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Abstract: We proposean effective algorithmfor power optimiza-
tion in behaioral synthesis.In previouswork, it hasbeenshavn

that several hardware allocation/bindingproblemsfor power opti-

mizationcanbeformulatedasnetwork flow problemsandbesolved
optimally. However, in theseformulations,a fixed schedulewas
assumed.In suchcontext, onekey problemis: given an optimal

network flow solutionto a hardwareallocation/bindingproblemfor

a schedulehow to generatea new optimal network flow solution
rapidly for alocal changeof thescheduleTo this end,from acom-
prehensie analysisof the relationbetweemetwork structureand
flow computationwe devise a two-stepprocedure:(Stepl) max-
flow computationstepwhich finds a valid (maximum)flow solu-
tion while retainingthe previous(maximumflow of minimumcost)
solutionas much as possible;(Step2) min-costcomputationstep
which incrementallyrefinesthe flow solution obtainedin Step1,

usingthe conceptof finding a negative costcycle in the residual
graphfor the flow. The proposedalgorithmcanbe appliedeffec-

tively to severalimportanthigh-level datapathoptimizationprob-

lems(e.g.,allocations/bindingsf functionalunits,registers buses,
andmemoryports)whenwe have the freedomto choosea sched-
ule that will minimize powver consumption. Experimentalresults
(for bus synthesisn benchmarkproblemsshow thatour designs
are5.2% more power-efficient over the bestknown results,which

is dueto (a) exploitation of the effect of schedulingand(b) optimal

bindingfor every scheduleinstance Furthermorepur algorithmis

about2.8timesfasterin runtime over the full network flow based
(optimal) bus synthesisalgorithm, which is dueto (c) our novel

(two-stepmetanismwhich utilize the previousflow solutionto re-

duceredundanflow computations.

1 Intr oduction

With the adwent of portableandhigh-densitymicro-electroniade-
vices suchas laptop personalcomputersand wirelesscommuni-
cationequipmentpower dissipationof very large scaleintegrated
(VLSI) circuits hasbecomea critical concern. Batterylife, pack-
aging/coolingcosts,andreliability areall issuesthat make power
dissipationa more critical designconcernthan performanceand
areain mary applications.Thus,power modeling,estimationand
optimizationmustbetargetedat all levels of the designabstraction
from systemandbehaioral down to gateandlayoutlevels. A full

suney ontherecentresearctwork canbefoundin [1, 2, 3]. This
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paperbelongsto the areaof power optimizationin behaioral syn-
thesis.Behavioral synthesigprovidesautomatiovaysof translating
the behaioral specificationof a digital system,undera given set
of designconstraintsjnto a functionalequialentregistertransfer
(RT) level description.The major stepsin behaioral synthesisare
operatiorschedulinghardwareallocation,andbinding.

Thereis anextensie body of work on hardwareallocationand
bindingfor low power combinedwith schedulingMusoll andCor-
tadella[4] have modifiedthecostfunctionusedn traditionalschedul-
ing algorithmsto favor the schedulesn which two operationswith
the sameoperandsare executedconsecutiely in the samefunc-
tional unit, therebyreducingthe switchingactiity attheinputsof
thefunctionalunit. Monteriroet al. [5] attemptedo scheduleop-
erationsto enabledynamicpover managemerty determininghe
computationalunits that are strictly requiredfor a specificcom-
putation. Raghunathamnd Jha[6] usedan iterative improvement
techniquefor schedulingandmoduleallocationbasedon switched
capacitancamatrices. Dasguptaand Karri [7, 8] proposedalgo-
rithmsfor schedulingandbindingto minimize databustransitions.
The algorithmwasbasedon a simulatedannealingorocess.Hong
andKim [9] proposed bus optimizationalgorithmfor low-power
which exploits the effect of scheduling. The algorithmwasbased
onarepeatedpplicationof the network flow methodto the section
of network thatcorrespondso a segmentof clock steps.However,
it doesnot guaranteeptimality for eachof the reschedulesand
further, the segmentmay cover the entire network. The work in
[4,5,6,7,8,9] emphasizedhe obsenationthat schedulingheas-
ily influencesthe resultsof power optimizationat the allocation
andbindingstage.This stronglysuggestshatthetasksof schedul-
ing, allocation,andbinding shouldbe performedin anintegrated
fashionto fully exploit the effect of schedulingon allocationand
binding.

Ontheotherhand,thereis a numberof well known algorithms
for hardwareallocation/bindingor low powver whena schedulds
given.ChangandPedran{10] proposeatechniqudor theregister
allocationandbindingfor minimizing switchingactiity. They for-
mulatedthe problemasa minimum costclique covering problem,
andsolvedit optimally usinga max-costlow algorithm.They [11]
alsoproposed bindingtechniquefor minimizing switchingactiv-
ity on functionalunits. The problemis formulatedasa max-cost
multi-commaodityflow problemandcanbe solvedoptimally. Since
the multi-commodityflow problemis NP-hard,they restrictedthe
domain of the functional unit binding problemto functionally
pipelineddesignswith shortlateng. Althoughthe approachein
[10, 11 provided optimal solutionto a numberof specificlow-
power problems,they do not addresshe problemof finding ef-
ficiently an optimal solution with respectto changef schedule
instance. This motivatesour developmentof a new optimization
techniquebasedon network flow method.However, unlike the ap-
proachin [9], in which the pathaugmentatioralgorithmis applied



exclusively in everyiterationof the optimizationprocesgalsodoes
not guaranteeoptimality of binding), our proposedapproachre-
ducesheruntime significantlyby linking (andexploiting) thethe-
oretical computationstepsof the network flow methodto a well-
designedupdatingof the current(optimal) flow solutionfor local
changesn theschedulé.

