Timing Yield Calculation Using an Impulse-train Approach

Srinath R. Naidu
Department of Electrical Engineering
Eindhoven University of Technology, The Netherlands

Abstract

This paper presents a new method to compute the prob-
ability distribution of the delay of a combinational circuit
and uses it obtain an estimate of the yield of the process
that manufactures the circuit. We assume a simple delay
model assigning a triangular distribution to the delay of a
gate and ignore the logical function of the gate and the pin-
to-pin delay. The method can handle tree-like circuits as
well as circuits with reconvergent fanout in them. The chief
advantage of this method over conventional Monte-Carlo
simulation is that it is much faster while providing compa-
rable quality.

1 Introduction

As the semiconductor manufacturing process enters the
deep submicron era, it is becoming increasingly hard to fix
the delay of the circuit. Unlike in the past the statistical vari-
ations in the delays of each gate could cause a significant
deviation in the mean delay at the output. The deviations
in the delays of gates occur due to inter-die and intra-die
variations and can be as high as 30 percent of the actual
delay of these components [2]. Further the increase in the
clock speed limits the allowable deviation in the delay at
the output. Since there is a lot of variation in the delays of
the individual gates of the circuit, one cannot expect a deter-
ministic timing analysis that works with fixed gate delays to
give a realistic idea of circuit delay. It is necessary to obtain
a good statistical characterisation of the delay at the output
so as to aid the calculation of the number of manufactured
circuits that will pass the delay requirement.

The most popular method for obtaining the probability
distribution of the delay at the output involves Monte Carlo
simulation [2] [5] [6]. However Monte Carlo simulation is
expensive as we may needed several thousands of trials to
obtain the probability distribution to any reasonable accu-
racy. In contrast to Monte Carlo simulation some authors
have resorted to computing closed-form expressions for the
delay distributions at the internal nodes of the circuit, as-

suming the gate distributions be Gaussian, for example [1].
However, even if one were to assume the delay distribu-
tions at the gates to be Gaussian, the analytical expressions
for the delays at the internal nodes become complex and
time-consuming to compute. In this paper we show the effi-
cacy of a discretisation approach to the problem wherein we
discretise the probability distribution of each gate and then
propagate these distributions to the output. The discretisa-
tion process involves some loss of accuracy but experimen-
tal results for tree-circuits appears to indicate that this loss
of accuracy is not very significant. The chief advantage is
the that the approach is much faster than Monte Carlo simu-
lation. Much like in Monte Carlo simulation the method has
a natural framework that allows the user to trade accuracy
for computation time. This paper has certain shortcomings.
We do not take into account possible dependencies between
gate delays due to local effects. For instance, it could be
that gates in one part of the circuit are faster than elsewhere
in the circuit due to local heating. The delay model we em-
ploy assumes that input pin-to-output pin delay is the same
for all inputs. This particular shortcoming however can be
easily removed by a simple extension of the method in this
paper. We do not weed out false paths from the circuit. This
is reasonable since it is observed in [5] that there are very
few false paths in many practical circuits. Lastly, there is
no theoretical analysis of how the errors involved in the dis-
cretisation of the probability distributions at the gates of the
circuit propagate through the circuit although comparison
with Monte Carlo simulation appears to suggest that the er-
rors are very small.

2 Previous Work

Early work in the area of statistical timing analysis con-
sisted of treating the circuit as a PERT network where the
nodes in the network are assumed to have delay distribu-
tions and the requirement is to find the probability distribu-
tion of the delay at the output of the network. In [8], a very
general treatment is given where no assumption is made on
correlations between node delay random variables. An at-
tempt to establish the probability that each path in the circuit

will have a certain timing performance is made in [4]. In [5]
the effect of false paths on circuit delay is considered and an
attempt is made to factor them in the probability computa-
tions. A precise statement of the statistical timing analysis
problem is presented in [6]. [1] presents an analytical ap-
proach to the problem by making the approximation that the
maximum of two normal distributions is a normal distribu-
tion. The discretization approach of the probability distri-
butions was proposed by [9] and independently by [7]. The
spirit of this paper is very similar to [7] but there are some
notable differences in that [7] works with uniform sampling
whereas we can work with both uniform and non-uniform
sampling. We show why it may become necessary to use
non-uniform sampling. Further [7] propose no techniques
to control the number of impulses whereas we propose two
techniques to do so. Finally, although both approaches use
the concept of supergates to handle circuits with reconver-
gent paths our notations and algorithm are different from
[7]. We compare both algorithms. For complex supergates
we propose a hybrid solution using both Monte-Carlo simu-
lation as well as our own impulse-train approach to arrive at
the delay distribution at the output of the circuit. [7] alludes
to a hybrid approach but does not discuss it at length.

