW1
TSW2

p1 � zTCG1 p2 � zTCG2

pOR � zTD �
1 � pOR �zTD

OR node

OR node

I

F

Dummy task with TD 4 0

Dummy task with TD 4 0

Figure 5. HCFG equivalent for modified software
design flow

In Scenario 2, the execution of all the subflows within
an OR node-pair is stopped as soon as any one of the n de-
signers provides a design that satisfies the quality criterion.
Let TTC, TCG, TCC, and TST be the completion times for ac-
tivities code translation, code generation, code compilation
and simulation & test respectively for Scenario 1. Let p be
the probability of transition from the simulation and testing
task to the code translation task. Let TTCi , TCGi , TCCi , and
TSTi be the corresponding quantities for the ith designer in
Figure 5. Let TSWi denote the completion time of subflow
executed by the ith designer. Similarly, let pOR be the prob-
ability of transition to repeat the OR subflow; this iteration
is caused if the quality of the product is unacceptable.

4.2 Process completion time
For project 1 TI � F and TP can be written as

TI � F � � 1 p � z � TTC � TCC � TCC � TST �
1 p � z � TCG � TCC � TST �

TP � TTC � TCG � TCC � TST

1 p

If the graph transmittance of the subflow confined in the
OR-node pair is given by TOR , the graph transmittance T �I � F
for flow of Scenario 2 is given by equation 6. For TD � 0 it
reduces to equation 7.

T �I � F � � 1 pOR � TOR � z � TD � TD �
1 pOR � TOR � z � TD � TD � (6)

T �I � F � � 1 pOR � TOR

1 pOR � TOR
(7)

The process completion time T �P is given by

T �P � TOR

1 pOR
�

The graph transmittance TOR and completion time TOR for
the OR-node pair subflow is obtained using HCFG analysis.
TOR can be approximated to be equal to the minimum of the
expected values of TSWi , as shown in equation 8.

TOR � E � MIN
i � 1 ��� n M TSWi NO!#"� MIN

i � 1 �P� n M E � TSWi � N (8)

The average completion time for the ith designer TSWi is the
expected value of completion time of the ith subgraph be-
tween the OR nodes in Figure 5. It can be rewritten as

TSWi � TTCi � TCGi � TCCi � TSTi

1 pi

4.3 Characterizing model parameters
To represent the flow of Figure 5 by HCFG, two dummy

tasks of zero completion times have to be introduced. Now
we discuss the probability pOR in the following sections.

4.3.1 Probability pOR

The probability pOR is associated with the quality of design
artifact provided by all the n designers relative to the spec-
ified quality QD. Let Qimax denote the highest quality for
the design artifacts provided by n designers. Intuitively, we
expect pOR to be larger when Qimax is low and vice-versa.
Consistent with this intuitive expectation, we assume

pOR �RQ c d � n � Qimax
QD

∑n
i 	 1

QD
Qi S � p (9)

The actual values of c and d can be calibrated using the de-
sign history meta-data. We choose c � 1, d � 1 and n � 2.
Note that (a) 0 E Qi D 1, (b) a designer completing the de-
sign very early is expected to provide a lower quality prod-
uct causing pOR to increase. We expect that no designer will
exceed the expectation or Qi E QD.

4.4 Results
In this section, we discuss the results obtained by com-

paring the process completion times of Scenario 1 and Sce-
nario 2. We assume TTC � 2, TCG � 4, TCC � 2, TST � 10
and TD � 0 time units. To explore the possibilities of re-
ducing process completion time, the following parameters
were considered for variables- n, Qi and p: n T M 1 � 2 � 3 � 4 N ,Qi T M 0 � 1 � 0 � 3 � 0 � 7 � 0 � 9 N , p T M 0 � 1 � 0 � 2 � 0 � 3 � 0 � 4 � 0 � 5 N . The re-
sults of computation of TP and T �P are shown in Table 2.