Our algorithmiteratively improvesthe previous binding solu-
tion by reschedulingisthosein [7, 8, 9]. Onemainissueis how we
cangeneratea binding solutionfor a new scheduleapidly andyet
accurately We accomplistthis by devising a comprehense two-
step procedureof network flow computation: (Step1) max-flow
computationwhich finds a valid (maximum)flow solutionwhile
retainingtheflow obtainedn thepreviousiterationasmuchaspos-
sible, and (Step2) min-costcomputatiorwhich incrementallyup-
datesthe flow sothatit reachedo a minimum costby employing
theconcepbf finding anegative costcyclein theresidualgraphfor
theflow. Experimentatesultsindicatethe proposedalgorithmpro-
ducesexcellentresultsin termsof reducingtotal switchingactiity
on the hardware,andis fasterthanthe approache# [8, 9]. Our
techniquecanbeappliedto abroadclassof high-level optimization
problemsincluding allocations/binding®f functional units [11],
registers[10], buses[7, 8, 9] and memoryports for low power.
In this paper we restrict our presentatiorto the problemof bus
bindingfor low power, andit shouldbecomeevidentthatour tech-
nique is applicableto the other high-level optimizationproblems
with slight modifications.

Thereare mary researchewhich have addressedhe problem
of minimizing the switchingactiity onbuses.PandaandDutt [12]
tried to reducetransitionson the off-chip addres$usesby analyz-
ing theaccesgpatternf behaioral arraysin the specificatiorand
organizingthe arraysin memory Variousencodingschemege.g.,
[13, 14)) have beenproposedo decreas¢he numberof transitions
at I/O (off-chip) bustransitions.In addition,asmentionedbefore,
[7,8,9] proposedalgorithmsfor bindingintegratedwith scheduling
to minimize on-chipdatabustransitions.

As emphasizedn the previous paragraphshe key featuresof
proposedipproackhare: (a) In prior work, busbindingis performed
atalaterstageof datapattsynthesismainly afterscheduling.This
resultedin alossin flexibility in optimizing bus switching activ-
ity. Instead,we performssdcedulingand bus binding simultane-
ouslysothatthe effectsof schedulingon bus activity areexploited
morefully andeffectively; (b) Contraryto the previousintegrated
schedulingand binding approachesn which estimationof the
amountof switchingactivity onbusess calculatecasedn simple
heuristicsour algorithmcalculateshe bus switching activity opti-
mally at everyiteration. (c) Finally, runtimeis animportantfactor
to be consideredn mostiterative improvementbasedalgorithms.
We carefully designthe flow computationstepsso thatwe gener
ateanoptimalflow of the currentschedulgrom the flow solution
for thepreviousschedulavhile eliminatingasmanyredundantlow
computationgspossible

2 Switching Minimization for Low Power

2.1 Problem Definition

Thetotal power dissipatedn a busis proportionalto the switching
actiity on the bus[15]. Further switchingactiity is anindica-
tor of signaltransitionson the bit lines of the bus. Consequently
minimizing the numberof signaltransitionson a busis equialent
to reducingthe total power dissipated.The signalswitchingactiv-
ity on eachbit line of abuschangesccordingo notonly the data

1We meanthe optimality in termsof the ‘average’switching actwity, andwhen
optimizing the datatransitionsat the boundaryof the cyclic executionof dataflav
graphis notconsidered10, 11, 9].

2Datavaluesare accessethroughthe ports of memories,and dependingon the
assignmenof datavaluesto portsat eachclock step,the power consumedatthe ports
(andtheconnectiongo the ports)will bechanged.

transferson the bus but alsothe sequencef datatransfers.Note

thata scheduledetermineghe setof datatransfersto be executed
in eachclock cycle. However, it doesnot specifythe buson which

adatatransfewill take place.Busbindingassignglatatransfergo

busesfor eachclock step.

We usea probabilisticmodelto measurehe switchingactiity
on a bus sincethe exact patternsof input datastreamsare usually
unknown in mostcases.Let SW(x, y) bethe averagenumberof
bit transitions(i.e., Hammingdistancewhendatatransfersz and
y aresuccessiely implementedn a bus. The valueof SW(x,y)
for every pair of datatransferdn the (unscheduledCDFG canbe
obtainedby repeatedsimulationof the CDFG. For typical values
of primaryinput signalsin the CDFG, the signalvaluesof all data
transferscanbe calculatedby simulation. The valueof SW(x, y)
is setto be the averageof the Hammingdistancedetweenr and
y. Figurel(a)shavs anunschedule €DFGwherevariables:” and
b’ (=b},by) are cyclic variables,and are denoteda and b(=bxb;) in
the next iterationinstanceof the loop, respectiely. Note thatthe
bit-width of eachvariableis 8 exceptb thebit-width of whichis 16.
by, representthe upper8-bit of b andd; thelower 8-bit of b. Thus,
datatransferb canbeimplementedvith two 8-bit busesby treating
br, andb; asindependentiata. Table 1 shavs the SW(-) values
for the datatransferdn Figure1(a). For example,SW (a, by )=3.9
indicatesthatthereis an averageof 3.9 bit lines out of 8 possible
toggles.

opt opt
(c) schedule-B: SW;,;= 16.0 (d) schedule-C: SW = 13.6

Figurel: (a) A CDFGwith non-uniformdatasize. (b)-(d) Possiblesched-
ulesfor (a).

