
Transient Power Management Through High Level Synthesis

Vijay Raghunathany, Srivaths Raviz, Anand Raghunathanz, and Ganesh Lakshminarayanaz

yDept. of Electrical Engineering, University of California, Los Angeles, CA 90095
zNEC USA, C&C Research Laboratories, Princeton, NJ 08540

Abstract

The use of nanometer technologies is making it increasingly important
to consider transient characteristics of a circuit’s power dissipation (e.g.,
peak power, and power gradient or differential) in addition to its average
power consumption. Current transient power analysis and reduction ap-
proaches are mostly at the transistor- and logic-levels. We argue that, as
was the case with average power minimization, architectural solutions
to transient power problems can complement and significantly extend
the scope of lower-level techniques.

In this work, we present a high-level synthesis approach to transient
power management. We demonstrate how high-level synthesis can im-
pact the cycle-by-cycle peak power and peak power differential for the
synthesized implementation. Further, we demonstrate that it is neces-
sary to consider transient power metrics judiciously in order to mini-
mize or avoid area and performance overheads. In order to alleviate the
limits on parallelism imposed by peak power constraints, we propose a
novel technique based on the selective insertion of data monitor oper-
ations in the behavioral description. We present enhanced scheduling
algorithms that can accept constraints on transient power characteristics
(in addition to the conventional resource and performance constraints).
Experimental results on several example designs obtained using a state-
of-the-art commercial design flow and technology library indicate that
high-level synthesis with transient power management results in signif-
icant benefits — peak power reductions of up to 32% (average of 25%),
and peak power differential reductions of up to 58% (average of 42%)
— with minimal performance overheads.

1 Introduction

Power dissipation issues are being made increasingly important and
mainstream in the design of deep sub-micron system chips due to elec-
tronic system and circuit technology trends. The widespread demand
for ubiquitous (wireless) communications and information access de-
vices implies that a significant and growing fraction of chips are de-
signed with battery considerations. Equally important are the chal-
lenges ushered in by the use of nanometer technologies for system in-
tegration. Ensuring efficient and reliable power delivery and signal in-
tegrity are daunting tasks for deep sub-micron system-on-chip designs.
These problems are further complicated by the use of low-power design
techniques such as supply voltage reduction, power management, and
variable voltage design [1, 2, 3, 4, 5]. Thus, in nanometer technolo-
gies, analyzing and managing a circuit’s transient power characteristics
(e.g. peak power, power or current gradient,etc.) is equally if not
more important than minimizing average power or total energy con-
sumption. Peak power dissipation is directly related to packaging and
cooling requirements, and determines I-R drops and electromigration
in the on-chip power supply network. The current (power) differential
determines the noise introduced due to inductive ground bounce. In
this paper, we address the issue of managing these transient power con-
sumption characteristics through the choice of appropriate architectures
during high-level synthesis (HLS).

1.1 Related Work

It is well known that architectural decisions can have a significant im-
pact on a circuit’s power consumption. Hence, a significant body of
work has been devoted to minimizing average power consumption or
total energy consumption during high-level design [1, 2, 3, 4, 5]. How-
ever, relatively little work has been targeted at designing circuits with
improved transient power characteristics.

Analysis and design techniques to identify and alleviate transient
power related problems have been proposed at the lower levels of ab-
straction. Techniques to estimate the cycle-by-cycle peak power con-
sumption of circuits at the gate level were proposed in [6, 7]. Design
analysis and validation techniques for ground bounce were proposed
in [8]. Techniques for timing analysis of digital circuits considering the
effect of power supply noise on the delays of gates in the circuit were
proposed in [9].

