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Abstract

The radiation and surface wave losses may give rise to
electromagnetic interference (EMI) problems in high speed
VLSI interconnects. Over and above there will be dielectric
and conductor losses. These losses have been evaluated
for multilevel interconnects by finite difference time domain
(FDTD) technique. The crosstalk between lines in the same
level as well as in different levels and propagation delays
are also found.

1. Introduction

Today’s high speed VLSI interconnects are having mul-
tilevel structures and designers feel concerned about losses
induced by planar lines and discontinuities. Over and above
the conductor and dielectric losses, the planar lines with dis-
continuities exhibit losses due to surface waves and space
waves. These losses degrade the signal distribution and
may lead to electromagnetic interference (EMI) problem
and similar other unwanted effects. Several literatures are
available where losses in microstrip lines including radia-
tion and surface wave losses from discontinuities are found
[1]-[7]. But no such information for multilevel structures is
available. This paper aims at evaluating the conductor loss,
dielectric loss, radiation loss and surface wave loss in a mul-
ticonductor multilevel structure. Multilevel crossover struc-
ture has been analyzed in [8] and equivalent circuit has been
found. But the model does not account for radiation and
surface waves. To account for all these full-wave effects, fi-
nite difference time domain (FDTD) technique [9] has been
used in this paper. All the frequency dependent full-wave
behaviors like dispersion, cross talk, radiation and surface
waves are automatically accounted for in FDTD method.
Surface impedance boundary condition (SIBC) [10] is used
for incorporation of conductor loss. Dielectric loss is taken
into account by taking the nonzero conductivity of the sub-
strate. Near field to far field transformation (NFFF) [11] is
used for the computation of radiated fields. FDTD method

produces the TDR directly and no tedious parameter extrac-
tion or Fourier transform is required. From the voltages at
different ports the propagation delays are calculated.

Crossover structures with and without bend, (shown in
fig. 1) are analyzed in this paper. For truncation of
the FDTD computation domain uniaxial perfectly matched
layer (UPML) boundary [12] is used. Non-uniform grid
FDTD scheme [13] is used as it saves memory and com-
puter time.

2. Formulation

2.1. Uniaxial perfectly matched layer (UPML)
boundary

Within the FDTD computation domain the fields are up-
dated using Yee algorithm [9]. The computation domain is
truncated by UPML boundary. In the UPML regions the
fields are updated in two steps and non-split field formula-
tion is used. Within the UPML regions the two-step update
equations forEz field component are obtained following
the method illustrated in [12] as
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Whenκx = κy = κz = 1 then (1) and (2) take the form
given in [12]. Gedney has suggested the use ofκi > 1; (i
= x, y or z) for better absorption of evanescent waves. To
take advantage of this fact the expressions given by Ged-
ney have been modified by incorporatingκi. Similar two-
step update equations can be found for other field compo-
nents. The conductivityσ, permittivity ε and permeability
µ are scaled within the UPML region in the normal direc-
tion while in the transverse directions they are kept same as
the corresponding values in the computation domain. In the
x direction, when this is normal to the UPML interface,σx

andεx = µx = κx are varied following the equations

σx(x) = σxmax
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where, d is the depth of the UPML region and m is the poly-
nomial scaling factor.σxmax andκxmax are the maximum
values ofσx andεx = µx = κx respectively at the outer face
of the UPML boundary. The optimum value ofσxmax is
given in [12] as

σxmax =
m + 1

150π
√

εeff
(5)

where,εeff is the effective dielectric constant of the mi-
crostrip. The equations for other normal directions are sim-
ilar to (1)-(5). In the rest of the paper the subscripts indicat-
ing normal directions are omitted and it is assumed that they
are in any of the three directions, whichever is appropriate.
The optimum values ofκmax are found following [14].