a by, b; c d e f g a’ b b7
a 00 | 39 | 40 | 39 | 39 | 39 | 28 | 31 | 42 | 14 | 25
b, | 39| 00 | 57 | 41| 37| 39| 29| 40| 31| 17 | 31
b; | 39| 22 | 00| 41| 37| 36| 29| 18| 39 | 29 | 31
c 40 | 57 | 07 | 00| 31| 29 | 22| 54 | 23| 31 | 41
d 39 | 41 | 22| 09| 00| 39| 33| 18| 28| 31 | 26
e 39 | 37 | 29 | 08| 62| 00| 38| 32| 02| 28 | 40
f 39 | 39 | 22| 33| 38| 20| 00| 31| 30| 09| 39
g 39 | 39 | 22| 33| 38| 11| 71| 00| 21| 15 | 39
a’ | 28| 57 | 31| 28| 31| 31| 40| 05| 00| 01 | 40
b’ 31| 30 | 38| 31| 28| 30| 32| 20| 09| 00 | 26

b? 25 3.1 4.1 2.6 4.0 3.9 4.0 2.6 52 25 0.0

Tablel: SW(-) valuesfor the CDFGin Figurel(a).

Let SW*(z, y) denotethe expectednumberof bit lineson bus
k thattogglewhendatatransfersr andy are successiely imple-
mentedon the bus, and SWW* be the sumof all SW*(-) for ev-
ery pair of consecutie datatransferson bus k. Then,the problem
we wantto solveis to schedulehe operationgthus,scheduledata



transferspndbind thedatatransferso buseso minimizethequan-

tity
Wit = Y Swk (1)
Vk of buses
cstep: 1 2 3
bus1 [ al-el-h| [a]e]f
bus 2 [k b=y | b b,
busa ol L ¢| [ C| | Clees
bus4 [--dl—1 @ dib|h
bus5 |- ] L f g
bind-Al: SW =18.0 bind-A3: SW =25.9
(a) Bindings for schedule-A.
aje|f a|d| f ale a f
b, b, by | b b | b by| by
h c Clese c|lc Cle|[g|eee
c c g b f h|d
dl g elh dlg c

bind-C1: SW =18.2 bind-C2: SW =23.2
(c) Bindings for schedule-C.

bind-B1: SW =21.1bind-A4: SW =18.4
(b) Bindings for schedule-B.

Figure 2: Possiblebindings for the data transfersscheduledby (a)
Sdtedule-Ab) Shedule-Band(c) Shedule-Cin Figurel.

Figuresl(b)-(d)shav threepossibleschedule®f the CDFGin
Figurel(a)whentheglobaltiming is 3 clock stepsandtwo adders
areavailable.We assuméhateachoperatiortakesoneclocktime
For example,accordingo schedule-Ain Figuresl(b) datatransfers
a, bp, c andd will be performedn clock stepl, b, ande in clock
step2, andbs, by, ¢, f andg in clock step3.* Fromthe schedule,
we know that at leastfive (8-bit) busesare neededor all the data
transfers.

For agivenschedulenstancetherewill be mary waysof bind-
ing the datatransfersto buses. Figure2(a), (b) and(c) shav two
possiblebindings for the data transfersin each of scedule-A
scthedule-Band schedule-Cin Figurel. For example,according
to binding-Al bus 1 carriesa in clock step1, e in clock step2,
b; in clock step3, andthena againin clock stepl of the next it-
erationandso on. ConsequentlySW' = SW(a, e) + SW (e, b;)
+ SW(b,a') =3.9+ 29+ 39=10.7, SW? = SW(bn,bn) +
SW (b, bp)+ SW (by,by) =0+ 0+ 1.7=1.7,SW3 = SW (e, cg
=0, SW*=SW(d,g) + SW(g,d) = 1.8+ 3.8=5.6,andSW
=SW(f,f)=0. Thus,SW;,s =10.7+ 1.7+ 0+ 5.6+ 0=18.0.
Clearly; schedulingsignificantlyinfluencesthe resultsof binding,
and thus the switching activity on the buses(i.e., the quantity of
SW:iot in EQ.(1)). Themicroarchitectureorrespondingp schedule-
A andbinding-Alis shavn in Figure3.

For a given schedulewe can determinethe optimal value of
SWiot, caIIedSWt"optt, by anexhaustve searchof all possiblebus
bindings.Thevaluesof SW %" areshavn in Figuresl(b)-(d). The
big differencedetweerthe SW%' valuesof theschedulestrongly
suggesthatbus optimizationfor low power mustbetakeninto ac-
countduringscheduling.

2.2 The Network Flow Formulation: An Overview

For a given a schedulewe candeterminean optimal binding for
datatransferdyy formulatingit asa problemof findingamaximum

3Extensionof our techniqueto handle multicycling and chainedoperationsis
straightforvard.

4For simplicity, we considetthe bindingof thedatatransferghatare‘inputs’ to the
functionalunits. However, our algorithmcansupportary style of busbasedarchitec-
turesandclock schemedhy whichthedatatransfergo beperformedateachclock step
aredetermined.

Figure3: Themicroarchitectureorrespondingo schedule-Aandbinding-
Al

flow of minimumcostin a network. We follow the terminologies
anddefinitionsin [9].

