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Abstract: We proposeaneffective algorithmfor power optimiza-
tion in behavioral synthesis.In previouswork, it hasbeenshown
that several hardwareallocation/bindingproblemsfor power opti-
mizationcanbeformulatedasnetworkflow problemsandbesolved
optimally. However, in theseformulations,a fixed schedulewas
assumed.In suchcontext, onekey problemis: given an optimal
network flow solutionto ahardwareallocation/bindingproblemfor
a schedule,how to generatea new optimal network flow solution
rapidly for a localchangeof theschedule.To thisend,from acom-
prehensive analysisof the relationbetweennetwork structureand
flow computation,we devise a two-stepprocedure:(Step1) max-
flow computationstepwhich finds a valid (maximum)flow solu-
tion while retainingtheprevious(maximumflow of minimumcost)
solutionasmuchaspossible;(Step2) min-costcomputationstep
which incrementallyrefinesthe flow solutionobtainedin Step1,
using the conceptof finding a negative costcycle in the residual
graphfor the flow. The proposedalgorithmcanbe appliedeffec-
tively to several importanthigh-level datapathoptimizationprob-
lems(e.g.,allocations/bindingsof functionalunits,registers,buses,
andmemoryports)whenwe have the freedomto choosea sched-
ule that will minimize power consumption.Experimentalresults
(for bussynthesis)on benchmarkproblemsshow thatour designs
are5.2%morepower-efficient over thebestknown results,which
is dueto (a)exploitationof theeffectof schedulingand(b) optimal
bindingfor everyscheduleinstance. Furthermore,our algorithmis
about2.8 timesfasterin run time over thefull network flow based
(optimal) bus synthesisalgorithm, which is due to (c) our novel
(two-step)mechanismwhich utilizethepreviousflowsolutionto re-
duceredundantflow computations.

1 Intr oduction

With theadventof portableandhigh-densitymicro-electronicde-
vices suchas laptop personalcomputersand wirelesscommuni-
cationequipment,power dissipationof very largescaleintegrated
(VLSI) circuits hasbecomea critical concern.Batterylife, pack-
aging/coolingcosts,andreliability areall issuesthat make power
dissipationa more critical designconcernthan performanceand
areain many applications.Thus,power modeling,estimation,and
optimizationmustbetargetedat all levelsof thedesignabstraction
from systemandbehavioral down to gateandlayout levels. A full
survey on therecentresearchwork canbefound in [1, 2, 3]. This

paperbelongsto theareaof power optimizationin behavioral syn-
thesis.Behavioral synthesisprovidesautomaticwaysof translating
the behavioral specificationof a digital system,undera given set
of designconstraints,into a functionalequivalentregister-transfer
(RT) level description.Themajorstepsin behavioral synthesisare
operationscheduling,hardwareallocation,andbinding.

Thereis anextensivebodyof work on hardwareallocationand
bindingfor low powercombinedwith scheduling.Musoll andCor-
tadella[4] havemodifiedthecostfunctionusedin traditionalschedul-
ing algorithmsto favor theschedulesin which two operationswith
the sameoperandsare executedconsecutively in the samefunc-
tional unit, therebyreducingtheswitchingactivity at the inputsof
thefunctionalunit. Monteriro ��������� [5] attemptedto scheduleop-
erationsto enabledynamicpower managementby determiningthe
computationalunits that are strictly requiredfor a specificcom-
putation. RaghunathanandJha[6] usedan iterative improvement
techniquefor schedulingandmoduleallocationbasedon switched
capacitancematrices. Dasguptaand Karri [7, 8] proposedalgo-
rithmsfor schedulingandbindingto minimizedatabustransitions.
Thealgorithmwasbasedon a simulatedannealingprocess.Hong
andKim [9] proposeda busoptimizationalgorithmfor low-power
which exploits theeffect of scheduling.The algorithmwasbased
onarepeatedapplicationof thenetwork flow methodto thesection
of network thatcorrespondsto a segmentof clock steps.However,
it doesnot guaranteeoptimality for eachof the reschedules,and
further, the segmentmay cover the entirenetwork. The work in
[4, 5, 6, 7, 8, 9] emphasizedtheobservationthatschedulingheav-
ily influencesthe resultsof power optimizationat the allocation
andbindingstage.Thisstronglysuggeststhatthetasksof schedul-
ing, allocation,andbinding shouldbe performedin an integrated
fashionto fully exploit the effect of schedulingon allocationand
binding.

On theotherhand,thereis a numberof well known algorithms
for hardwareallocation/bindingfor low power whena scheduleis
given.ChangandPedram[10] proposedatechniquefor theregister
allocationandbindingfor minimizingswitchingactivity. They for-
mulatedtheproblemasa minimumcostcliquecoveringproblem,
andsolvedit optimallyusingamax-costflow algorithm.They [11]
alsoproposeda bindingtechniquefor minimizing switchingactiv-
ity on functionalunits. The problemis formulatedasa max-cost
multi-commodityflow problemandcanbesolvedoptimally. Since
themulti-commodityflow problemis NP-hard,they restrictedthe
domain of the functional unit binding problem to functionally
pipelineddesignswith short latency. Although the approachesin
[10, 11] provided optimal solution to a numberof specific low-
power problems,they do not addressthe problemof finding ef-
ficiently an optimal solutionwith respectto changesof schedule
instance. This motivatesour developmentof a new optimization
techniquebasedon network flow method.However, unlike theap-
proachin [9], in which thepathaugmentationalgorithmis applied



exclusively in every iterationof theoptimizationprocess(alsodoes
not guaranteeoptimality of binding), our proposedapproachre-
ducestherun timesignificantlyby linking (andexploiting) thethe-
oreticalcomputationstepsof the network flow methodto a well-
designedupdatingof the current(optimal) flow solutionfor local
changesin theschedule.	