2.2. Surface impedance boundary condition (SIBC)

For incorporation of conductor loss in FDTD, SIBC is
used. For implementation of SIBC the method given in [10]
is adopted in this paper. Due to the frequency dependent
nature of surface impedance, convolution is required in time
domain. The surface impedance in the Laplace domain is

Zc(s) = η

√
s/a

1 + s/a
(6)

where, a =σ/ε andη=
√

µ/ε; σ is the conductivity of strip
and ground plane conductors and the substrate have permit-
tivity ε and permeabilityµ. Definings′ = s/a the normalized
surface impedance is

Zn(s′) = Zc(as′)/η =
√

s′/(1 + s′) (7)

The normalized surface impedanceZn(s′) is approximated
by first order rational functions as

Zn(s′) = 1−
N∑

i=1

ci/(s′ + ωi) (8)

where, N is the number of first order rational function used
in the approximation. The values ofci andωi are found
by least square method. It is shown in [10] that with N =
8 the maximum relative error inZn(s′) is 0.0016 %. As
s′ is independent of material and geometrical parameters,
the values ofci andωi have to be computed once only and
those values can be used for all simulations. In time domain
the tangential electric and magnetic fields at the conductor-
dielectric interface are related by

Et(t) = Zc(t) ∗ [n̂×Ht(t)] (9)

where,∗ denotes convolution.Zc(t) can be found by in-
verse Laplace transform of (8). Assuming the waves to be
piecewise linear in time and implementing recursive convo-
lution, the update equation for tangential electric fields are

Et(n∆t) = η[n̂×Ht(n∆t)]−
N∑

i=1

Fi(n∆t) (10)

where,

Fi(n∆t) = pi1[n̂×Ht(n∆t)] + pi2[n̂×Ht{(n− 1)∆t}]

+ pi3Fi{(n− 1)∆t}
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Figure 1. Multilevel crossover. (a) 3-D view. SiO2 and conductors are shown in gray and black
respectively. Five SiO2 layers ( εr=3.9) are 1 µm thick and the copper conductor ( σ = 4.1 × 107Sm−1)
strips are of width 1 µm and thickness 1 µm. (b) Crossover without bend. (c) Crossover with bend.
In (b) and (c) numbers within circle indicate port number.

2.3. Near field to far field transform (NFFF) and the
radiated fields

The far field will contain onlŷθ andφ̂ components. For
evaluation of radiated far field, a surface called near field
to far field surface is taken which is inside the computation
domain and encompasses the structure. The six faces of
the near field to far field surface are divided into patches by
the FDTD grid. The tangential electric and magnetic fields
at the center of each patch are found by taking average of
adjacent fields. The scheme for computation of far field
is detailed in [11]. The time domain far fields are Fourier
transformed to obtain frequency domain far fieldsEθ(ω)
andEφ(ω). Integrating these fields the radiated power is
found as

R(ω) =
πr2

η

2π∫

0

π∫

0

[
|Eθ(ω)|2 + |Eφ(ω)|2

]
sin(θ)dθ dφ (11)

where,η=120π is the free space wave impedance.

3. Numerical results

Crossovers, with and without bend, are analyzed in this
paper. The structures are shown in fig. 1. The two-level
crossover has two conductors in each level. The conduc-
tors are of Copper (conductivityσ = 4.1× 107Sm−1) with
width 1 µm and thickness 1µm. The fiveSiO2 layers are

of thickness 1µm andεr=3.9 and covered by two ground
conductors (copper) of thickness 1µm on both top and bot-
tom. This structure is taken from [15]. The line lengths
and separations are shown in fig. 1. The excitation pulse is
trapezoidal with rise-time and fall-timeτr = τf =380 fs and
on-timeτon=380 fs. The TDR are shown in figs. 2 and 3
for crossovers without bend and with bend respectively. A
major portion of the incident power is transmitted through
the excited line and reaches port 2. The propagation delays
for the signal to reach from port 1 to port 2 are 1.2 ps and
0.2 ps respectively for with and without bend case. There is
considerable coupling between the lines in the same level as
well as between lines in different levels. These coupled sig-
nal amplitudes are nearly 10 % of that of the incident pulse.
Due to presence of bend, reflection is observed inV1 for the
crossover with bend structure. This reflection is not present
in the crossover without bend structure. Due to the bend, a
significant crosstalk is observed inV3 after around 2 ps.