Let DT'(¢) denotethe setof datatransfersto be implemented
in clock stepi. A network G = (N, A) is adirectedgraphwith a
setof nodesN anda setof arcs A. We shaw first how to model
intra transitionsof datatransfes. An Intra-transitionrefersto two
successie executionf datatransfersn thesameterationinstance
of the CDFG.Otherwisetheexecutionis calledaninter-transition
For atotal of n datatransfers,N has2n nodes,two for eachdata
transfer and two additionalnodess andr wheres is called the
sourceandr calledthe sink of the network. The nodesotherthan
the sourceand sink arearrangedvertically accordingto the clock
stepsin which the correspondinglatatransfersareto be executed.
The network in Figure4(a) shavs the structureof G (excluding s
andr) for theintra-transition®of schedule-An Figurel(b).

To take into accountinter-transitionsof datatransfersthe net-
work in Figure4(a)is extendedto includeanadditionalcolumnof
nodesontheleft asshavn in Figure4(b). The datatransferscorre-
spondingto the nodesin this columnarethe sameasthosecorre-
spondingto the nodesin the rightmostcolumn. This accountsfor
the datatransitionsbetweenthe executionof datatransfersin the
lastclock stepin the previousiterationof CDFG andthe execution
of datatransferdn thefirst clock stepin the currentiteration.

The two nodescorrespondingo eachdatatransferin a clock
stepare groupedin a dottedcircle as shavn in Figure 4, where
the connectingarc (with capacityl) ensureghatat mostonedata
transferis boundto a bus at thatclock step. Sources is connected
to every nodein thefirst column,andsink r is to every nodein the
lastcolumn. The arcsconnectinghodesin differentcolumnsin G
areclassifiedas:

1. cstepconsecutivarcs Thesearethesolidarcsin Figure4. They

arethe arcsthatconnectthe nodesin a columnof G to the nodes
in the next column. Thearcfrom nodezx in columni to nodey in

columni + 1 representthe changeof signalvalueson abuswhen
the datatransferscorrespondindo = andy are performedon the
bussuccessiely.

2. cstepnonconsecutivarcs Thesearethedottedarcsin Figure4.
Thetotal numberof busesto be usedis boundedby the maximum
numberof datatransfersto be performedin the sameclock step.
This meanghatat the clock step(swhenthe maximumdatatrans-
fers are executed,all busesshall be usedwhile at the otherclock
steps,someof the busesshall be idle. The dottedarcsin the net-
work ensuresuchabusutilization[11]. For example,in Figure4(b)
flow arca — b; indicatesthata busimplementsgdatatransfera at
clockstepl, idlesatclock step2 andb; atclock step3.

The capacityis 1 for eacharcin A. We mustassigna costto
eacharcsothatasolutionof maximumflow of minimumcostin G
mustsatisfy:(conditionl) Theflow shouldcoverall thenodesn G;
(condition2) Thesumof SW (-)’sfor thearcsin theflow is minimal
amongall possibleflow solutionswhile satisfyingcondition1.

Thearccostsarecomputedaccordingo the costformulationin

9.




DT(1) DT(2) DT(3) e)

"""" > cstep_nonconsecutive arcs

— cstep_consecutive arcs

(a) A network model for data transfers of intra transitions.

DT(1) DT(2) DT(3)

(b) A complete network model for all data transfers.

Figure4: Thenetwork flow modelfor bindingdatatransfersscheduledy schedule-Ain Figure1(b).

Note thatit is not alwaystrue that SW(z,y) + SW(y, z) >

SW (z,z) because&W (-) is an‘average’numberof bit transitions
betweerthe two datatransfers.Our formulationfor the costof an
arcis asfollows: The costof eacharcincidentto s andr is 0. Let
SW™e® and SW™™ be the maximumand minimum amongthe
valuesof all SW (-)s, respectiely. CostC(x, y) to beassignedo
thearcfrom anodeof datatransferz atcolumnt1 to anodeof data
transfery atcolumnt2 is definedto be

Clz,y) = SW(z,y) — (2 SW™M® — SWmn) @)

Theterm2 - SW™® — SW™" ensureshat a maximumflow
of minimum costsolutionin G will cover every node(i.e., to sat-
isfy condition1). In otherwords, for two differentflows, x —
y — z andxz — 2z, our network flow formulationwill select
x — y — z sinceits flow costis always lessthanthat of the
other NotethatC(z,y) < 0 for every arc, but the procedureof
network flow computatiorworks correctlyasit doeswhenall the
arc costsare non-ngative® This constraintis proven by simply
shaving theinequalityrelationC(z, y) + C(y, z) < C(z, z); Sup-
posedatatransfersr, y andz arethe nodesat columnst1, 2 and
t3 (t1 < t2 < t3) in G, respectiely. Then,C(z,y) + C(y, 2)
-C(x,2) = SW(x,y) - (2- SW™™® — SW™m) + SW(y, 2) -
SW(x,2) = (SW™ — SW(x,y)) - (SW™* — SW(y, 2)) -
(SW (x, z) — SW™™) < 0. Further from thefactthatevery fea-
sible maximumflow of minimum costsolutionwhich satisfieghe
inequality relation hasthe sametotal numberof transitionflows
(i.e., arcs),a maximumflow of minimumtotal costof Eq. (2) also
becomesa maximumflow of minimum SW;,; of Eq. (1) (which
satisfiescondition2).

3 Integrated Scheduling/BindingAlgorithm

3.1 An Overview

Our algorithmfor bus binding is an iterative one. Given an ini-
tial scheduleand binding, we improve the binding iteratively by
reschedulingaindrebinding. An optimal bindingfor eachschedule
is determined.Here, the key issueis how we quickly producean
optimalbinding,whichis the subjectof Sec.3.2.