3 Delay Model

The arrival time of a signal at the output of gate i can be
modelled as

Z; = maz(X;,Y;) + G; (1)

where X; and Y; are the latest arrival times of signals at
the inputs of the gate and G is the delay of the gate i, and
Z; is the latest arrival time at the output of the gate. This
formulation of arrival time of the output essentially means
that we assume that any transition on either of the inputs
gets transferred to the output and we are calculating the lat-
est time beyond which there are no further transitions at the
output (i.e the time at which the output becomes stable).
We model the delay of a gate as a random variable obeying
a triangular distribution centered around a mean in the in-
terval (mean - a, mean + a) as in Figure 1. Our choice of a
triangular distribution is motivated by the fact that the de-
lay of a gate cannot range from -0o to +0o but instead must
have finite minimum and maximum values, and that the de-
lay distribution must have a single peak. We would like to
emphasize that the techniques in this paper can be extended
to any distribution. Consider the distribution shown in the
figure below in the range (10ns,30ns) centered at 20ns.

In order to discretise the distribution we divide the in-
terval (10,30) into 10 equal parts (10,12),(12,14)...(28,30).
We concentrate the probability of the random variable ly-
ing in any one of these intervals in an impulse lying at the
center of that interval. The height of an impulse is the area

o018

q |

Figure 1. A triangular distribution and its dis-
cretised form

of the probability distribution curve over the correspond-
ing interval range. For example the impulse corresponding
to the range (10,12) is of height 0.02 which is the proba-
bility that the delay lies in the interval (10,12). The idea
here is that if one were to divide the interval into a suffi-
ciently large number of sub-intervals, then the discretised
distribution will represent in a fairly accurate manner the
continuous distribution. Since we calculate a train of im-
pulses to represent the probability distribution of the delay
at each gate of the circuit, we call this the “Impulse-train”
approach.

4 Computing Delay random variables

In order to compute the delay using the formula of (1)
we need to compute the maximum of two random variables
followed by a convolution. Let X and Y be discrete random
variables with sample spaces S(X) and S(Y") of sizes m
and n respectively. Let S(X) = {p;,1 < m}and S(Y) =

Then Z = max(X,Y) is a random variable with size at
most m+n, and we can compute the probability that Z = k,
Pr(Z = k) as follows:

Pr(Z=k)=Pr(X <k)Pr(Y =k)

+Pr(X = k)(Pr(Y <k)+ Pr(Y =k)) 2)
Here
Pr(X <k)=>_ Pr(X =p) (3)
pi<k

The distribution for the random variable Z = X + Y can be
computed by performing a discrete convolution as follows:
Pr(Z =k)

= Z Pr(X =p)Pr(Y =k —p;) “)
pi€S(X)

Note that Pr(Z = k) is non-zero only for those values
of k that are given by the sum of some pair of values in the
sample spaces of X and Y.

It must be noted that the equations for the maximisa-
tion and convolution operations are merely the discrete ver-
sions of their continuous counterparts. The discretisation

of the distributions enables us to carry out the maximisa-
tion and convolution operations efficiently for any type of
distribution as opposed to an analytical approach that at-
tempts to compute closed-form expressions for the delay.
In [1], an analytical approach is proposed assuming that the
gate delays are Gaussian and noting that the maximum of
two Gaussian random variables is approximately Gaussian.
However, this approximation is only valid for certain situ-
ations and it is not clear how the distortions will propagate
through the circuit.