Our algorithmiteratively improvesthe previous binding solu-
tion by reschedulingasthosein [7, 8, 9]. Onemainissueis how we
cangeneratea bindingsolutionfor a new schedulerapidly andyet
accurately. We accomplishthis by devising a comprehensive two-
stepprocedureof network flow computation: (Step1) max-flow
computationwhich finds a valid (maximum)flow solution while
retainingtheflow obtainedin thepreviousiterationasmuchaspos-
sible,and(Step2) min-costcomputationwhich incrementallyup-
datesthe flow so that it reachesto a minimumcostby employing
theconceptof findinganegativecostcycle in theresidualgraphfor
theflow. Experimentalresultsindicatetheproposedalgorithmpro-
ducesexcellentresultsin termsof reducingtotal switchingactivity
on the hardware,andis fasterthanthe approachesin [8, 9]. Our
techniquecanbeappliedto abroadclassof high-level optimization
problemsincluding allocations/bindingsof functional units [11],
registers[10], buses[7, 8, 9] andmemoryports



for low power.

In this paper, we restrict our presentationto the problemof bus
bindingfor low power, andit shouldbecomeevidentthatour tech-
nique is applicableto the otherhigh-level optimizationproblems
with slightmodifications.

Therearemany researcheswhich have addressedthe problem
of minimizingtheswitchingactivity onbuses.PandaandDutt [12]
tried to reducetransitionson theoff-chip addressbusesby analyz-
ing theaccesspatternsof behavioral arraysin thespecificationand
organizingthearraysin memory. Variousencodingschemes(e.g.,
[13, 14]) have beenproposedto decreasethenumberof transitions
at I/O (off-chip) bus transitions.In addition,asmentionedbefore,
[7, 8,9] proposedalgorithmsfor bindingintegratedwith scheduling
to minimizeon-chipdatabustransitions.

As emphasizedin the previous paragraphsthe key featuresof
proposedapproachare:(a) In prior work, busbindingis performed
at a laterstageof datapathsynthesis,mainlyafterscheduling.This
resultedin a loss in flexibility in optimizing bus switchingactiv-
ity. Instead,we performsschedulingand bus binding simultane-
ouslysothattheeffectsof schedulingon busactivity areexploited
morefully andeffectively; (b) Contraryto theprevious integrated
schedulingand binding approachesin which estimationof the
amountof switchingactivity onbusesis calculatedbasedonsimple
heuristics,our algorithmcalculatesthebusswitching activity opti-
mallyat everyiteration. (c) Finally, run time is animportantfactor
to be consideredin most iterative improvementbasedalgorithms.
We carefullydesignthe flow computationstepsso that we gener-
ateanoptimalflow of thecurrentschedulefrom theflow solution
for thepreviousschedulewhile eliminatingasmanyredundantflow
computationsaspossible.

2 Switching Minimization for Low Power

2.1 ProblemDefinition

Thetotalpowerdissipatedonabusis proportionalto theswitching
activity on the bus [15]. Further, switchingactivity is an indica-
tor of signaltransitionson the bit lines of the bus. Consequently,
minimizing thenumberof signaltransitionson a bus is equivalent
to reducingthetotal power dissipated.Thesignalswitchingactiv-
ity on eachbit line of a buschangesaccordingto not only thedata�

We meanthe optimality in termsof the ‘average’switchingactivity, andwhen
optimizing the datatransitionsat the boundaryof the cyclic executionof dataflow
graphis not considered[10, 11,9].�

Datavaluesareaccessedthroughthe portsof memories,anddependingon the
assignmentof datavaluesto portsateachclockstep,thepowerconsumedat theports
(andtheconnectionsto theports)will bechanged.

transferson the bus but alsothe sequenceof datatransfers.Note
thata scheduledeterminesthesetof datatransfersto beexecuted
in eachclock cycle. However, it doesnot specifythebuson which
adatatransferwill takeplace.Busbindingassignsdatatransfersto
busesfor eachclockstep.

We usea probabilisticmodelto measuretheswitchingactivity
on a bussincetheexactpatternsof input datastreamsareusually
unknown in mostcases.Let ������������ be the averagenumberof
bit transitions(i.e., Hammingdistance)whendatatransfers� and� aresuccessively implementedon a bus. Thevalueof ������������
for every pair of datatransfersin the(unscheduled)CDFGcanbe
obtainedby repeatedsimulationof the CDFG. For typical values
of primaryinput signalsin theCDFG,thesignalvaluesof all data
transferscanbecalculatedby simulation.Thevalueof ������������
is setto be the averageof the Hammingdistancesbetween� and� . Figure1(a)showsanunscheduledCDFGwherevariables��� and� � (=� � � � �  ) arecyclic variables,andaredenoted� and

�
(=
� � �  ) in

the next iterationinstanceof the loop, respectively. Note that the
bit-width of eachvariableis 8 except

�
thebit-width of which is 16.� � representstheupper8-bit of

�
and

�  thelower 8-bit of
�
. Thus,

datatransfer
�

canbeimplementedwith two 8-bit busesby treating� � and
�  as independentdata. Table1 shows the �����!"� values

for thedatatransfersin Figure1(a). For example, ���� � � � � � =3.9
indicatesthat thereis an averageof 3.9 bit lines out of 8 possible
toggles.
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Figure1: (a)A CDFGwith non-uniformdatasize.(b)-(d)Possiblesched-
ulesfor (a).