For given globaltiming andresourceconstraint,our algorithm
beginswith aninitial schedulavhichis obtainedby usingary con-
ventionalschedulingalgorithm. An optimalbindingfor the sched-
ule is then derived by constructinga network G in the way de-
scribedin Sec.2.2, and applyingthe minimumcostaugmentation
method[16] to optimizethe valueof SW;,: in Eq. (1). For every
feasiblelocal move of operationdor rescheduleinsteadof anex-
clusive useof theminimumcostaugmentatiomethodo find anew
(optimal) binding, we fully exploit the (optimal) flow solutionfor
the previousschedulgo minimizeredundanflow computations.

5 For the easeof presentationywe usenon-ngative arccostsin the examplesof the
paper

Flow_LP: Net-Flow basedBus Synthesisfor Low-Power
(CDFG, csteplimit, resoucelimit) {
e Simulatethe CDFGandconstructSW (-) table;
e Produceaninitial scheduldor the CDFG
by usingary known schedulingalgorithm;
e Obtainbusbindingfor theinitial schedule
by usingthe min-costaugmentatiomethod,
andresole flow conflictsif exist;
® SetCOSTimin to SWSE! of theinitial binding;
e SetBIN Dy, totheinitial scheduleandbinding;
while (BIN Dy is updated)
® SetCOSTcyrrent = COSTmin;
® SetBIN Dcyrrent = BIN Dpest;
while (thereis a ‘reschedulablebperation){
foreach‘reschedulablebperation(to cstepj)
e Reschedulandupdatenetwork G;
e Rectifytheflow in G minimally to beafeasiblesolution;
e Refinetheflowsin G to beamin-costflow;
o Resole flow conflictsif exist;
o ComputeSW %! for the scheduleandundothe schedule;
endforeach
e Rescheduléhe operatiorwith thesmallestS W 22,
if (currentSW 25! < COSTmin) {
o UpdateC'O STy, to currentSWyb!,
andupdateBI N Dy, accordingly;
endif
e Lock theoperatiomatthecstep;
endwhile
e Unlockall theoperations;
endwhile
e Return(BIN Dyes: andCO ST in);

Figure5: Theproposedlgorithmfor busbindingintegratedwith schedul-
ing.

The overall flow of our algorithmis summarizedn Figure5.
First, the table of SW(-) for every orderedpair of datatransfers
is constructedy simulation. The CDFG is thenscheduledy us-
ing ary cornventionalschedulingalgorithm. From the scheduled
CDFG network G is constructedas mentionedn Sec.2.2. Then,
we produceaninitial (optimal) bindingusingthe network. We re-
fine theinitial bindingiteratively in the outerwhile-loop An oper
ationwhichwasscheduledta clock stepis called“reschedulable”
toanotherclockstep,sayj, if schedulingheoperatioratj doesnot
violatethetiming andresourceconstraint.For every reschedulable
operationjts SW22' is computed. Amongthe operationsthe op-
erationwith the leastvalueof SW %" is selectedandrescheduled
to thecorrespondinglock step.Oncetheoperationis rescheduled,
it will belocked at that clock stepduring the remainingexecution
of theinnerwhile-loop The outerwhile-loop continuesuntil it is
not ableto generatea scheduleand bus binding whose SW 2% is
lessthanthe minimal SW 2% foundsofar duringthe previousiter-
ations.



3.2 Techniquefor IncrementalNetwork Flow Op-
timization

Thecoreof ouralgorithmis to calculateheoptimalvalueof SW;,¢
efficiently when an operationis rescheduledrom clock stepi to
j. Clearly, thereschedulinghangeghe datatransfershatareex-
ecutedin clock stepsi and j which leadsto a restructureof the
network G. Consequentlysomepathflows of the previous solu-
tion might becomeinvalid. To maintainvalid flows, it may be re-
quiredto apply the minimum costaugmentatioralgorithmusedin
the initial binding again to the entire restructurechetwork. This
is definitely very expensve whenmary timesof reschedulingare
performed. However, from the fact that the schedulechangedo-
cally, andan optimalflow for the previous schedulavasknown, it
is naturalto askwhetherthereis away to find an optimalflow for
the currentschedulerapidly by exploiting the previous flow solu-
tion. To dothis, we devisea comprehensi network flow computa-
tion procedurevhich is composef two steps:(Stepl) max-flow
computatiorstepwhich findsamaximum(i.e., valid) flow solution
while retainingthe previous solutionof the maximumflow of min-
imum costasmuchaspossible(Step2) min-costcomputatiorstep
which incrementallyupdatesthe flows obtainedin Step1 by us-
ing the concep{16] of finding a negative costcyclein theresidual
graphfor theflow. Sincethe updatedlow in Stepl is closeto the
flow of the minimum costfor the previous schedulethe effort in
Step2 canbe significantlysased by eliminatinga large portion of
redundanflow computationglonefor the previous schedulesWe
now describehe procedureof two-stepflow computation.

Step 1 (max-flomcomputatiorstep: This steprectifiesthe flow
pathsfor the previous scheduleio be a valid flow for the current
scheduleSincereschedulings designedo changdocally, thepre-
viousflow is alsolik ely to changdocally. Thatmeanghatwe may
exploit the previous solutionof optimalflow to reducethe effort of
findinga maximumflow for the currentschedulavhile minimizing
theincreaseof the total flow cost. We accomplistthis by (i) iden-
tifying a limited zonein the network in which the previous flow
shouldbeupdatedand(ii) generatinganoptimalflow only for that
zone.