5 Computational Complexity

Let X and Y are two discrete random variables with sam-
ple space sizes S(X) = m and S(Y) = n. Then the
maximisation operation takes O(mn) time and the the ran-
dom variable Z = maxz(X,Y") has a sample space of size
O(m-+n). Thus the maximisation operation does not cause a
blow-up in the sample-space size. However,if Z = X + Y,
then Z has a sample space size of O(mn) and it takes O(mn)
time to compute it. Thus in case of repeated convolution,
there is a potential for a blow-up in the number of impulses.
In practice, the blow-up does not materialise because the
number of distinct values in the sample space of Z is fewer
than the theoretical number, mn. In fact, if we were to per-
form uniform discrete convolution where both sequences to
be convolved have the same period, then the number of dis-
tinct values in the sample space of Z would actually be of
O(m+n). However in a practical setting we are not always
able to perform uniform discrete convolution. For instance,
if the gate distributions were non-symmetric then it might
become necessary to position each impulse at the centroid
of the corresponding strip and not at its midpoint in order
to ensure that the mean of the discretised distribution is the
same as the mean of the original continuous distribution.
This would make the sequence non-uniform. For signal
lines deep inside the circuit, the delay distribution becomes
non-symmetric even if we started with symmetric distribu-
tions. Generally these delay distributions rise sharply and
fall off slowly due to repeated maximisation of random vari-
ables. This is all the more reason to sometimes use non-
uniform discretisation at least for blocks deep inside the
circuit. One way to get around the problem of a blow-up
in the number of impulses is to ensure that the impulses
are positioned at the integer value closest to the centroid of
the strip. Then the convolution operation would result in
output impulses positioned at integer values and the num-
ber of impulses would only grow according as the spread of
the output distribution defined as the difference between the
maximum value of the output random variable and the mini-
mum value of the output random variable. Thus the number
of impulses at the output would again be of O(m+n).

Even if we could ensure that the number of impulses at

the output of each gate in the circuit is of the order of the
sum of the numbers of impulses at the inputs of the gate,
we could end up with nodes with a fairly large number of
impulses (such as nodes close to the primary output in a cir-
cuit with large depth). To reduce the number of impulses
for such nodes, we propose two techniques, with contrast-
ing properties, to combine impulses such that the mean of
the distribution is preserved and the variance is only slightly
changed. In the first technique, we combine the two im-
pulses of height m and n into a single impulse of height
m+n located at d = mmac_j-_;w’ which is merely the “center of
mass” of the two impulses. While this operation preserves
the mean it does change the variance of the distribution. The

change in variance can be computed as follows:

mx + ny

v = ()2(m +n) — (mz? + ny?) (5)

m—+n

After some manipulation, we have §v = —(;2%)(y —
x)2. If we assume that m > n, then dv is bounded by
dv > —(n(y — x)?). Thus in a practical scenario, we can
combine impulses until the penalty in terms of variance is
no greater than a small percentage of the original variance.
This technique causes a decrease in the variance of the re-
sulting distribution. We propose a second technique that
increases the variance of the resulting distribution while re-
ducing the number of impulses. In this technique, the im-
pulse situated at y of magnitude ¢ is combined into the im-
pulses located at « and z such that the mean of the distribu-
tion is preserved. To do this, the impulse at « of magnitude
pis increased to p + q((;:zy)) while the impulse at z of height

a(y—z)
(z—2) *

r is increased to r +
puted as follows:

The change in variance is com-

dv=q(z —y)(y —z) (6)

Experimental evidence indicates that the combination of
these two strategies does result in a reduction in the number
of impulses without affecting the final delay distribution too
much. However one cannot indiscriminately combine im-
pulses using the above two techniques. An effort should be
made to make sure that the resulting impluses are located
at convenient values (such as integral values) for efficient
further computation.

6 Reconvergent Fanout

Circuits with reconvergent fanout cause the above anal-
ysis to become complicated. This is because we lose an
important characteristic of fanout-free circuits, namely that
the inputs to any given gate are logically independent. A
number of techniques have been proposed in the literature
to deal with spatial correlations. One such technique is the

Figure 2. A simple circuit with reconvergent
fanout and supergate blocks B1 and B2.

supergate technique first proposed by [10]. The technique
consists of first decomposing the original circuit into sub-
circuits such that the inputs to each sub-circuit are logically
independent. The specific circuit decomposition scheme we
use is drawn from [3]. As in [3] we define the supergate of a
node in the circuit to be the minimal sub-circuit in the tran-
sitive fanin of the node such that the sub-circuit’s fanins are
logically independent. This technique consists of building

a

Ic-graph corresponding to the given circuit. The vertices

of the lc-graph are all the signals of the circuit, and an edge

is

inserted between two vertices if and only if either the sig-

nal lines corresponding to the two vertices are both inputs
to some gate or one of them is an input to some gate while
the other is the output of the same gate. This procedure has
the effect of creating a local clique corresponding to each
gate of the circuit. Theorem 1 of [3] establishes that the
bi-connected components of the lc-graph are maximal su-
pergates (i.e supergates that are not properly contained in a
larger supergate). Figure 2 shows how a simple circuit is
partitioned into supergates.