Qi, Qj v/s -TP2
 [p=0.5, n=3,-TP1

=34]

-TP2
/-TP1

 1.1
 1

 0.9
 0.8
 0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Q1 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

Q2

0.6
0.7
0.8
0.9

1
1.1
1.2

 -TP2
/-TP1

(a) With Q1 and Q2

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 - T
P

2/- T
P

1 (
W

ee
ks

)

Probability pOR/p

 Probability pOR v/s (-TP2
/-TP1

) for n=3

p=0.1
p=0.3
p=0.5

(b) With pOR

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

 - T
P

2/- T
P

1 (
W

ee
ks

)

 - E
ffo

rt
P

2 (
W

ee
ks

)

Number of concurrent projects (n)

TP1
=19.8, p=0.1

TP1
=24.9, p=0.3

TP1
=34.0, p=0.5

Effort for p=0.3

(c) With n

Figure 6. Process completion time T �P variations

Table 2. Software Design completion time
p n Q1 (Q2 pOR T CP σT CP LB and UB on T CP

1 24.9 12.5 18-66

0.3 2 0.1 0.30 27.9 16.6 18-102

0.9 0.06 20.8 7.5 18-52

HCFG analysis provides DDF of T �P. Also shown are vari-
ous attributes of T �P computed from its DDF.

We make these observations from the results. (1) Opting
for Scenario 2 certainly results in reduced completion time.
The region of values of Q1 and Q2, which results in T �P E TP,
falls to the right of the contour for “T �P U TP= 1” in x-y plane
in Figure 6(a). (2) For large p, flow of Scenario 2 is a better
alternative for a larger range of Qi (1 � Qi � Qopt � and Qopt

can be less than 1
2 . Qopt is the minimum value of quality at

which T �P E TP. (3) For small p, flow of Scenario 2 would
still be a better alternative but for a small range of Qi, i.e.
Qopt has to be larger than 1

2 ; additionally all Qi have to be
approximately equal.

When both designers provide quality that are nearly
equal and are very close to the desired one, flow 2 entails
greater possibility of providing reduced E

�
TP � as shown in

Figure 6(a). For low values of quality, flow 2 cannot be
recommended, see Figure 6(b). Also, given the capability
of designers to produce products of certain quality, flow 2
offers better improvement in E

�
TP � over flow 1 only when

p is large, as illustrated by Figures 6(b) and 6(c). For ex-
ample, in Figure 6(b), for p � 0 � 5 and relative probability
pOR

p � 0 � 6, E
�
TP � for flow 2 is 85% of E

�
TP � of flow 1. For

p � 0 � 1, both the flows yield approximately the same E
�
TP � .

We infer that (a) for a given team of designers, Flow 2
is advisable only when p is sufficiently large and (b) for
small p, Flow 2 provides improved E

�
TP � when all designers

produce high quality designs. For the SW design projects
where a choice of different architectures is available, this
paradigm for E

�
TP � improvement can be combined with the

usual design space exploration, adding one more dimension
to the design space. Given constraints on available man-
power, a suitable value of n can be found which results in
minimum process completion time.

5 Conclusions
We illustrated a methodology for process improvement

using the HCFG approach. For DSM chips, the effect of
partitioning the circuit or considering elaborate interconnect
models on design completion time was explored using the
HCFG approach. For a software design flow, for a given
size and complexity of the design, the effect of designer ex-
pertise on design completion time was explored. There is a
penalty involved in using concurrency constructs for reduc-
ing the design time. In the use of OR construct, the penalty
is in the form of increased design effort, without excessive
degradation in utilization factor. Use of AND construct de-
creases the utilization for a marginal increase in design ef-
fort.

Acknowledgements
This work was carried out at IIT, Delhi. The authors wish

to thank Motorola, USA for funding this research.

References

[1] W. E. Donath. Placement and average interconnect length of
computer logic. IEEE Trans. on Circuits and Systems, CAS-
26(4):272–277, Apr. 1979.

[2] K. Kucukcakar. An ASIP design methodology for embedded
systems. In Proceedings of Workshops on Hardware/Software
codesign, 1999.

[3] V. Sahula and C. P. Ravikumar. Hierarchical Concurrent Flow
Graph approach for modeling and analysis of concurrent de-
sign processes. In Proceedings of 14th IEEE International
Conference on VLSI Design, Jan. 2001.

[4] R. P. Smith and S. D. Eppinger. Identifying controlling fea-
tures of engineering design iterations. Management Science,
43(3):276–293, Mar. 1997.

[5] W. Wolf. Hardware Software codesign: Principles and prac-
tice. 1994.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