# $&% $&' ( ) * + , #.- $/- % $/- '# 0.0 3.9 4.0 3.9 3.9 3.9 2.8 3.1 4.2 1.4 2.5$ % 3.9 0.0 5.7 4.1 3.7 3.9 2.9 4.0 3.1 1.7 3.1$ ' 3.9 2.2 0.0 4.1 3.7 3.6 2.9 1.8 3.9 2.9 3.1( 4.0 5.7 0.7 0.0 3.1 2.9 2.2 5.4 2.3 3.1 4.1) 3.9 4.1 2.2 0.9 0.0 3.9 3.3 1.8 2.8 3.1 2.6* 3.9 3.7 2.9 0.8 6.2 0.0 3.8 3.2 0.2 2.8 4.0+ 3.9 3.9 2.2 3.3 3.8 2.0 0.0 3.1 3.0 0.9 3.9, 3.9 3.9 2.2 3.3 3.8 1.1 7.1 0.0 2.1 1.5 3.9# - 2.8 5.7 3.1 2.8 3.1 3.1 4.0 0.5 0.0 0.1 4.0$/- % 3.1 3.0 3.8 3.1 2.8 3.0 3.2 2.0 0.9 0.0 2.6$ - ' 2.5 3.1 4.1 2.6 4.0 3.9 4.0 2.6 5.2 2.5 0.0

Table1: 0�1�2�3"4 valuesfor theCDFGin Figure1(a).

Let ��657��������� denotetheexpectednumberof bit lineson bus8
that togglewhendatatransfers� and � aresuccessively imple-

mentedon the bus, and �� 5 be the sumof all �� 5 ��!9� for ev-
ery pair of consecutive datatransferson bus

8
. Then,theproblem

we wantto solve is to scheduletheoperations(thus,scheduledata



transfers)andbindthedatatransfersto busesto minimizethequan-
tity

0�1;:&<=:�> ?
5 <�@BA&CED=FGD

0�1 5 (1)

lb

bh

bl

a

c c

f

e

bh bh

a fe

bh bh bh

c c

g

d

d

g

(b) Bindings for schedule−B.

bind−B1: SW =21.1 bind−A4: SW =18.4 
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(c) Bindings for schedule−C.

bind−C1: SW =18.2 bind−C2: SW =23.2 
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Figure 2: Possiblebindings for the data transfersscheduledby (a)
Schedule-A(b) Schedule-Band(c) Schedule-Cin Figure1.

Figures1(b)-(d)show threepossibleschedulesof theCDFGin
Figure1(a)whentheglobaltiming is 3 clock stepsandtwo adders
areavailable.Weassumethateachoperationtakesoneclocktime.H
For example,accordingto schedule-Ain Figures1(b)datatransfers� ,
� � , I and J will beperformedin clock step1,

� � and � in clock
step2, and

� � , �  , I , K and L in clock step3.M Fromtheschedule,
we know thatat leastfive (8-bit) busesareneededfor all thedata
transfers.

For agivenscheduleinstance,therewill bemany waysof bind-
ing the datatransfersto buses.Figure2(a), (b) and(c) show two
possiblebindings for the data transfersin each of schedule-A,
schedule-Bandschedule-Cin Figure1. For example,according
to binding-A1, bus 1 carries� in clock step1, � in clock step2,�  in clock step3, andthen � again in clock step1 of the next it-
erationandsoon. Consequently, N� 	 = ���� � � � � + N��� � � �  �
+ ���� �  � ��� � = 3.9 + 2.9 + 3.9 = 10.7, N� 
 = N��� � � � � � � +���� � � � � � � + ���� � � � � � � � = 0 + 0 + 1.7= 1.7, ���H = �����IO�=IP�
= 0, ���M = N����J��=LQ� + �����LR�=JS� = 1.8 + 3.8 = 5.6, and ���T
= �����KU�VKQ� = 0. Thus, ��;:&<=: = 10.7+ 1.7 + 0 + 5.6+ 0 = 18.0.
Clearly, schedulingsignificantlyinfluencesthe resultsof binding,
and thus the switchingactivity on the buses(i.e., the quantityof��;:&<.: in Eq.(1)). Themicroarchitecturecorrespondingtoschedule-
A andbinding-A1is shown in Figure3.

For a given schedulewe can determinethe optimal value of�� :&<.: , called N� <�WX::Y<.: , by anexhaustive searchof all possiblebus
bindings.Thevaluesof N� <�WX::Y<.: areshown in Figures1(b)-(d).The
bigdifferencesbetweenthe N� <�WX::Y<.: valuesof theschedulesstrongly
suggestthatbusoptimizationfor low power mustbetakeninto ac-
countduringscheduling.

2.2 The Network Flow Formulation: An Overview

For a given a schedule,we candeterminean optimal binding for
datatransfersby formulatingit asaproblemof findingamaximumZ

Extensionof our techniqueto handlemulticycling and chainedoperationsis
straightforward.[

For simplicity, weconsiderthebindingof thedatatransfersthatare‘inputs’ to the
functionalunits. However, our algorithmcansupportany styleof busbasedarchitec-
turesandclockschemes,by whichthedatatransfersto beperformedateachclockstep
aredetermined.
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Figure3: Themicroarchitecturecorrespondingto schedule-Aandbinding-
A1.

flow of minimumcostin a network. We follow the terminologies
anddefinitionsin [9].

Let \^]_��`a� denotethe setof datatransfersto be implemented
in clock step̀ . A network bdce��fg��hi� is a directedgraphwith a
setof nodesf anda setof arcs h . We show first how to model
intra transitionsof datatransfers. An Intra-transitionrefersto two
successiveexecutionsof datatransfersin thesameiterationinstance
of theCDFG.Otherwise,theexecutionis calledaninter-transition.
For a total of j datatransfers,f has kXj nodes,two for eachdata
transfer, and two additionalnodes l and m where l is called the
sourceand m calledthesink of thenetwork. Thenodesotherthan
the sourceandsink arearrangedvertically accordingto the clock
stepsin which thecorrespondingdatatransfersareto beexecuted.
Thenetwork in Figure4(a)shows thestructureof b (excluding l
andm ) for theintra-transitionsof schedule-Ain Figure1(b).