The associated lc-graph of the circuit is shown in the

Figure 2. Note that the node c is an articulation point in
this graph(i.e vertex whose removal disconnects the graph).
Below we present the basic algorithm used to compute the
output distribution for a supergate S given in the form of a
set of SuperGate expressions.

SuperGateCompute(S, BayesFactor){
Q) = RepeatSet(S);
if(Q == NULL){

}

S' = Evaluate(S,Q = NULL);
Scale(SuperGateLocal Dist, BayesFactor);
Combine(SuperGateGlobal Dist, SuperGateLocal Dist);
return;

if(Q # NULL){
T = NewTuple(Q);

BayesFactor = BayesFactor « P(Q =T);
S' = Evaluate(S,Q =T);
SuperGateCompute(S’, BayesFactor);
return;

}

We describe how the above algorithm works in the case
of our example. We start with the set of supergate ex-
pressions S representing all the gates of the supergate. In
our example, for the supergate B2, S is given by {f =
max(c,d) + Ga2,9 = mazx(e, f) + G3,h = maz(f,d) +
G4,i = maz(g,h) + G5} where G, ...G5 are the gate
delay distributions of the respective gates. Given a set of
Supergate expressions S, the base set of variables is the
set of variables that do not occur on the left hand side of
any equation in S. RepeatSet(S) returns a set of vari-
ables which occur more than once in the set S but never
on the left hand side of any equation in S. For our ex-
ample set S,the base set is {c,d, e} and RepeatSet(S) re-
turns the set {d}. NewTuple(()) returns a previously un-
used tuple from the set of tuples associated with the dis-
tributions of the random variables in Q. The set S’ =
Evaluate(S,Q = T)) is got by substituting each variable
of Q by the corresponding constant value from T, and then
evaluating the set of supergate expressions where possible.
This means that if we find the supergate expression of the
form Z = maxz(X,Y) + G; where X and Y are either
base set variables or constants, we can evaluate the expres-
sion, and remove it from the list. In our example S’ =
Evaluate(S,d = k) results in the set {g = max(e, f) +
Gs,h = max(f,k)+G4,i = max(g,h)+G5} as we could
remove the supergate expression f = max(c, k) + Gs.
We perform the above steps in each recursive call until
we reach a point where RepeatSet(S) is the empty set.
Thereafter, RepeatSet(S) = NULL in successive invoca-
tions of SuperGateCompute and we arrive at a point where
there is only one expression left S. At this point we can
actually evaluate the supergate output. Having done so,
we scale the impulse-train corresponding to the supergate
output by the computed BayesFactor using the function
Scale(SuperGateLocal Dist, BayesFactor). We then
combine the locally computed distribution with a global
distribution maintained at the output. Note that the func-
tions Scale and Combine only perform their tasks when
SuperGateLocal Dist is available.

The recursion tree for our example is of depth 3. Let
us evaluate BayesFactor for one path in this recursion tree.
In the first call of SuperGateCompute(S, 1), Q turns out
to be the set {d}. The second call to SuperGateCom-
pute sets Q to be {f}. In the third call Q turns out to be
NULL. At this point there is only one expression left in S,
i.e i = maz(g,h) + G5. The BayesFactor used to scale
SuperGateLocal Dist for the supergate output ¢ is given
by BayesFactor = P(f = Ty/d = T1) x P(d = T1).
The probability magnitude at each sample space point in the
impulse-train of ¢ prior to scaling corresponds to the prob-
ability P(i/f = T»,d = T1). Scaling each impulse in the
train by the BayesFactor computed gives us the joint proba-

bility P (i, f = T»,d = T}) according to Bayes product rule
Pli,f =Ty,d=Ty) = P(i/(f = To,d =T1)) * P(f =
T>/d = Ty) x P(d = Ty). Clearly when we are finished
with all paths in the recursion tree, we will have computed
in the resulting impulse train for the supergate output ¢, the
distribution for ¢ without any dependencies.

