
Single-Pass Redundancy Addition And Removal

 Chih-Wei (Jim) Chang and Malgorzata Marek-Sadowska
 Department of Electrical and Computer Engineering,

University of California, Santa Barbara, CA 93106, USA
Abstract
Redundancy-addition-and-removal is a rewiring technique which for a
given target wire wt finds a redundant alternative wire wa. Addition of
wa makes wt redundant and hence removable without changing the over-
all circuit functionality. Incremental logic restructuring based on this
technique has been used in many applications. However, the search for
valid alternative wires requires trial-and-error redundancy testing of a
potentially large set of candidate wires. In this paper, we study the funda-
mental theory behind this technique and propose a new reasoning
scheme which directly identifies alternative wires without performing
trial-and-error tests. Experimental results show up to 15 times speedup
in comparison to the best techniques in literature.

1. Introduction
Redundancy Addition and Removal (RAR) is a powerful combinational
logic restructuring technique introduced in [5]. First a redundant wire is
added to the circuit. As a result, some previously irredundant wires
become redundant and hence can be removed while the overall function-
ality of the circuit remains unchanged. The underlying engine is based
on logic implication. Many applications of this technique have been
developed in the past, including technology independent literal minimi-
zation [5][1][2], FPGA routing [4], and post-layout timing optimization
[9][7]. The major advantage of the redundancy addition and removal
technique is that only wires are reconnected while logic gates are pre-
served. This property is especially desirable in the deep-submicron age,
when timing estimation obtained during logic synthesis can not be justi-
fied after placement and routing. Timing can be incrementally corrected
through sequence of rewiring steps guided by the accurate physical
information. Rewiring minimally perturbs layout and helps in achieving
timing closure. There are two atomic operations which are essential for
any RAR-type applications and are stated below:
Operation 1: Given a target wire wt to be removed, which redundant
wires, when added, will make wt redundant?
This operation has been used to remove unroutable wires by adding
routable alternatives[4], and in post-layout timing optimization to
remove timing critical wires by adding non-critical alternatives[9].
Operation 2: After the addition of a redundant wire wa, which wires
become redundant and hence removable?
Operation 2 is primarily used in technology-independent literal minimi-
zation[5][1][2][11]. The algorithm searches for redundancy additions
that can remove more than one wire and therefore minimize the literal
count.
All the existing techniques use trial-and-error approaches when perform-
ing Operation 1 and Operation 2. First, a set of candidate wires is identi-
fied by finding the mandatory assignments (MA). Then, on each
candidate wire, a redundancy test based on MA is performed to deter-
mine if it is indeed redundant[5][1][11]. To reduce the number of candi-
dates, filters are proposed [2] to eliminate the impossible candidates.
Redundancy test is performed on the remaining candidates. In [6], a set
of candidate sinks of the added wire is first identified. For each sink,
redundancy test is performed to derive redundant wires that can be

added. In either approach, since the number of candidates can potentially
be very large, the trial-and-error approaches pose a serious efficiency
bottleneck for RAR-based optimization.
In this paper, we propose a single pass technique which can efficiently
identify redundant wires without first building a candidate set. That is,
our new technique identifies redundant wires in one pass without trial-
and-error search. Tremendous speedup is observed using our approach.