To take into accountinter-transitionsof datatransfers,thenet-
work in Figure4(a)is extendedto includeanadditionalcolumnof
nodeson theleft asshown in Figure4(b). Thedatatransferscorre-
spondingto thenodesin this columnarethesameasthosecorre-
spondingto thenodesin the rightmostcolumn. This accountsfor
the datatransitionsbetweenthe executionof datatransfersin the
lastclockstepin thepreviousiterationof CDFGandtheexecution
of datatransfersin thefirst clockstepin thecurrentiteration.

The two nodescorrespondingto eachdatatransferin a clock
stepare groupedin a dottedcircle as shown in Figure 4, where
theconnectingarc (with capacity1) ensuresthatat mostonedata
transferis boundto a busat thatclock step.Sourcel is connected
to every nodein thefirst column,andsink m is to every nodein the
lastcolumn. Thearcsconnectingnodesin differentcolumnsin b
areclassifiedas:

1. cstepconsecutivearcs: Thesearethesolidarcsin Figure4. They
arethearcsthatconnectthenodesin a columnof b to thenodes
in thenext column. Thearcfrom node� in column ` to node� in
columǹ�npo representsthechangeof signalvaluesona buswhen
the datatransferscorrespondingto � and � areperformedon the
bussuccessively.

2. cstepnonconsecutivearcs: Thesearethedottedarcsin Figure4.
Thetotal numberof busesto beusedis boundedby themaximum
numberof datatransfersto be performedin the sameclock step.
Thismeansthatat theclockstep(s)whenthemaximumdatatrans-
fers areexecuted,all busesshall be usedwhile at the otherclock
steps,someof the busesshall be idle. The dottedarcsin the net-
work ensuresuchabusutilization[11]. For example,in Figure4(b)
flow arc �rq �  indicatesthata bus implementsdatatransfer� at
clockstep1, idlesat clockstep2 and

�  atclockstep3.

The capacityis 1 for eacharc in h . We mustassigna costto
eacharcsothatasolutionof maximumflow of minimumcostin b
mustsatisfy:(condition1) Theflow shouldcoverall thenodesin b ;
(condition2) Thesumof �����!9� ’sfor thearcsin theflow isminimal
amongall possibleflow solutionswhile satisfyingcondition1.

Thearccostsarecomputedaccordingto thecostformulationin
[9].
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Figure4: Thenetwork flow modelfor bindingdatatransfersscheduledby schedule-Ain Figure1(b).

Note that it is not alwaystrue that ������������ + N�����s��tQ�vu���������tR� becauseN����!9� is an‘average’numberof bit transitions
betweenthetwo datatransfers.Our formulationfor thecostof an
arcis asfollows: Thecostof eacharcincidentto l and m is 0. Let���wyxaz and ��{w}|�~ be the maximumandminimum amongthe
valuesof all �����!"� s, respectively. Cost ���������S� to beassignedto
thearcfrom anodeof datatransfer� atcolumn� o to anodeof data
transfer� atcolumn� k is definedto be� 2��S�Y��4�>�0S1�2�������4��;29�v3.0�1 wyxXz ��0S1 w}|�~ 4 (2)

The term k�!���{w�xaz^�����w�|/~ ensuresthat a maximumflow
of minimumcostsolutionin b will cover every node(i.e., to sat-
isfy condition 1). In other words, for two different flows, � q
� q t and � q t , our network flow formulation will select� q � q t sinceits flow cost is always lessthan that of the
other. Note that �����������i�d� for every arc, but the procedureof
network flow computationworkscorrectlyasit doeswhenall the
arc costsarenon-negative.T This constraintis proven by simply
showing theinequalityrelation ���������S�En������s��tQ���{��������tQ� ; Sup-
posedatatransfers� , � and t arethenodesat columns� o , � k and�X� (� o�� � k�� �X� ) in b , respectively. Then, ����������� + �����s��tQ�
- ��������tQ� = N�������=�S� - �Gk�!��� wyxXz ���� w�|�~ � + ��������=tQ� -���������tR� = -( ���wyxaz��{N�������=�S� ) - ( ���wyxXz���������s��tR� ) -
( ���������tQ������{w}|�~ ) � 0. Further, from thefact thatevery fea-
siblemaximumflow of minimumcostsolutionwhich satisfiesthe
inequality relation hasthe sametotal numberof transitionflows
(i.e., arcs),a maximumflow of minimumtotal costof Eq. (2) also
becomesa maximumflow of minimum �� :&<=: of Eq. (1) (which
satisfiescondition2).

3 Integrated Scheduling/BindingAlgorithm

3.1 An Overview

Our algorithmfor bus binding is an iterative one. Given an ini-
tial scheduleand binding, we improve the binding iteratively by
reschedulingandrebinding.An optimalbindingfor eachschedule
is determined.Here,the key issueis how we quickly producean
optimalbinding,which is thesubjectof Sec.3.2.

For givenglobal timing andresourceconstraint,our algorithm
beginswith aninitial schedulewhich is obtainedby usingany con-
ventionalschedulingalgorithm.An optimalbindingfor thesched-
ule is then derived by constructinga network b in the way de-
scribedin Sec.2.2, andapplyingthe minimumcostaugmentation
method[16] to optimizethevalueof N�;:Y<.: in Eq. (1). For every
feasiblelocal move of operationsfor reschedule,insteadof anex-
clusiveuseof theminimumcostaugmentationmethodto find anew
(optimal)binding,we fully exploit the (optimal) flow solutionfor
thepreviousscheduleto minimizeredundantflow computations.�

For theeaseof presentation,we usenon-negative arccostsin theexamplesof the
paper.