We illustrate our ideaof the flow rectificationusingan exam-
ple. Figure6(a) shavs a sectionof flow solutionfor the previous
schedule.Supposeadatatransfersyl, y2 andy3 which have been
executedat clock stepi + 1 areto be executedat clock step: due
to rescheduleFigure6(b) shavs therestructureaetwork with the
previous flow solution. Consequentlywe canfind that flow arcs
x1 — y3 andz2 — y2 (shavnin heary linesin (b)) becomein-
valid flows. However, notethattheflow path- - - p1 — y1 — g1 - --
is still valid. Let S bethesetof theinvalid flow arcs,andSRC;(S)
andDE ST;(S) bethesetsof nodesn G thatareontheflow paths
thatcontaintheflow arcsin S andarethe closestlock stepto 7 to-
wardthelowerclock stepsandtowardtheupperclock stepsrespec-
tively. For the examplein Figure6(b), S={zx1 — y3,22 — y2},
SRC;(S)={p2,p3} andDEST;(8)={q2, q4}.

Sincetwo arcsz1 — y3 andz2 — y2 in differentflow paths
areinvalid, we shouldupdatethe two flow paths. This meanghat
it is necessaryo updatethe flow sub-pathdetweenthe nodesin
SRC;(S) andthe terminalnodesin S and betweenthe terminal
nodesin S and DEST;(8). However, the partial network con-
sisting of only thosenodeswill not work to updatethe ‘two flow
paths’while ‘covering all the nodes’becausehe numberof ter
minal nodesin S (=4) is two times more than that of SRC;(S)
(=2) andthan D EST;(8) (=2). Consequentlywe shallnullify ad-
ditional flow arcsto make the rectificationof the partial flow net-
work. Let Qbetheflow arcsthatcrossclock stepi. In Figure6(b),
{03 — y4,p4 — ¢3}. We have thefollowing theorem:
Theorem 1 Givena hinding solution of maximumflow of mini-
mumcostin G, whenan opeation is restheduledto clodk stepi,
|SRC;(8)| + |SRC:(Q)| = |DEST;(S)| + |DEST;(Q)] < 2:8].
(\We omittheproof here dueto the spacdimitation.)
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(a) An example of the previous optimal flow paths.
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(c) Re—evaluation of flow paths for the local
network extracted from (b).

(b) Localization for flow path retification.

Figure6: An Examplefor illustrating the procedureof Step1: thelocal
rectificationof flow pathswhendatatransfersyl, y2 andy3 (dottedcircle
in (a)) arerescheduledrom clock stepi + 1 to 4.

Theoreml allows usto find anoptimalflow pathsof exactly (|S| +
|Q[)-flow (while caveringall the nodes)for a partial network with
threecolumnsof nodespositionedhenodesn SRC;(S)USRC;(Q)
in the first column, the terminalnodesof arcsin S in the middle,
andthenodesin DEST;(S) U DEST;(Q) in thelast. Figure6(c)
shavs the partialnetwork extractedfrom Figure6(b) togethemith
aflow solution.

Step 2 (min-costcomputatiorstep: The flow obtainedin Step1

is a maximumflow, but in generalit is not an optimal-costflow

thoughit is very closein mostcases Consequentlythe next prob-

lemis how we canquickly updatethe flow obtainedin Steplto a

maximumflow of “minimum” cost. The following two theorems
in the literaturesuggestus to considerthe two related(practical)
algorithmsfor solvingthe problem.

Theorem 2 [16] If f is a minimumcostflow, thenanyflow obtained
fromf by augmentingalong an augmentingoath of minimumcost
is alsoa minimumcostflow.

Theorem? justifiesa methodthat works if network G hasno cy-
clesof neggative cost: We find amaximumflow by theaugmentation
method alwaysaugmentingalonga minimumcostpath. Sincethe
methodfindsaugmentatiopathsoneby onesequentiallyup to ex-
actly K pathswhereK is thenumberbusesavailableto usesthere
is noeasywayto reducethenumberof iterationsmuchsmallerthan
K to speedupthenetwork computatiorfor findingaminimumcost
flow. Ontheotherhand,thefollowing theoremustifiesanalterna-
tive methodthat fits into our (incremental)network optimization
framework.

Theorem 3 [16] A flow is minimumcostif and only if its residual
graphhasno negativecostcycle

Theorem3 indicatesthe costreductionmethod We begin with a
maximumflow, pushas muchflow as possiblealong a negative
costeycle in theresidualgraph,andrepeatuntil thereareno neg-

ative cyclesin theresidualgraph. Consequentlystartingfrom the
maximumflow obtainedn Stepl whichis verylikely to beanear

optimal, we may quickly reachto a flow with no negative costcy-

clein its residualgraphby performinga smallnumberof iterations
(mostlywithin 2-5timesin practice)of findinganegative costcycle
in theresidualgraph.

Figure7 shavs anexampleof shaving the procedureof reduc-
ing the flow cost. Figure 7(a) shavs a segmentof the flow path
solution obtainedfrom Step1, in which the two pathswith solid
arcs,i.e.,--ra — ¢ — d---and---b — e---, arethe part
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(b) The constrcution of the residual graph for the flow in (a) and(c) The updated flow accodring to (b).
extraction of a negative cost cycle.