2. Preliminaries
The controlling value of a gate g, denoted cv(g), is the logic value which
when applied to any input of g, uniquely determines its output value
regardless of logic values on other inputs. For example, when type(g) =
AND, cv(g) = 0. Gates of XOR type do not have a controlling value
since no single input can determine its output value. Gates of type BUF
or INV have only single input and therefore do not have controlling val-
ues. The non-controlling value of g, denoted as ncv(g), is the opposite
logic value of cv(g).
Iyer et. al. have proposed a novel fault-independent combinational
redundancy identification (FIRE) technique[8]. The algorithm is based
on a simple concept that a fault which requires a conflict as a necessary
condition for its detection is undetectable and hence redundant. Faults
are identified by the uncontrollability and unobservability analysis.
Here, 0(1) denotes the status of a line that is uncontrollable for the value
0(1). A stuck-at-v fault on a wire w is redundant if w cannot assume the
value v (or when w is uncontrollable for the value v). Fig. 1 illustrates the
propagation rules of uncontrollability indicators. Uncontrollability can
propagate forward and backward, as shown by arrows. For example, the
output of a NAND gate is 0 if at least one input is 1, and is 1 if all its
inputs are 0. Similar rules apply to other gate types. Propagation of
uncontrollability may result in some wires becoming unobservable. If a
gate’s input cannot be set to the gate’s non-controlling value, all the
other inputs become unobservable. For example, in Fig. 1, a = 1 implies
that b is unobservable. The unobservability status, denoted ∗ , propagates
from a gate’s output backward to all its inputs. This can be seen as b
being unobservable makes both c and d unobservable as well. More
details can be found in [8].
Let us consider the uncontrollability/unobservability propagation start-
ing from a wire w. When w is set to 0 and propagation is launched, a set
of wires may have value implied. For example, some wire wi may get 1
implied. This means the stuck-at-0 fault (requires a 1 to activate) at wi is
untestable if the value at w cannot assume a 0. By contraposition, this
fault is testable only if w is set to 0. Hence, the propagation of 0 from w
results in a list of faults whose testability requires a logic 0 at w. We
denote this list as F(w=0). Similarly, F(w=1) can be found by setting w
to 1 and repeating the propagation. The intersection of F(w=0) and
F(w=1) gives the set of faults that require w to be both 0 and 1 to be test-
able. This is clearly a conflicting situation and we can immediately con-
clude that faults in the intersection are untestable and hence are
redundant. In [8], it has been shown that identifying redundancy using
this method is much more efficient than Automatic Test Pattern Genera-
tion (ATPG) targeting each fault individually.

3. Alternative Wires Identified Without Search
In this section, we discuss algorithms to implement Operation 1 and 2 in
a non-trial-and-error manner. We start with Operation 2. As explained in
the previous section, the existing RAR-type algorithms use filters to
screen out wires that cannot possibly become redundant as a result of
adding a particular redundant wire. For each of the wires that are not fil-
tered out, ATPG is applied to verify redundancy. For efficiency reasons,
ATPG only tries to justify consistency of the mandatory assignments.
ATPG tests on candidate wires tend to collect repeatedly the same
implications in a local region. In other words, information from individ-
ual ATPG runs are not used properly. This is a typical drawback of trial-
and-error approaches.

3.1 Analysis of Operation 2
First two theorems developed in [3] will be presented as a theoretical
background for our work. We use the D-notation[13]. D value on a wire
represents the case when in a good circuit this wire has a value 1 and in
the faulty circuit it has a value 0. D denotes the opposite case.
Definition 1: Mandatory assignments (MA)[3] of a target stuck-at-fault
are the value assignments on nodes required for a test to exist and must
be satisfied by any test vector. Forced Mandatory Assignment is the
MA which when violated causes the target fault to be untestable. MAs
obtained by setting side inputs of dominators to non-controlling values,
MAs to activate the fault site, and MAs obtained by backward implica-
tion of the previous two MAs are forced.
Theorem 1: (Theorem 11 in [3]) If wa(ns→nd) is an alternative wire of
a wire wt, and nd is an AND (OR) gate, then ns must have a mandatory
assignment 0(1) for the wt stuck-at-fault test.
Theorem 1 can be proved by contradiction. Suppose nd is an AND gate
and ns has no mandatory assignment 0. This implies that there exists a
test vector t for wt stuck-at-fault such that t results in 1 at ns. After add-
ing wa, t remains a test for wt since 1 is the non-controlling value of
AND. This contradicts the assumption that wt is redundant after adding
wa.

Theorem 2: (Theorem 12 in [3]) If wa = ns→nd is an alternative wire for
the wire wt, the AND(OR) gate nd must have a forced mandatory
assignment 1 or D (0 or D).
proof: From Theorem 1 we know that ns has to have a mandatory
assignment. If there is no mandatory assignment on nd, a test for wt
stuck-at-fault before the addition is still a test after the addition. So nd
must have a mandatory assignment. By definition, the mandatory
assignment on nd must be forced as its violation leads to an untestable
target fault.
Our major contribution is based on the observation that wires which
become redundant after adding a redundant wire wa must have a con-
flict of mandatory assignments on wa. This is formally stated in the fol-
lowing theorem:
Theorem 3: Let wt be an irredundant wire in a Boolean network C and
wa (ns→nd) is a wire which when added to C, is redundant. wt becomes