Flow LP: Net-Flow basedBusSynthesisfor Low-Power
(CDFG, csteplimit, resource limit) �� SimulatetheCDFGandconstruct�Q�p�&  ¡ table;� Produceaninitial schedulefor theCDFG

by usingany known schedulingalgorithm;� Obtainbusbindingfor theinitial schedule
by usingthemin-costaugmentationmethod,
andresolveflow conflictsif exist;� Set ¢N£B�Q¤U¥N¦�§ to ���©¨�ª¬««Y¨�« of theinitial binding;� Set �®X¯�° $&*=± « to theinitial scheduleandbinding;

while ( B®V¯²° $&*=± « is updated)� Set ¢N£B�Q¤ (&³�´.´�* § « = ¢�£B�Q¤�¥�¦/§ ;� Set �®V¯²° (�³�´.´G* § « = �®V¯²° $&*.± « ;while (thereis a ‘reschedulable’operation)�
foreach‘reschedulable’operation(to cstepµ )� Rescheduleandupdatenetwork ¶ ;� Rectify theflow in ¶ minimally to bea feasiblesolution;� Refinetheflows in ¶ to beamin-costflow;� Resolveflow conflictsif exist;� Compute�Q�©¨�ª�««�¨=« for thescheduleandundotheschedule;
endforeach� Rescheduletheoperationwith thesmallest�Q��¨�ª¬««�¨=« ;
if (current�Q� ¨�ª�««�¨=«�· ¢N£B�Q¤�¥�¦�§ ) �� Update¢N£B�Q¤ ¥�¦�§ to current�Q� ¨�ª�««�¨=« ,

andupdate�®X¯�° $&*=± « accordingly;
endif� Lock theoperationat thecstep;

endwhile� Unlockall theoperations;
endwhile� Return(�®V¯²° $&*.± « and ¢N£B�Q¤ ¥�¦�§ );

Figure5: Theproposedalgorithmfor busbindingintegratedwith schedul-
ing.

The overall flow of our algorithmis summarizedin Figure5.
First, the tableof �����!"� for every orderedpair of datatransfers
is constructedby simulation. TheCDFGis thenscheduledby us-
ing any conventionalschedulingalgorithm. From the scheduled
CDFG network b is constructedasmentionedin Sec.2.2. Then,
we produceaninitial (optimal)bindingusingthenetwork. We re-
fine theinitial bindingiteratively in theouterwhile-loop. An oper-
ationwhichwasscheduledataclockstepis called“reschedulable”
to anotherclockstep,say̧ , if schedulingtheoperationat ¸ doesnot
violatethetiming andresourceconstraint.For every reschedulable
operation,its N� <�WX::Y<.: is computed.Amongtheoperations,theop-
erationwith the leastvalueof �� <�WV::&<=: is selected,andrescheduled
to thecorrespondingclockstep.Oncetheoperationis rescheduled,
it will be lockedat thatclock stepduring theremainingexecution
of the innerwhile-loop. The outerwhile-loopcontinuesuntil it is
not ableto generatea scheduleandbus binding whose �� <�WX::&<.: is
lessthantheminimal �� <�WX::&<.: foundsofarduringthepreviousiter-
ations.



3.2 Techniquefor Incr ementalNetwork Flow Op-
timization

Thecoreof ouralgorithmis to calculatetheoptimalvalueof N� :Y<.:
efficiently whenan operationis rescheduledfrom clock step ` to¸ . Clearly, thereschedulingchangesthedatatransfersthatareex-
ecutedin clock steps̀ and ¸ which leadsto a restructureof the
network b . Consequently, somepathflows of the previous solu-
tion might becomeinvalid. To maintainvalid flows, it maybe re-
quiredto applytheminimumcostaugmentationalgorithmusedin
the initial binding again to the entire restructurednetwork. This
is definitely very expensive whenmany timesof reschedulingare
performed. However, from the fact that the schedulechangeslo-
cally, andanoptimalflow for thepreviousschedulewasknown, it
is naturalto askwhetherthereis a way to find anoptimalflow for
the currentschedulerapidly by exploiting the previous flow solu-
tion. To dothis,wedeviseacomprehensivenetwork flow computa-
tion procedurewhich is composedof two steps:(Step1) max-flow
computationstepwhichfindsamaximum(i.e.,valid) flow solution
while retainingtheprevioussolutionof themaximumflow of min-
imumcostasmuchaspossible;(Step2) min-costcomputationstep
which incrementallyupdatesthe flows obtainedin Step1 by us-
ing theconcept[16] of finding a negative costcycle in theresidual
graphfor theflow. Sincetheupdatedflow in Step1 is closeto the
flow of the minimum cost for the previous schedule,the effort in
Step2 canbesignificantlysavedby eliminatinga largeportionof
redundantflow computationsdonefor thepreviousschedules.We
now describetheprocedureof two-stepflow computation.

Step 1 (max-flowcomputationstep): This step rectifies the flow
pathsfor the previous scheduleto be a valid flow for the current
schedule.Sincereschedulingis designedto changelocally, thepre-
viousflow is alsolikely to changelocally. Thatmeansthatwemay
exploit theprevioussolutionof optimalflow to reducetheeffort of
findingamaximumflow for thecurrentschedulewhile minimizing
theincreaseof thetotal flow cost. We accomplishthis by (i) iden-
tifying a limited zonein the network in which the previous flow
shouldbeupdated,and(ii) generatinganoptimalflow only for that
zone.

We illustrateour ideaof the flow rectificationusingan exam-
ple. Figure6(a) shows a sectionof flow solutionfor the previous
schedule.Supposedatatransfers�So , ��k and � � which have been
executedat clock step̀Nn�o areto beexecutedat clock step̀ due
to reschedule.Figure6(b) shows therestructurednetwork with the
previous flow solution. Consequently, we canfind that flow arcs��o q � � and ��k q ��k (shown in heavy lines in (b)) becomein-
validflows. However, notethattheflow path !X!V!=¹Qo q �So q»º oB!V!V!
is still valid. LetS bethesetof theinvalid flow arcs,and Q¼�� | �G½P�
and\�¾�Q] | �G½P� bethesetsof nodesin b thatareon theflow paths
thatcontaintheflow arcsin S andaretheclosestclockstepto ` to-
wardthelowerclockstepsandtowardtheupperclocksteps,respec-
tively. For theexamplein Figure6(b),S= ¿¬��o q � � ����k q ��kPÀ ,Q¼�� | �G½P� = ¿a¹QkP��¹ � À and\^¾ÁQ] | �G½E� = ¿ º kO� ºÃÂ À .