The above work mostly addresses analysis of the effects of power
transients. Current commercial tools mostly fall into the category
of accurate simulation and design of the power supply network it-
self [10, 11]. While the use of such accurate analysis techniques is
eventually necessary for full-chip validation before sign-off, their use
late in the design flow implies that it may be very expensive (in terms
of design effort and design overhead), if not impossible, to re-design the
circuit in order to address any problems. The use of high-level strate-
gies, such as those presented in this paper, to manage transient power,
has a potential to significantly ease the burden on power supply network
design and avoid re-designs late in the design flow. As shown in this pa-
per, although only coarse timing and power information is available at
the high-level, it is still possible to take decisions that result in designs
with more desirable transient power characteristics.

In [12], the authors propose the use of staged shut down and wake
up for circuit blocks to alleviate inductive noise problems introduced
due to clock gating. The idea is to gradually “freeze” and “un-freeze”
the unit’s inputs over multiple clock cycles, resulting in reduced power
transients in each clock cycle. The application of this idea to VLIW
and array processor architectures is explored in [13]. Low power HLS
tools for data flow dominated behaviors which considered peak power
were presented in [14]. At the system-level, power transients can have
undesirable effects on voltage regulator and battery efficiency. Work
on controlling power transients at the system level through commu-
nications protocols and scheduling to improve battery life were pre-
sented in [15, 16]. We believe that, similar to average power or energy
reduction, it is important to develop techniques to address transient
power issues at every stage in the design process (including the sys-
tem level, hardware architecture level, and logic/circuit level). System-
level transient power management should aim at controlling coarse-
grain transients, while hardware architecture design techniques (such
as our work) should aim to manage power transients on a cycle-by-
cycle basis, and circuit-level tools can be used for fine-grained analysis
and optimization of the circuit and power supply network. Thus, the
techniques presented in this paper are complementary to previous work
on managing transient power at the system and circuit levels.

……
……
t1 := x1 + x2; // +1
t2 := x3 – x4; // -1
t3 := x5 – x6; // -2
t4 := x7 – x8; // -3
t5 := t2 – t3; // -4
t6 := t3 – t4; // -5
t7 := t5 * t6; // *1
y1 := t1 + t5; // +2
y2 := c2 – t7; // -7
y3 := t7 – c3; // -8
y4 := t6 – c1; // -6
……
……

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 c

on
su

m
ed

 (
m

W
)

Clock cycle

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 c

on
su

m
ed

 (
m

W
)

Clock cycle

(a) (b) (c)

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 c

on
su

m
ed

 (
m

W
)

Clock cycle

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 c

on
su

m
ed

 (
m

W
)

Clock cycle

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 c

on
su

m
ed

 (
m

W
)

Clock cycle

(d) (e) (f)

Figure 1: (a) Example behaviortest1 , and (b)-(f) power profiles for five distinct implementations of thetest1 behavior

1.2 Paper Overview and Contributions
This paper presents techniques for transient power management during
high-level synthesis. We demonstrate that the manner in which high-
level synthesis is performed can significantly impact the transient power
profile of the resulting circuit implementation. Further, we demonstrate
that it is necessary to consider transient power metrics judiciously in
order to minimize or avoid area and performance overheads. In order
to alleviate performance overheads that result from the limits on par-
allelism imposed by peak power constraints, we propose a novel tech-
nique based on the selective insertion ofdata monitoroperations in the
behavioral description.

We show how to modify generic high-level synthesis algorithms in
order to produce designs with desirable transient power profiles while
incurring minimal overheads. Finally, we demonstrate through exper-
imental results that the use of our techniques can lead to implementa-
tions that display significantly superior transient power characteristics
compared to implementations generated by a state-of-the-art high-level
synthesis tool.

2 Issues and Illustrations
In this section, we demonstrate through examples that decisions made
during high-level synthesis can have a significant impact on the tran-
sient power profile of the resulting implementation. We then illustrate
the issues involved in generating transient power managed architectures
and show that transient power management techniques need to be inte-
grated carefully into the high-level synthesis flow to avoid or minimize
the attendant overheads. Finally, we illustrate a novel technique based
on the use of data monitors to alleviate the performance overheads aris-
ing from the limits on parallelism imposed by peak power constraints.