redundant after adding wa if and only if the redundancy test on wt in the
new circuit (C ∪ wa) leads to a conflict at wa.
proof: The “if” part is trivial. The “only if” part is a direct consequence
of Theorem 1 and Theorem 2. Without loss of generality, assume nd is
an AND gate. From Theorem 1 and Theorem 2, the stuck-at-fault test
on wt must result in a mandatory assignment 0 at ns, and either 1 or D at
nd. A conflict obviously occurs when nd is 1 because a 1 at the output of
an AND gate means all its inputs must be 1, which conflicts with ns=0
when wa is added. When nd has a mandatory assignment D, it means nd
is on the fault propagation path and all the side inputs of nd should be
set to the non-controlling value 1. This also causes a conflict with ns=0
when wa is added. In summary, the stuck-at-fault test of wt must create a
conflict on wa. This proves the “only if” part. QED.
Theorem 3 implies that instead of testing each candidate wire to decide
redundancy, we simply start both 0 and 1 propagation on the added
redundancy wa. The intersection of F(wa=0) and F(wa=1) immediately
gives a set of redundant faults caused by the addition. The major differ-
ence between our application and the original FIRE[8] is that the latter
was used as a fault-independent way to identify redundancy: each of the
wires in the netlist was targeted by FIRE to launch the uncontrollability/
unobservability propagation. In our approach, we only launch FIRE
propagation on the added redundancy since by Theorem 3, we know
that all wires which are redundant as a result of adding wa have to have
conflict on wa. This is a drastically different approach as compared to
[11] where the whole circuit is tested for redundancy after each wire
addition, or as compared to [5][2] where the candidate set is built and
filtered.
For example, let us assume that a redundant wire wa(g5→g9) has been
added to the circuit in Fig. 2. Based on Theorem 3, wires that can
become redundant as a result of adding wa will have implication con-
flicts on wa for stuck-at-fault tests. So, we start FIRE by first assigning
0 on wa and g5 is implied with 0. Since there are no more direct implica-
tions, we apply recursive learning[10] on gate g5. First, if g1 is 0, the
following values are implied: {b=0, d=0, g6=0, g2=∗ }. This also implies
the set of faults which are testable only if g1 is 0. In particular, {g1→g4
s-a-1, g6→g7 s-a-1} are in the set of implied faults. Second, if 0 is
assigned to g2 during recursive learning on g5 the implied values are:
{e=0, c=1, g1→g4=∗ }. Similarly, the faults {g1→g4 s-a-1, g6→g7 s-a-
1} are implied. Since {g1→g4 s-a-1, g6→g7 s-a-1} are in the intersec-
tion of both implications, they are testable only if g5 is 0. That is,
F(wa=0) = {g1→g4 s-a-1, g6→g7 s-a-1}. Now we assign 1 on wa. Since
1 is the non-controlling value of g9, the inability of setting wa to 1
means that faults which are only observable through g9 are blocked.
{g1→g4 s-a-1, g6→g7 s-a-1} are among them. Now, it is clear that
{g1→g4 s-a-1, g6→g7 s-a-1} are in the intersection of F(wa=0) and
F(wa=1), and therefore redundant after addition of wa. The same faults
are found by the existing trial-and-error methods.

0
0
0 1 c

d
b

a
1 0

*
*

*

0 1()
0 1()

0 1()

0 1() 1 0()

Fig. 1: Propagation of uncontrollability and unobservability [8]

g1

g5

g4

g3

g2

g6

g9

g8

g7

d

c

e

d

b

c

a

f

b

O1

O2

Fig. 2: Finding redundant wires after the addition of g5→g9.

3.2 The Quality of Results
Let wt be an irredundant wire in a Boolean network C and wa (ns→nd)
is a wire which when added to C, is redundant. Theorem 3 says that wt
is redundant after adding wa if and only if the redundancy test on wt in
the new circuit (C ∪ wa) results in a conflict at wa. We identify those
wt-wires that become redundant by performing FIRE on the added
redundancy wa. We ask if the solution returned by FIRE contains all the
newly created redundancies? In other words, if the stuck-at-fault test on
some wire wt creates a conflict on wa, we want to know if performing
FIRE on wa will always find this wt?