Sincetwo arcs��o q � � and ��k q ��k in differentflow paths
areinvalid, we shouldupdatethe two flow paths.This meansthat
it is necessaryto updatethe flow sub-pathsbetweenthe nodesinQ¼�� | �G½P� and the terminal nodesin S and betweenthe terminal
nodesin S and \^¾ÁQ] | �G½E� . However, the partial network con-
sistingof only thosenodeswill not work to updatethe ‘two flow
paths’ while ‘covering all the nodes’becausethe numberof ter-
minal nodesin S (=4) is two times more than that of Q¼�� | �G½P�
(=2) andthan \^¾ÁQ] | �G½E� (=2). Consequently, we shallnullify ad-
ditional flow arcsto make the rectificationof the partial flow net-
work. Let Q betheflow arcsthatcrossclockstep̀ . In Figure6(b),
Q= ¿aÄ �_q � Â ��¹ ÂÁq»º�� À . Wehave thefollowing theorem:

Theorem 1 Givena binding solutionof maximumflow of mini-
mumcostin b , whenan operation is rescheduledto clock step ` ,Å Q¼�� | �G½P� Å n Å Q¼�� | ��ÆE� Å = Å \^¾ÁQ] | �G½E� Å n Å \^¾ÁQ] | ��ÆE� Å � 2! Å ½ Å .
(Weomit theproofheredueto thespacelimitation.)
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Figure6: An Examplefor illustrating the procedureof Step1: the local
rectificationof flow pathswhendatatransfers��Ç , �Ã� and �ÃÈ (dottedcircle
in (a))arerescheduledfrom clockstepÉSÊËÇ to É .
Theorem1 allowsusto find anoptimalflow pathsof exactly (

Å ½ Å nÅ Æ Å )-flow (while coveringall thenodes)for a partialnetwork with
threecolumnsof nodes,positionedthenodesin R¼�� | �G½E��ÌNQ¼�� | ��ÆE�
in the first column,the terminalnodesof arcsin S in the middle,
andthenodesin \^¾ÁQ] | �G½P��Ìi\�¾�Q] | ��ÆE� in thelast. Figure6(c)
shows thepartialnetwork extractedfrom Figure6(b) togetherwith
aflow solution.

Step 2 (min-costcomputationstep): The flow obtainedin Step1
is a maximumflow, but in generalit is not an optimal-costflow
thoughit is very closein mostcases.Consequently, thenext prob-
lem is how we canquickly updatetheflow obtainedin Step1 to a
maximumflow of “minimum” cost. The following two theorems
in the literaturesuggestus to considerthe two related(practical)
algorithmsfor solvingtheproblem.

Theorem2 [16] If f is a minimumcostflow, thenanyflowobtained
fromf by augmentingalongan augmentingpathof minimumcost
is alsoa minimumcostflow.

Theorem2 justifiesa methodthat works if network b hasno cy-
clesof negativecost:Wefind amaximumflow by theaugmentation
method,alwaysaugmentingalonga minimumcostpath.Sincethe
methodfindsaugmentationpathsoneby onesequentially, upto ex-
actly Í pathswhereÍ is thenumberbusesavailableto uses,there
is noeasywayto reducethenumberof iterationsmuchsmallerthanÍ to speedupthenetwork computationfor findingaminimumcost
flow. On theotherhand,thefollowing theoremjustifiesanalterna-
tive methodthat fits into our (incremental)network optimization
framework.

Theorem 3 [16] A flow is minimumcostif andonly if its residual
graphhasnonegativecostcycle.

Theorem3 indicatesthe costreductionmethod: We begin with a
maximumflow, pushas much flow as possiblealong a negative
costcycle in the residualgraph,andrepeatuntil thereareno neg-
ative cyclesin theresidualgraph.Consequently, startingfrom the
maximumflow obtainedin Step1 which is very likely to beanear-
optimal,we mayquickly reachto a flow with no negative costcy-
cle in its residualgraphby performingasmallnumberof iterations
(mostlywithin 2-5timesin practice)of findinganegativecostcycle
in theresidualgraph.

Figure7 showsanexampleof showing theprocedureof reduc-
ing the flow cost. Figure7(a) shows a segmentof the flow path
solutionobtainedfrom Step1, in which the two pathswith solid
arcs, i.e., !X!V! �Îq I q J�!X!�! and !V!V! � qÏ� !X!V! , are the part
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(a) A segment of flow path solution obtained from Step 1.

Figure7: An Examplefor illustrating the procedureof Step2: the con-
structionof the residualgraphfor a flow andits usefor reducingthe flow
cost.

of the flow solution. Thus, the flow cost of the partial pathsis��� � ��IP��n�����IP��JS��nÐ��� � � � � = 2.2+1.5+5.5= 9.2.Ñ Figure 7(b)
shows the constructionof residualgraph¼ for the flow in (a). ¼
is formedas follows [16]: The nodesof ¼ are exactly the same
asthosein b . ¼ hasa connectingarc betweennodes� and � if
andonly if b hasan arcbetween� and � ; If � q � is on a flow
path, ¼ hasan arc � q � with cost ������������� , andotherwise,¼
hasan arc � q � with cost ���������S� . For example,becausearc��q I , I q J and

� qÒ� in Figure7(a) areon the flow paths,
the directionsof their arcsarereversedandtheir costarenegated
asshown in Figure7(b). On the otherhand,�{q J ,

� q I andI qÓ� in Figure7(a)arenot on theflow paths.Thus, ¼ contains
the arcswith the samedirectionsandcosts.From ¼ , we checkit
containsa cycle with negative total cost. Figure7(b) hasonesuch
cycle. Thus,we pusha flow (sizeof 1) to thecycle, by which the
previousflow pathsolutionin Figure7(a)is updated;Thenegative
cost arcsin ¼ aredeletedon the flow path and the positive cost
arcsareaddedasshown in Figure7(c). Theflow costnow becomes��� � ��JS��nÔ��� � ��IP�snÔ����IO� � � = 5.0+2.0+1.6= 8.6. A repeatedexe-
cutionof this procedurewill eventuallyreachanoptimal-costflow
by Theorem3.