Figure7: An Examplefor illustrating the procedureof Step2: the con-
structionof the residualgraphfor a flow andits usefor reducingthe flow
cost.

of the flow solution. Thus, the flow cost of the partial pathsis
Cl(a,c) + C(c,d) + C(b,e) = 2.2+1.5+5.5= 9.25 Figure 7(b)
shaws the constructionof residualgraph R for the flow in (a). R
is formedasfollows [16]: The nodesof R are exactly the same
asthosein G. R hasa connectingarc betweemodesz andy if
andonly if G hasanarcbetweenz andy; If + — y is onaflow
path, R hasanarcy — x with cost—C(z,y), andotherwise,R
hasanarcz — y with costC(z,y). For example,becauserc
a — ¢, c — dandb — e in Figure7(a) areon the flow paths,
the directionsof their arcsarereversedandtheir costare negated
asshawn in Figure7(b). Onthe otherhand,a — d, b — ¢ and
¢ — e in Figure7(a) arenot on the flow paths. Thus, R contains
the arcswith the samedirectionsandcosts. From R, we checkit
containsa cycle with negative total cost. Figure7(b) hasonesuch
cycle. Thus,we pusha flow (sizeof 1) to the cycle, by which the
previousflow pathsolutionin Figure7(a)is updated;The negative
costarcsin R aredeletedon the flow path andthe positive cost
arcsareaddedasshavn in Figure7(c). Theflow costnow becomes
C(a,d) + C(b,c) + C(c,e) =5.0+2.0+1.6= 8.6. A repeatedxe-
cutionof this procedurewill eventuallyreachanoptimal-costflow
by Theorems3.

/* Optimalrebindingwhenanoperationis rescheduled

from clockstepjtoi (i = j + 1orj — 1) */

(Stepl) max-flomcomputation

o Identify setS of theinvalid flow arcs(in G)
betweerclock steps: andj;

e Find SRC;(8) and DEST;(S)

e Identify setQof theflow arcs(in G) crossingclock stepi;

e Find SRC;(Q) and DEST;(Q)

® ExtractGpartial, from G, with threecolumnsof nodes,
SRC;(S) U SRC;(Q), terminalnodesn S,
andDEST;(S) U DEST;(Q)

o Apply themin-costaugmentatiomethodto Gpartiat:

(Step2) min-costcomputation {

e ConstructesidualgraphR for the max-flov of G
obtainedn Stepl;

o Find anegative costcycle from R;

while (thereis a negative costcycle)
e Updatetheflow in G to reduceflow cost,andupdateR;
e Find anegative costcycle from R;

endwhile

Figure8: Theproposedwo-stepalgorithmof anoptimalflow computation
for reschedule.

Figure8 summarizesheflow of ourtwo-stepoptimalflow com-
putationfor rescheduleLet usanalyzethetime complexity of each
step.WhenG = (N, A) hasT’ columns(i.e.,# of clock stepsjand
atmostK nodesin acolumn(i e., # of buses)the numberof arcs

(i.e.,|A]) is boundedby ( -K2. Thus,finding K augmenting
pathsin G takesO((T?K?)K) time. However, network Gpartial

SNote thatthe arc costsin the network satisfythe inequalityrelation C'(z, y) +
C(y, z) < C(z, z) mentionedn thearccostformulationin Sec.2.2.

usedin Stepl of Figure8 hasonly threecolumns.Thus,thetimeto
find K augmentingathg in Gpartiar is O((3K?)K) becausghe

numberof arcsis -K?. SinceK is arelatively smallnum-

3
2
ber, andthe numberof arcsin Gpartia: is muchlessthan3x? in
practice thetime spentby Step1l is short. Further finding a nega-
tive cycle in aresidualgraphin Step2 takesO(T2K?) time. The
numberof iterationsof the while-loopin Figure8 depend$eaily
ontheresultof Stepl, andwas1 or 2 in mostpracticalcases.

3.3 Flow Computation for a Cyclic Execution of
CDFG

In Sec.3.2wedescribed procedurdor generatinganoptimalflow
solutionfor reschedule.However, the optimality holdswhenthe
switching actiity betweenthe datatransfersin the cyclic execu-
tionsof CDFGis notconsideredIf thereareflow pathswhosefirst
andlastdatatransfersarenot identical,we shouldresolhe themto
bevalid flow paths.

We illustrateour ideaof efficiently resolvingthe flow conflicts
using an example. Supposewe have five conflicting flow paths
shavn in Figure9(a). The dottedcircle representshat the corre-
spondingbus carriesno datatransferat that clock step. We con-
structa conflict graphfrom the conflicting flow paths. The nodes
of the graphare the collection of the first and last datatransfers
in the flow paths,andthereis an edgebetweentwo nodesif the
correspondinglatatransfersof the nodesarethefirst andlastdata
transfergn a conflictingflow path. Figure9(b) shaws the conflict
graphof Figure9(a). We assigncost, adj_cost(), to eachedgeof
the graph. The costrepresentsa (minimal) increaseof the total
flow costrequiredfor eitheroneof thetwo correspondingonflict-
ing flow pathsto be non-conflicting. For example,the flow path
a — --- — d in Figure9(a)becomes; — --- — a by switching
its flow arca — e with flow arce — g in flow pathe — --- — a
asshowvn theupper(dotted)circle in Figure9(c) sincetheincrease
of flow costis minimum amongthe permutation®f flow arcsbe-
tweenothercolumns.Thisincreaseshetotal flow costby 0.5. Sim-
ilarly, d — --- — a canbe corvertedto a non-conflictingflow
d — --- — d with anincreaseof flow costby 0.8 asshowvn in the
lower (dotted)circle in Figure9(c). Consequentlyadj_cost(a, d)
=min{0.5,0.8}=0.5.

For eachof the connectedcomponentsn a conflict graphwith
edgecosts,we selectthe edgewith the leastcost,andresohe the
correspondinglow path. Thetwo nodesf theedgearethenmeiged
into one, and edgecostsare updatedaccordingly We repeatthis
procesantil thereis no edgesn the conflict graph. For example,
Figure 9(d) shaws the conflict graphwith two connecteccompo-
nents. Consequentlyfrom the first componenta — --- — d
is resohed in the first iteration,andd — --- — e (andthus
e — -+ — d) will beresolhedin the secondteration. Fromthe
secondcomponent) — - -+ — ¢ (andthusc — --- — b) will be
resohed.