7 More Complex SuperGates

For supergates with many stems, the impulse-train ap-
proach becomes very impractical and begins to become
much more expensive than Monte Carlo simulation. For-
tunately we can combine Monte Carlo simulation with the
impulse-train approach. The idea here is that we sample
the discrete distributions at the inputs of the supergate and
perform a Monte-Carlo simulation by sampling the distribu-
tions at the gates of the circuit, and collecting the samples at
the output. The work of [7] alludes to a hybrid approach but
does not discuss how to construct a distribution out of the
samples collected at the output. We divide the spread of the
distribution into several frequency bins and determine the
number of samples that fall into each bin. The probability
magnitude for each bin is set to the ratio of the number of
samples belonging to that bin to the total number of sam-
ples. We locate the probability at the centroid of each bin.

8 Monte Carlo simulation

The traditional approach to statistical timing analysis has
been to use Monte Carlo simulation. A crucial issue in
the use of Monte Carlo simulation is the number of trials
needed to compute the statistical quantity in question. In
our case the quantity of interest is the fraction of manufac-
tured circuits that are likely to pass the delay requirement.
Let p represent this value. We would like to find the number
of trials needed to estimate p with a certain accuracy € at a
certain level of confidence 1 — ¢. Let Z1,...,Z, be n 0-1
random variables where Z; =0 or 1 depending on whether
the circuit fails or passes the delay requirement.

i+ Zo+ Ty
o n

Z (N

It can be shown that Z obeys a binomial distribution with
pu=pando? = w. Using Chebyshev’s inequality, we
have

(0)?

(ep)?

Pr(|Z —pl > ep) < ®)

Substitute for o2. In order to have an accuracy of 100e
percent with a confidence 100(c) percent, we must have

(1-p) e
or S0)

Setting ¢ = 0.99 and € = 0.01 this translates to n >
1p%p x 10%. Thus the number of trials needed for a cer-
tain accuracy and confidence in the distribution is dependent
on the yield which is the quantity that is sought to be esti-
mated. If we take the yield p = 0.9 then we will need about
100,000 trials. The interesting thing about this result is that
the number of trials for a certain confidence and accuracy
needed does not depend on the size of the circuit directly,
but instead depends on the yield itself.

9 Results

In tables 1 and 2 below results are given for a lot of ran-
domly generated tree circuits. The notation T-x-y stands for
a tree circuit with x levels where each gate has no more than
y inputs. The yield is defined here as the precentage of cir-
cuits that have a delay that is within 5 percent of the statisti-
cal mean. We used 100,000 trials for each Monte Carlo sim-
ulation in Table 2. We found that the probability distribution
computed by the Impulse-train approach closely tracked the
one obtained from Monte-Carlo simulation. However the
Impulse-train approach gave more accurate results for cir-
cuits with a large number of levels and gates with few inputs
as compared to circuits with few levels but with gates hav-
ing many inputs. This is probably because there is greater
error involved in computing the probability distribution of
the maximum of several random variables using our method
than in computing the probability distribution of the sum of
several random variables using our method. In no case was
the yield prediction more than 5 percent off the mark. From
the table, it is clearly seen that the Impulse train approach is
much faster than the Monte-Carlo approach and yields very
good results for the circuits considered.

In tables 3 and 4 results are given for a few circuits with
reconvergent fanout. These are multi-output circuits, so we
do not show mean and variance for each output. Rather we
look at the average yield figures for these circuits. As for
tree circuits, the yield for an individual output is defined as
the probability that the output delay in question is within 5
percent of the statistical mean for that output. Each of these
circuits could be decomposed into supergates of reasonable
size such that the supergate expressions for the supergate
outputs contained only a few inputs that occurred more than
once. Attempts are on to extend the method to handle su-
pergates whose supergate expressions have many variables
occurring more than once. As can be seen the impulse-train
method gave good results for these circuits as well, and in
much shorter time.