/* Optimalrebindingwhenanoperationis rescheduled
from clockstepµ to Õ ( ÕOÖ×µQØgÙ or µ�ÚÁÙ ) */
(Step1) max-flowcomputation:� Identify setS of theinvalid flow arcs(in ¶ )

betweenclockstepsÕ and µ ;� Find �QÛ�¢ ¦ ��Ü&¡ and °yÝN�Q¤ ¦ ��Ü&¡� Identify setQ of theflow arcs(in ¶ ) crossingclockstepÕ ;� Find �QÛ�¢ ¦ ��Þ&¡ and °yÝN�Q¤ ¦ ��Þ&¡� Extract ¶ ª #�´ « ¦ # ' , from ¶ , with threecolumnsof nodes,��Û�¢�¦=��Ü&¡sß}�QÛ�¢�¦=��Þ&¡ , terminalnodesin Ü ,
and °�Ý��Q¤�¦=��Ü&¡sß}°�ÝN�Q¤�¦��YÞ&¡� Apply themin-costaugmentationmethodto ¶ ª #�´ « ¦ # ' ;(Step2) min-costcomputation: �� ConstructresidualgraphÛ for themax-flow of ¶
obtainedin Step1;� Findanegative costcycle from Û ;

while (thereis anegativecostcycle)� Updatetheflow in ¶ to reduceflow cost,andupdateÛ ;� Findanegative costcycle from Û ;
endwhile

Figure8: Theproposedtwo-stepalgorithmof anoptimalflow computation
for reschedule.

Figure8summarizestheflow of ourtwo-stepoptimalflow com-
putationfor reschedule.Let usanalyzethetimecomplexity of each
step.When b�c���fg��hi� has] columns(i.e.,# of clocksteps)and
at most Í nodesin a column(i.e., # of buses),thenumberof arcs

(i.e.,
Å h Å ) is boundedby ¤ à ! Í 
 . Thus,finding Í augmenting

pathsin b takes áâ�G��] 
 Í 
 ��Í©� time. However, network b�W x¬ã : |äx  å
Note that the arc costsin the network satisfythe inequalityrelation ¢y��æQç�èX¡RØ¢��9è�ç�éa¡Nê^¢��9æQçYé¬¡ mentionedin thearccostformulationin Sec.2.2.

usedin Step1 of Figure8 hasonly threecolumns.Thus,thetimeto
find Í augmentingpathsë in b W x¬ã : |äx  is áâ�G� � Í 
 ��Íp� becausethe

numberof arcsis ìà ! Í 
 . SinceÍ is a relatively small num-

ber, andthenumberof arcsin b W xaã : |äx  is muchlessthan � Í 
 in
practice,thetime spentby Step1 is short.Further, finding a nega-
tive cycle in a residualgraphin Step2 takes áâ��] 
 Í 
 � time. The
numberof iterationsof thewhile-loopin Figure8 dependsheavily
on theresultof Step1, andwas1 or 2 in mostpracticalcases.

3.3 Flow Computation for a Cyclic Execution of
CDFG

In Sec.3.2wedescribedaprocedurefor generatinganoptimalflow
solution for reschedule.However, the optimality holdswhenthe
switchingactivity betweenthe datatransfersin the cyclic execu-
tionsof CDFGis notconsidered.If thereareflow pathswhosefirst
andlastdatatransfersarenot identical,we shouldresolve themto
bevalid flow paths.

We illustrateour ideaof efficiently resolvingtheflow conflicts
using an example. Supposewe have five conflicting flow paths
shown in Figure9(a). The dottedcircle representsthat the corre-
spondingbus carriesno datatransferat that clock step. We con-
structa conflict graphfrom the conflictingflow paths. The nodes
of the graphare the collectionof the first and last datatransfers
in the flow paths,and thereis an edgebetweentwo nodesif the
correspondingdatatransfersof thenodesarethefirst andlastdata
transfersin a conflictingflow path. Figure9(b) shows theconflict
graphof Figure9(a). We assigncost,adj cost(! ), to eachedgeof
the graph. The cost representsa (minimal) increaseof the total
flow costrequiredfor eitheroneof thetwo correspondingconflict-
ing flow pathsto be non-conflicting. For example,the flow path�íq !V!V! q J in Figure9(a)becomes�gq !V!V! qî� by switching
its flow arc �;qï� with flow arc �^q L in flow path �^q !X!V! qï�
asshown theupper(dotted)circle in Figure9(c) sincetheincrease
of flow costis minimumamongthepermutationsof flow arcsbe-
tweenothercolumns.Thisincreasesthetotalflow costby 0.5.Sim-
ilarly, J q !V!�! qð� canbe convertedto a non-conflictingflowJ q !X!V! q J with anincreaseof flow costby 0.8asshown in the
lower (dotted)circle in Figure9(c). Consequently, � J¬¸ IaÄQl � � � �=JS�
= ñÁ`&j�¿�� �"ò �&� �9ó À =0.5.