Sincethereareat mostK conflictingflow pathsandthelength
of eachpathis at most7" in termsof arcs,the time to constructa
conflictgraphandfind anedgewith theleasecostin the eachiter-
ationis O(KT). However, resolvingall the flow conflictsusually
is donein a few iterationsin practicesincethe graphtendsto be
decomposethto severalsmallerconnectedomponents.

4 Experimental Results

OuralgorithmFlow_LP wasimplementedn C++andareexecuted
onaSunSparc20vorkstation.We testeda setof high-level synthe-
sis benchmarlkdesignsin the experiments. The experimentswere

Practically in mostreschedules/e needto find k flow pathswherek tendsto be
muchsmallerthan K.
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Figure9: Resolvingtheflow conflictsfor cyclic executionof CDFG.

performedn two folds: (1) to checkthe quality of resultsin terms
of thetotalnumberof switchingtransitiong(i.e., thequantity.S W
in Eq. (1)) and(2) to checkthe speedf the executionof the algo-
rithm.

e Optimizing switching activity: Table2 shavs a comparisorof
thebusswitchingactvities, measuredh termsof SW;,: in Eq.(1),
for the designsproducedby the random-mue basedmethodpro-
posedn [8], thedesigngroducediy Bus Optwhichis thenetwork
flow basednon-optimal)methodproposedn [9], andthe designs
producedby our (optimal) algorithm Flow_LP. DIFF is the differ-
ential equationsolver. KALMAN is the statevector computation
partof the Kalmanfilter design,EWF is the 5-th orderelliptic fil-
ter design,and ComPLX is the arithmeticpartof complec number
calculation.DIFF.2, IDCT.2, andKALMAN.2 arethedesignspro-
ducedby unrolling DiFr, IDCT andKALMAN twice, respectiely.
The comparisonshawv that our algorithmwas ableto reducebus
switching actiity by 17.4% and 5.2% overall than thoseby the
random-muoeandBus Opt, respectely.

totaltransitions

design rand8] | BusOpt9] | Flow_LP red.(%)
‘ ‘ (Ours) over[8]/[9]

DIFF 22.48 16.40 15.45 31.3/5.8
DIFF.2 37.44 33.28 32.11 14.2/3.5
IDCT 73.82 69.42 67.07 15.9/3.4
IDCT.2 130.02 118.24 105.85 18.6/10.5
KALMAN 20.19 19.08 18.11 10.3/5.1

KALMAN.2 35.18 32.12 31.92 9.2/0.6
EWF 16.32 14.44 13.05 20.0/2.8
COMPLX 9.76 8.13 7.88 19.3/2.8

[ average || \ [ [ 17452 ]

Table2: Resultsof bus switchingactiity for the HLS benchmarldesigns.

e Impr oving performance Table3 showvs thecomparison®f run

timesfor thealgorithm(denotedasold_flowin thetable)whichuses
afull executionof pathaugmentatiomethodfor binding,Bus Opt

in [9] and Flow_LP. The comparisondndicate that our optimal

binding techniqueis 2.8 times fasterthan the (optimal) old_flow,

and slightly less (2%) than the (non-optimal)BusOpt. Conse-
quently for agiventimelimit, ourtechniques ableto exploremore
designspace(i.e., moreschedulesjhanold_flow or random-mue
[8] to find a globally optimalbindingresults.In summaryold_flow
andFlow_LP produceghe samebindingresults but old_flowis 2.8

timesslowerthanFlow_LP whereaBus OptandFlow_LP take al-

mostthe sameexecutiontimes,but the bindingresultsby Bus Opt
is about5% worsethanthoseby Flow_LP.

runtime ratio

design oldflow | BusOp{9)] Flow.LP old-flow 9]
(ours) /Flow_LP /Flow_LP
DIFF) 362sec | 83sec 78sec 4.36 1.06
DiIFF.2 451sec | 184sec | 192sec 2.35 0.96
IDCT 3.0hr 0.5hr 0.5hr 6.00 1.00

IDCT.2 4.2hr 1.8hr 1.7hr 2.47 1.05
KALMAN 28sec 17sec 19sec 1.47 0.89
KALMAN.2 62sec 43sec 38sec 1.63 1.13

EWF 1.6hr 0.6hr 0.6hr 2.67 1.00
COMPLX 46sec | 3lsec | 30sec | 1.53 1.03
[ average ] [ [ 281 [ 1.02 |

Table3: Resultsof runtimesfor thedesigns.
5 Conclusions

We presentec comprehense network flow embeddedalgorithm
for high-level power optimizationto overcomethe limitations of

previous approachesn [7, 8, 9, 10, 11]. The key contrikutions
include, in termsof quality, our designsare 5.2% more power-

efficient over the bestknown algorithm, which is dueto (a) the
exploitation of the effect of schedulingand (b) an optimal binding

for everyscheduleinstance andin termsof runtime, our algorithm
is 2.8timesfasterover theexisting network flow basedptimalbus
synthesislgorithm,whichis dueto (c) our novel (two-step)med-

anismof fully utilizing the previousflow solutionto minimize re-

dundantlow computationsMoreimportantly eventhough,in this

paper our techniquewasdescribedn the contet of bus binding,
it is alsoapplicableto otherimportanthigh-level binding/allocation
problems(e.qg.,functionalunit, registerand memoryport) for low

power combinedwith scheduling.
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