Lemma 1: Let wm and wn be two wires in the circuit. fm denotes the
stuck-at-fault on wm. Suppose that the stuck-at-fault test on wm results
in a conflict on wn. Let Ω be the set of redundant faults found by per-
forming FIRE on wn. Then .

proof: We prove by contradiction. Let fm be a redundant fault not con-
tained in Ω. Let F(wn=0) and F(wn=1) be the sets of faults that are col-
lected by setting wn to 0 and 1 respectively. By definition,

Since by assumption, fm is either not in F(wn=0) or not in
F(wn=1). If fm is not in F(wn=0), it means wn=0 is not a necessary con-
dition for fm to be testable. Similarly, if fm is not in F(wn=1), it means
wn=1 is not a necessary condition for fm to be testable.
Since the stuck-at-fault test of wm has a conflict on wn, the following
relations are true.

 (EQ1)

and (EQ2)

EQ1 and EQ2 contradict the previous conclusions that either wn=0 or
wn=1 is not a necessary condition for fm to be testable. We conclude
that fm has to be contained in Ω. QED.
The quality of results of our proposed approach is formally stated in the
following theorem:
Theorem 4: Let wt be an irredundant wire in the circuit and adding a
redundant wire wa makes wt redundant. Applying FIRE on wa finds all
such wt.
proof: By Theorem 3, the stuck-at-fault test of wt must result in a con-
flict on wa. Lemma 1 guarantees that all redundancies which have con-
flicts on wa are always captured by FIRE performed on wa. We
conclude that the theorem is true. QED.

3.3 Analysis of Operation 1
Recall that Operation 1 finds an alternative wire wa such that adding it
to the circuit makes the target wire wt redundant. The existing state-of-
the-art solution is proposed by Chang et al in [3] using Theorem 1 and
Theorem 2 as necessary conditions to build a candidate set. Then the
members of the candidate set are tested to determine if they are indeed
redundant. Let the original circuit be denoted by C and wt∈ C be the tar-
get wire. We observe that if wa is a redundant alternative wire for wt in
C, then wt is also an alternative wire for wa in the circuit C + wa −wt
(i.e. the circuit where wa is added and wt is removed). That is, wa and wt
are mutually alternative wires. This leads to the following theorem:
Theorem 5: Let wt be an irredundant wire in a Boolean network C, and
wa (ns→nd) is a redundant wire which when added to C makes the tar-
get wire wt redundant. The redundancy test on wa in the new circuit
(C +wa) results in a conflict at wt.

proof: The proof directly follows from the fact that not only wa is an
alternative wire of wt, but wt can also be viewed as an alternative wire
of wa. Based on Theorem 3, if wt is an alternative wire to wa, the redun-
dancy test on wa will result in a conflict at wt. QED.

Theorem 6: wa(ns→nd) is a redundant alternative wire of a wire wt in
the circuit C if and only if

(a) Let nd be an AND(OR) gate. For the wt stuck-at-fault test, ns has
a mandatory assignment 0(1) and nd has a forced mandatory
assignment 1 or D (0 or D).

(b) The stuck-at-fault test on wa leads to a conflict on wt.
proof: The proof is a direct consequence of Theorem 1, Theorem 2, and
Theorem 5.
Theorem 6 gives a basis to implement Operation 1 in a non-trial-and-
error manner. Recall that Theorem 1 and Theorem 2 give a set of wires
which when added, make the target wire wt redundant. These wires
need to be tested to determine which ones among them are indeed
redundant. However, with the help of Theorem 5, we launch FIRE on wt
and directly locate the set of wires which have conflicts on wt. The
intersection of these two sets gives exactly the alternative wires that can
replace wt. Operation 1 can now be performed without any trial-and-
error search.
We formally prove the quality of result using our approach for Opera-
tion 1 in the following theorem:
Theorem 7: Let S be the set of new wires satisfying condition (a) of
Theorem 6. Let T be the set of new wires obtained by the application of
FIRE on wt. Let wa be a redundant alternative wire of wt. Then

.

proof: We prove by contradiction. Assume . That is,

 or . By Theorem 1 and Theorem 2, if wa is an alterna-
tive wire, wa must be contained in S. By Theorem 4, wa must be con-
tained in T. These contradict the assumption . We conclude

that . QED.