For eachof theconnectedcomponentsin a conflict graphwith
edgecosts,we selectthe edgewith the leastcost,andresolve the
correspondingflow path.Thetwonodesof theedgearethenmerged
into one,andedgecostsareupdatedaccordingly. We repeatthis
processuntil thereis no edgesin theconflict graph. For example,
Figure9(d) shows the conflict graphwith two connectedcompo-
nents. Consequently, from the first component,�ôq !V!V! q J
is resolved in the first iteration, and J q !�!V! qõ� (and thus�gq !V!V! q J ) will be resolved in theseconditeration. Fromthe
secondcomponent,

� q !V!V! q I (andthus I q !X!V! q �
) will be

resolved.
Sincethereareat most Í conflictingflow pathsandthelength

of eachpathis at most ] in termsof arcs,the time to constructa
conflict graphandfind anedgewith theleasecostin theeachiter-
ation is áâ��ÍË]�� . However, resolvingall theflow conflictsusually
is donein a few iterationsin practicesincethe graphtendsto be
decomposedinto severalsmallerconnectedcomponents.

4 Experimental Results

OuralgorithmFlow LP wasimplementedin C++ andareexecuted
onaSunSparc20workstation.Wetestedasetof high-level synthe-
sis benchmarkdesignsin the experiments.The experimentswereö

Practically, in mostrescheduleswe needto find ÷ flow pathswhere÷ tendsto be
muchsmallerthan ø .
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Figure9: Resolvingtheflow conflictsfor cyclic executionof CDFG.

performedin two folds: (1) to checkthequality of resultsin terms
of thetotalnumberof switchingtransitions(i.e.,thequantity N�;:Y<.:
in Eq. (1)) and(2) to checkthespeedof theexecutionof thealgo-
rithm.ù

Optimizing switching activity : Table2 shows a comparisonof
thebusswitchingactivities,measuredin termsof ��;:&<.: in Eq.(1),
for the designsproducedby the random-move basedmethodpro-
posedin [8], thedesignsproducedby BusOptwhichis thenetwork
flow based(non-optimal)methodproposedin [9], andthedesigns
producedby our (optimal)algorithmFlow LP. DIFF is the differ-
ential equationsolver. KALMAN is the statevector computation
partof theKalmanfilter design,EWF is the5-th orderelliptic fil-
ter design,andCOMPLX is thearithmeticpartof complex number
calculation.DIFF.2, IDCT.2, andKALMAN.2 arethedesignspro-
ducedby unrolling DIFF, IDCT andKALMAN twice, respectively.
The comparisonsshow that our algorithmwasableto reducebus
switching activity by 17.4%and 5.2% overall than thoseby the
random-moveandBusOpt, respectively.

total transitions
design rand[8] BusOpt[9] Flow LP red.(%)

(Ours) over [8]/[9]

DIFF 22.48 16.40 15.45 31.3/5.8
DIFF.2 37.44 33.28 32.11 14.2/3.5
IDCT 73.82 69.42 67.07 15.9/3.4

IDCT.2 130.02 118.24 105.85 18.6/10.5
KALMAN 20.19 19.08 18.11 10.3/5.1

KALMAN.2 35.18 32.12 31.92 9.2/0.6
EWF 16.32 14.44 13.05 20.0/2.8

COMPLX 9.76 8.13 7.88 19.3/2.8

average 17.4/5.2

Table2: Resultsof busswitchingactivity for theHLS benchmarkdesigns.ù
Impr oving performance: Table3 shows thecomparisonsof run

timesfor thealgorithm(denotedasold flow in thetable)whichuses
a full executionof pathaugmentationmethodfor binding,BusOpt
in [9] and Flow LP. The comparisonsindicate that our optimal
binding techniqueis 2.8 times fasterthan the (optimal) old flow,
and slightly less (2%) than the (non-optimal)BusOpt. Conse-
quently, for agiventimelimit, ourtechniqueis ableto exploremore
designspace(i.e., moreschedules)thanold flow or random-move
[8] to find agloballyoptimalbindingresults.In summary, old flow
andFlow LP producesthesamebindingresults,but old flow is 2.8
timesslower thanFlow LP whereasBusOpt andFlow LP takeal-
mostthesameexecutiontimes,but thebindingresultsby BusOpt
is about5%worsethanthoseby Flow LP.

run time ratio
design old flow BusOpt[9] Flow LP old-flow [9]

(ours) /Flow LP /Flow LP

DIFF) 362sec 83sec 78sec 4.36 1.06
DIFF.2 451sec 184sec 192sec 2.35 0.96
IDCT 3.0hr 0.5hr 0.5hr 6.00 1.00

IDCT.2 4.2hr 1.8hr 1.7hr 2.47 1.05
KALMAN 28 sec 17sec 19sec 1.47 0.89

KALMAN.2 62 sec 43sec 38sec 1.63 1.13
EWF 1.6hr 0.6hr 0.6hr 2.67 1.00

COMPLX 46 sec 31sec 30sec 1.53 1.03

average 2.81 1.02

Table3: Resultsof run timesfor thedesigns.

5 Conclusions

We presenteda comprehensive network flow embeddedalgorithm
for high-level power optimizationto overcomethe limitations of
previous approachesin [7, 8, 9, 10, 11]. The key contributions
include, in termsof quality, our designsare 5.2% more power-
efficient over the bestknown algorithm, which is due to (a) the
exploitationof theeffectof schedulingand(b) an optimalbinding
for everyscheduleinstance, andin termsof runtime,ouralgorithm
is 2.8timesfasterover theexistingnetwork flow basedoptimalbus
synthesisalgorithm,which is dueto (c) our novel (two-step)mech-
anismof fully utilizing the previousflow solution to minimize re-
dundantflow computations.More importantly, eventhough,in this
paper, our techniquewasdescribedin the context of bus binding,
it is alsoapplicableto otherimportanthigh-level binding/allocation
problems(e.g.,functionalunit, registerandmemoryport) for low
powercombinedwith scheduling.
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