2.1 Impact of high-level synthesis on transient
power

Example 1: Consider the example behaviortest1 that is shown in
Figure 1(a). In order to study the effects of high-level synthesis on the

transient power profile of the implementation, we generated different
RTL implementations of the behaviortest1 by varying the resource
constraints, scheduling, and resource sharing used during the synthesis
process. In order to consider reasonably power optimized designs, we
generated RTL implementations that employed a combination of clock
gating for inactive registers and operand isolation for functional units
based on information from the high-level synthesis tool1.

The resulting RTL implementations were synthesized using Synop-
sys Design Compiler [17], and mapped to NEC’s 0.35 micron gate array
technology [18]. Gate level power estimation was performed using an
in-house tool that is used commercially for sign-off [19] (the power esti-
mation process includes estimated interconnect and clock network par-
asitics). Figures 1(b)-(f) present the cycle-by-cycle power consumption
profiles of five distinct designs that implement the behaviortest1 .
Each profile represents the cycle-by-cycle power variation over 100
clock cycles for pseudo-random input traces. Inspection of Figure 1
clearly supports our hypothesis that high-level synthesis decisions sig-
nificantly impact the power profile of the synthesized implementation.
Even if we restrict our comparison to designs with similar area and
performance, there is still a significant variation in the transient power
characteristics of the implementation. For example, the power profile
shown in Figure 1(c) is quite different from the power profile shown in
Figure 1(d), although the designs have similar area and performance.
Thus, we can conclude that high-level transient power management has
the potential to result in significant benefits.

Having established the motivation for transient power management
through high-level synthesis, we next demonstrate that it is possible to
quantitatively analyze and influence the power profiles of the synthe-
sized implementation during high-level synthesis, using the techniques
proposed in this paper.

Example 2: Consider again thetest1 behavior of Figure 1(a). We
focus our attention on two different schedules for the behavior, that
were derived under identical resource constraints (1add rc 16 , 3
sub rc 16 , 1 mul wal 12).

1However, this is not a necessary condition for applying the techniques pre-
sented in this paper.

-7 -8

x7

y1

y3

y4

x8x1

c1

y2
5

2.13mW

1.15mW

Power consumption profile

C
ontrol S

tep

x2 x3 x4 x5 x6

+1 -1 -2 -3

-5-4

+2
*1

-6

c3c2

0

1

 2

3

4

Figure 2: An example scheduled behavior used to illustrate high-
level transient power management

The first schedule, shown in Figure 2, was derived using the orig-
inal high-level synthesis tool without any consideration for transient
power characteristics. In order to evaluate transient power characteris-
tics during high-level synthesis, we have developed a high-level tech-
nique to estimate the cycle-by-cycle power consumption profile (de-
tails of the procedure are provided in Section 3). This procedure uses
the peak power consumption for each component in the RTL library
(derived once per technology, during library characterization), together
with the set of components that are active during each control step (de-
rived through analysis of the schedule and module selection informa-
tion). Peak power estimation for individual components can be per-
formed using known techniques for peak power estimation at the logic
and transistor levels [6, 7]. The peak power consumption values for a
representative sub-set of components from the RTL library used in our
work are shown in Table 1.

Component Peak Power consumption
add rc 16 0.260 mW

add cla 16 0.475 mW
sub rc 16 0.358 mW

sub cla 16 0.549 mW
mul wal 12 1.238 mW

reg 16 0.068 mW
lt cmp 16 0.113 mW
gt cmp 16 0.107 mW
eq cmp 16 0.037 mW

Table 1: Peak power consumption values for some components
in our RTL library

The schedule shown in Figure 2 is annotated with its power con-
sumption profile, derived using the above mentioned procedure. The
estimated peak power consumption associated with the schedule of Fig-
ure 2 is 2.13 mW, while the peak power differential is 1.15 mW, as
indicated in the figure. Analysis of the figure indicates that the peak
power and peak power differential are caused in the third control step,
due to the scheduling of operations+2 and�6 in parallel with multipli-
cation operation�1. Note that both operations+2 and�6 have some
slack, hence it is not necessary to schedule them in the third control
step. However, the high-level synthesis tool, being unaware of transient
power considerations, chose the schedule shown in Figure 2.