4. Complexity Analysis
After performing a stuck-at-fault test on the target wire wt, a set of man-
datory assignments are derived. Let M denotes the time complexity of
performing the stuck-at-fault test. The mandatory assignments for the
test include fault activation value assignment on the source of the target
wire and non-controlling value assignments on the side inputs of each
dominator. Using only mandatory assignments to derive the test, M is
linear in the number of dominators of the target fault. We observe that
even though the number of dominators could potentially increase as the
overall circuit size increases, M is relatively independent of the circuit
size since a linear increase in circuit size does not necessary linearly
increase the number of dominators. Because recursive learning can be
used for the test, M is also a function of the user specified recursive
learning depth. In [4], based on Theorem 1 and Theorem 2, wires which
satisfy the necessary conditions are considered to be possible candidate
wires to be added to the circuit. Assume K such candidates exist and
each of them needs to be tested to determine if it is indeed redundant.

fm Ω∈

Ω F wn 0=() F wn 1=()∩=

fm Ω∉

wm is testable wn 1=⇒

wm is testable wn 0=⇒

Fig. 3: Finding alternative wire for wt(g1→g6)

a
b
c

x

y

g1

g2 g4

g5
g6

xgnew

wa S T∩∈

wa S T∩∉

wa S∉ wa T∉

wa S T∩∉

wa S T∩∈

The time complexity of finding alternative wires for wt is therefore
M+KM=(K+1)M. This is the time complexity of the approach proposed
in [2].
A different approach described by Entrena et al.[6] is based on the prop-
erty that only the gates with forced mandatory assignments can possibly
be sinks of added wires. Given a gate g, the effort to find all possible
wires that are redundant when added to g is the same as that of one
stuck-at-fault test. This effort is denoted by M. Assume there are T
gates that have forced mandatory assignments. The overall time com-
plexity is then M+TM=(T+1)M.
In our proposed approach, after the initial stuck-at-fault test on wt, we
only need two implications: 0 and 1 from wt. We use M’ to denote the
time effort of one such implication. Our implication involves three val-
ues: 0, 1, and * (unobservability) which potentially may be more
expensive than M. Overall, the new approach has complexity M+2M’.
In practice M’ is very close to M.
The complexity of the two previously-proposed approaches involve
variables K or T. These two parameters are difficult to determine and
vary from one target wire to the other. In our approach, just three impli-
cations, and always three, are enough to determine all possible alterna-
tive wires.

5. Experimental Results
Our prototype tool RAMFIRE (Redundancy Addition and reMoval
using Fault-Independent Redundancy idEntification) has been imple-
mented in C++. To measure the benefits of using the proposed one-pass
alternative wire identification scheme, we have performed experiments
on some publicly available benchmarks from LGSynth93[12]. Espe-
cially, we were interested in Operation 1, as it is the foundation of many
applications in timing optimization. We did not focus on any specific
application, but rather on the fundamental building block of all applica-
tions. We performed the following experiment: Each wire in the circuit
was targeted once to find its redundant alternatives and the runtime was
record. As a comparison, we also implemented the two techniques men-
tioned in the previous section. Table 1 shows the result. Column 1 lists
the names of benchmark circuits. Column 2 lists the total number of
wires tested for alternatives in each benchmark. Column 3 shows the
run time for the approach proposed in [6] with recursive learning depth
set to 1. Column 5 shows the run time using the necessary conditions to
build a candidate set followed by redundancy test[2]. The runtime was
recorded without using recursive learning because stuck-at-fault test has
the advantage of requiring less learning. Column 7 shows the runtime of
our approach with recursive learning depth set to 1. This setting leads to
the same set of alternative wires found by all three techniques. Column
4, 6, 8 show the ratio normalized with respect to our approach. Runtime
is recorded in seconds on an AMD Athlon 650MHz processor.
The results show that our technique achieves a significant runtime
improvement over the other two techniques. Compared with [6], we

obtain speedup ranging from 6.3 to 15 times. Compared with [2],
speedup is as high as 37.7 times. On average, RAMFIRE outperforms
these two approaches in terms of speedup by more than an order of
magnitude. Any rewiring application based on RAMFIRE would
greatly benefit from this speedup.

6. Conclusion
In this paper, we propose RAMFIRE, a general reasoning scheme for
redundancy addition and removal. We studied two fundamental prob-
lems: 1) Given a target wire, which are the redundant alternatives that
can replace the target wire? 2) When a redundant wire is added, which
are the previously irredundant wires that become redundant? Efficient
one-pass algorithms are proposed to solve these problems. Compared
with existing techniques, no time-consuming trial-and-error searches
are needed. This provides tremendous runtime savings, as more than 10
times speedup is observed on average over a wide range of benchmarks
with no degradation in quality of results. Theoretical complexity mea-
sure of the proposed method is also studied and compared to complexi-
ties of the two previous approaches.