The conductor and dielectric losses are shown in fig.
4. For computation of conductor and dielectric losses the
structure taken has only one line in level 2 and no line in
level 1. For computation of dielectric loss the conductivity
of SiO2 is taken to beσd = 1.0 × 10−4Sm−1 while the
conductivity of conducting lines are set to a very high value
(σc = 1.0× 1070Sm−1). For evaluation of conductor loss,
σd = 0 andσc = 4.1 × 107Sm−1. It can be seen that at
all frequencies the conductor loss is higher compared to di-
electric loss. This higher conductor loss is as expected [1].



Figure 2. Voltages at different ports of the
crossover without bend. Excitation is given
at port 1 with a trapezoidal pulse of τr = τf =
τon=380 fs. Vi indicates voltage at port i. Up-
per graph ( V1 to V4) shows voltages in level 2
and the lower graph ( V5 to V8) shows voltages
in level 1.

For comparison purpose, the conductor loss for microstrip
on alumina (εr=9.9 and height h=0.64 mm) with strip width
w = 0.04 mm is plotted in the inset of fig. 4 along with
the result given in [1]. This shows good match between our
result and the result of [1].

Figure 3. Voltages at different ports of the
crossover with bend. Excitation is given at
port 1 with a trapezoidal pulse of τr = τf =
τon=380 fs. Vi indicates voltage at port i. Up-
per graph ( V1 to V4) shows voltages in level 2
and the lower graph ( V5 to V8) shows voltages
in level 1.

For the computation of radiation loss, the crossover with
bend structure is taken. The top conducting ground plane
is removed so that the structure can radiate. The simu-
lation has been performed for zero conductor and dielec-
tric losses. The structure is excited by Gaussian pulse with

Figure 4. Conductor and dielectric losses for
a straight conductor placed on level 2 and no
conductor in level 1. The structure has five
SiO2 layers ( εr=3.9, σd = 1.0 × 10−4Sm−1) of
thickness 1 µm. The conducting strip is of
copper ( σc = 4.1 × 107Sm−1) of width 1 µm
and thickness 1 µm. Inset: Comparison of
conductor loss for a single microstrip line on
alumina ( εr=9.9 and height h=0.64 mm) with
strip width w=0.04 mm with the result of [1].

τr=380 fs. The radiated power as a function of frequency
is plotted in fig. 5. The S-parameters are also computed for
the crossover with bend that have zero conductor and dielec-
tric losses. From1 − ∑ |Sij |2; i = 1,2,. . .,8 and j = 1; the
total loss is found. As there is no conductor and dielectric
losses, this total loss is due to radiation and surface wave
losses. Thus FDTD computed normalized radiated power
when subtracted from the total loss gives surface wave loss.
The total loss and surface wave loss are also shown in fig. 5.
At low frequencies the surface wave loss is higher and both
radiation and surface wave losses increases with frequen-
cies. But beyond 91 GHz radiation loss becomes higher
compared to surface wave loss.

4. Conclusion

Different losses are found in this paper for multilevel
crossover with and without bend. Conductor loss is higher
compared to dielectric loss for these structures. For
crossover with bend there is considerable radiation loss and
this loss increases with frequency. There is also problem
of surface waves. These radiation and surface waves may
give rise to EMI problems. Pulse responses of multilevel
crossovers have been computed directly and thus no Fourier
transform or tedious parameter extraction is required.



Figure 5. Total loss, radiation loss and sur-
face wave loss for the crossover with bend.
Conductor and dielectric losses are assumed
zero.
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