10 Conclusions

We have presented an impulse-train approach to statisti-
cal timing analysis of combinational logic circuits. The ap-

Table 1. Results for Impulse-train method -
Tree Circuits

Impulse Method

Circuit Gates Mean Variance | Yield | Time(s)
T-3-15 10 62.80 10.08 64.8 0.02
T-4-10 56 87.02 14.61 70.1 0.07
T-8-4 538 180.16 29.71 90.3 1.94
T-9-5 4177 208.98 25.69 95.3 124.99
T-11-4 2645 249.93 42.48 94.5 33.99
T-14-3 3793 315.25 57.58 96.5 44.67
T-15-2 29 313.30 | 248.222 68 0.47
T-15-3 7897 340.93 48.05 98.5 217.95

Table 2. Results for Monte-Carlo method -
Tree Circuits

Monte-Carlo Method

Circuit Gates Mean Variance | Yield | Time(s)
T-3-15 10 62.74 9.51 68.3 156.24
T-4-10 56 86.92 14.04 74.9 185.69
T-8-4 538 179.79 28.31 90.1 432.01

T-9-5 4177 208.68 23.57 97 3491.20
T-11-4 2645 249.64 40.37 95.1 1850.54
T-14-3 3793 314.86 55.87 96.7 2111.76
T-15-2 29 313.28 243.05 68.5 142.08

T-15-3 7897 340.59 46.07 98.8 4569.7

Table 3. Results for Impulse-train method -
non-Tree Circuits

Impulse-train Method

Circuit Gates Yield Time(s)
majority 16 0.58 0.09
i4 402 0.64 421
i5 460 0.51 14.75

i9 852 0.62 206.18
comp 211 0.87 0.13
cu 122 0.51 1.64
cml138a 49 0.41 0.46
cordic 205 0.83 2.25
cmb 91 0.71 1.54

proach is shown to be faster than Monte- Carlo simulation.
As of now, it can handle circuits with circuits with limited
reconvergent fanout. We are trying to improve the method
so that it can handle circuits containing more complicated
supergates. Efforts are also on to improvise upon the de-
lay model employed making it correspond more closely to
reality.

References

[1] M.Berkelaar “Statistical Timing Analysis, A linear time
method”, Proceedings of TAU, Austin, TX, December

[5]

[7]

Table 4. Results for Monte-Carlo method -
non-Tree Circuits

Monte-Carlo Method

Circuit Gates Yield Time(s)
majority 16 0.61 218.22
i4 402 0.64 346.33

i5 460 0.50 345.99

i9 852 0.57 444.44
comp 211 0.84 265.66
cu 122 0.47 238.65
cml138a 49 0.41 221.89
cordic 205 0.84 259.75
cmb 91 0.69 231.5

1997.

R.B.Brashear, N.Menezes, C.Oh, L.T.Pillage,
M.R.Mercer, “Predicting Circuit Performance Using
Circuit-level Statitsical Timing Analysis”, European
Design and Test Conference, 1994, pp 332-337.

D.I.Cheng, M.M.Sadowska, K.T.Cheng, “Speeding Up
Power Estimation by Topological Analysis”, IEEE
1995 Custom Integrated Circuits Conference,pp 623-
626.

R.B.Hitchcock, G.L.Smith and D.D.Cheng, “Timing
Analysis of Computer Hardware”, IBM Journal on Re-
search and Development, pp 100-105, January 1982.

H.FJyu, S.Malik, S.Devadas and K.W.Keutzer, “Sta-
tistical Timing Analysis of Combinational Logic Cir-
cuits”, IEEE Transactions on VLSI Systems, Vol.l,
No.2, June 1993, pp 126- 137.

R.B.Lin, M.C.Wu, “A New Statistical Approach to
Timing Analysis of VLSI Circuits”, IEEE International
Conference on VLSI Design, pp 507-513, 1997.

J.J.Liou, K.T.Cheng, S.Kundu, A.Krstic, “Fast Statis-
tical Timing Analysis by Probabilistic Event Propaga-
tion”, Proceedings of 38th Design Automation Confer-
ence, June 2001, pp 661-666.

A. Nadas, “Probabilistic PERT”, IBM Journal of Re-
search and Development, Vol. 23, No. 3, May 1979, pp
339-347.

S.R. Naidu, “An Impulse-train Approach to Statisti-
cal Timing Analysis”, Workshop Notes of the Interna-
tional Workshop on Logic Synthesis, June 12-15, 2001,
Granlibakken, CA.

[10] S.C.Seth, L.Pan, V.D.Agrawal, ‘“Predict: probabilistic

estimation of digital circuit testability,” Proceedings of
Fault-Tolerant Computing Symposium, 1986.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