Acknowledgment

This work is sponsored by Semiconductor Research Corporation under
grant 98-DJ-619. We would like to thank Dr. Ric Chung-Yang Huang of
Verplex Systems for providing us the RAMBAS framework[7].

References
[1] S.-C. Chang, M. Marek-Sadowska, and K.-T. Cheng, “Perturb and

Simplify: Multi-level Boolean Network Optimizer”, IEEE Trans. on
Computer-Aided Design, vol. 15, pp. 1494-1504, Dec. 1996.

[2] S.-C. Chang, L.P.P.P. Van Ginneken, and M. Marek-Sadowska,
“Circuit Optimization by Rewiring”, IEEE Transactions on Com-
puters, vol.48, p.962-970, Sep. 1999.

[3] S.-C. Chang, L.P.P.P. Van Ginneken, and M. Marek-Sadowska,
“Fast Boolean Optimization by Rewiring”, Proc. of Intl. Conf. on
Computer-Aided Design, Nov. 1996, pp. 262-269

[4] S. -C. Chang, K.-T. Cheng, N. S. Woo, and M. Marek-Sadowska,
“Post-layout Logic Restructuring Using Alternative Wires”, IEEE
Trans. on Computer-Aided Design, vol. 6, pp. 587-596, June 1997

[5] L. A. Entrena and K. -T. Cheng, “Combinational and Sequential
Logic Optimization by Redundancy Addition and Removal”, IEEE
Trans. on Computer-Aided Design, pp. 909-916, July 1995

[6] L. A. Entrena, J. A. Espejo, E. Olias, and J. Uceda, “Timing Optimi-
zation by an Improved Redundancy Addition and Removal Tech-
nique”, in Proc. of EURO-DAC, 1996, pp. 342-347.

[7] R. C.-Y. Huang, Y. Wang, and K.-T. Cheng, “Libra - A Library-
Independent Framework for Post-Layout Performance Optimiza-
tion”, in Proc. of Intl. Symposium on Physical Design, April 1998,
pp. 135-140.

[8] M. A. Iyer and M. Abramovici, “FIRE: A Fault-Independent Com-
binational Redundancy Identification Algorithm”, IEEE Trans. on
VLSI, vol. 4, no. 2, pp. 295-301, June. 1996.

[9] Y. -M. Jiang, A. Krstic, K. -T. Cheng, and M. Marek-Sadowska,
“Post-Layout Logic Restructuring for Performance Optimization”,
in Proc. of Design Automation Conf., 1997, pp. 662-665,

[10]W. Kunz.and D. Pradhan, “Recursive Learning: A New Implication
Technique for Efficient Solutions to CAD Problems: Test, Verifica-
tion and Optimization”, IEEE Trans. on Computer-Aided Design,
pp 1143-1158, Sep. 1994.

[11]W. Kunz, D. Stoffel, and P. R. Menon, “Logic Optimization and
Equivalence Checking by Implication Analysis”, IEEE Trans. on
Computer-Aided Design, pp. 266-281, Mar. 1997

[12]K. McElvain, “LGSynth93 Benchmark Set: Version 4.0”, http://
zodiac.cbl.ncsu.edu/CBL_Docs/lgs93.html

[13]J. P. Roth, “Diagnosis of automata failures: A calculus and a
method,” in IBM J. Res. Develop., vol 10, pp. 278-291, July 1966.

TABLE 1. Experimental Results
#wire
tested

CPU[6] ratio CPU[2] ratio RAM-
FIRE
(Ours)

ratio

C432 483 47.4 7.4 57.8 9.0 6.4 1.0
C499 936 151.1 11.8 173.4 13.5 12.8 1.0
C880 792 42.4 7.4 31.1 5.5 5.7 1.0

C1355 1044 289.8 14.7 330.6 16.8 19.7 1.0
C1908 990 461.6 14.1 874.6 26.7 32.8 1.0
C2670 1589 342.8 15.0 864.2 37.7 22.9 1.0
C5315 3846 722.4 6.3 575.0 5.1 113.8 1.0
C6288 5451 2736.6 13.6 1944.8 9.7 200.6 1.0
C7552 5042 4135.7 12.8 3674.5 11.4 323.1 1.0
average 11.5 15.0 1.0

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