Let us now consider an alternative schedule for thetest1 behav-
ior that was derived using the high-level synthesis tool after the in-
corporation of the transient power management techniques proposed
in this paper. Figure 3 shows the schedule, along with the correspond-
ing cycle-by-cycle power consumption profile (again, derived using our

-4

x5 x7x3 x4 x6 x8

x1
0

1

2

3

4

5

1.8mW

Power consumption profile

C
ontrol S

tep

0.44mW

x2 -1 -2 -3

-5+1

*1

+2 -7 -8 -6

y3 y4y2y1

c1c3c2

Figure 3: An alternative schedule for the example of Figure 1
with improved transient power characteristics

high-level estimation procedure). Note that, the high-level synthesis
tool has now avoided scheduling any other operations in parallel with
�1, in order to improve the design’s transient power characteristics. We
synthesized the RTL implementations resulting from the schedules of
Figures 2 and 3, and, derived the power consumption profiles at the
gate-level, as explained earlier in this section. The resulting power con-
sumption profiles were presented earlier in Figures 1(c) and (d), respec-
tively. The transient power managed implementation corresponding to
Figure 3 results in reductions of around 22% and 49%, in the peak
power and peak power differential respectively, compared to the origi-
nal implementation corresponding to Figure 2.

The following points demonstrated by the above example are worth
noting:

� Incorporation of transient power management into high-level syn-
thesis results in significant improvements in the transient power
characteristics of the synthesized implementations.

� The high-level power profiles (Figures 2 and 3) derived using the
procedure proposed in Section 3 are quite well correlated with
the actual power consumption profiles derived at the gate-level
(Figures 1(c) and 1(d)).

2.2 Performance Issues in Transient Power Man-
agement

The next example demonstrates that naive incorporation of transient
power management techniques into high-level synthesis may negatively
impact other design quality metrics (performance, area). This motivates
the need for algorithms (such as the ones described in Section 3) that
perform transient power management while judiciously evaluating and
trading off its impact on performance and area. Further, the perfor-
mance bottlenecks that result from the limits on parallelism imposed
by peak power constraints motivate the need for our novel technique
based ondata monitoroperations (presented later in this section).

Example 3: Figure 4(a) shows an example behavior fragment repre-
sented as a control data flow graph (CDFG). The behavior contains a
data-dependent loop that performs computations and stores the results
in two arrays (through operations M1 and M2). In Figure 4(a), dotted
lines represent control dependencies, while solid lines represent data
dependencies. Suppose that it is required to synthesize the behavior of
Figure 4(a) under the resource constraint of 2 multipliers, 1 adder, 1
subtractor, and 1 comparator. In addition, suppose that it is necessary
to satisfy a constraint of 2 mW on the cycle-by-cycle peak power.

By analyzing the peak power constraint and the peak power con-
sumption of individual components presented in Table 1, we can con-
clude that, although we have two multiplier resources available, we

��

*1 *2

x5

-1

-2

*3

M1 M2

23

17

y2 y1

(a)

:=3

x2x1 x3x4

+3

34

+4

+6

+7

255

+5

15

+2

+1

offset1

nb

offset2

:=2

<

Max_nb

ready=1

:=1

ready=0

��

(b)

S0

*1

*1

-2

*3

*3

M1 M2

+1

+2 *2

+6

+7

-1

Start

Done

:=1

:=2

*2 +5

<1+3+4

S9

S8

S7

S6

S5

S4

S3

S2

S1

(c)

Start

Done

S0

S1

S2

S3

S4

S5

S6

S7

:=1

:=2 +4

*2-2

*3

*3

M1 M2

+2 *1

-1 *2

+6

+7

+1 *1 +5

<1+3

S8

Start

S0:=1

S1+4
+3<1

:=2

*3

*3

M1 M2

+6

+7

S9

S10

S11

dm

Done

*2
+1 *1 +5

-1 -2

*1+2 *2

S6

S7

S8

S2

S3

S4

S5*2-2

+2 *1

-1 *2

+1 *1 +5

dm=T dm=F

(d)

Figure 4: (a) Behavior used in Example 2 (b) A schedule for the behavior (c) An alternate schedule for the same behavior (d) A
schedule with data monitors

cannot schedule two multiplication operations concurrently. In order
to enforce such sequential execution, we can introduce “implicit de-
pendencies” between every pair of multiplication operations in the be-
havior that can potentially be executed in parallel (e.g.between�1 and
�2). However, the manner in which these dependencies are introduced
can significantly impact performance, as shown next. Let us focus on
operations�1 and�2 in the CDFG of Figure 4(a). When introducing a
dependency to enforce sequential execution of�1 and�2, two natural
possibilities arise for their execution order. We performed high-level
synthesis for both these cases, and the resulting schedules are presented
as state transition graphs (STGs) in Figures 4(b) and 4(c), respectively.
The schedule in Figure 4(b) is obtained by introducing a dependency
that forces execution of�2 before�1, while the schedule in Figure 4(c)
is obtained by introducing a dependency from�1 to �2.

Upon examining the two alternative schedule STGs, it can be seen
that, in the schedule of Figure 4(b), each iteration of the loop requires
9 cycles, while in Figure 4(c), each loop iteration requires8 cycles. In
order to compare the performance of the two designs, we calculated the
expected number of clock cycles(ENC) [20] for both the schedules2.
The schedule of Figure 4(b) has an ENC of 176.86 cycles, while the
schedule of Figure 4(c) has an ENC of 157.32 cycles. That is because,
in the schedule of Figure 4(b), the introduced dependency�2 ! �1
delays the execution of operations on the critical path (+3 ! �1 !
�1! �2! �3!M1). Finally, a performance optimized schedule
derived using the same resource constraints, but without any transient
power management, requires onlysevencycles per loop iteration, while
the best schedule possible with transient power management requires
eightcycles per iteration.

The above example illustrates that naive use of transient power man-
agement techniques can lead to significant performance overheads. It
also demonstrates that the performance impact can be alleviated to
some extent by exploiting relevant information that is available dur-
ing the HLS process, including resource constraints and criticality of
various operations in the behavior. However, it is not always possible

2ENC is a performance metric used for schedules of behavioral descriptions
that contain significant control constructs in the form of conditionals and data-
dependent loops.

to avoid performance overheads, and the use of transient power man-
agement can lead to a deterioration in performance. We next propose a
technique to alleviate this limitation.

2.3 Using Data Monitors to Alleviate Perfor-
mance Overheads

In general, peak power constraints effectively impose a limit on the
parallelism that is available to the synthesis tool. We propose a novel
technique, based on the selective insertion ofdata monitoroperations,
to overcome these bottlenecks on parallelism to a large extent. From
our experiments, we observed that, depending on the values that ap-
pear at the inputs of an embedded RTL component, its actual power
consumption is frequently significantly lower than the worst-case value
assumed during high-level synthesis. The peak power consumption val-
ues for RTL components that were presented in Table 1 were derived
assuming no knowledge about the input values (i.e., for the worst case
input data). The percentile distribution of power consumption for the
componentadd rc 16 is plotted in Figure 5. The plot indicates that
very few input vectors exercise the worst case peak power consumption
in the component. For example, consider the pointP indicated in Fig-
ure 5. PointP indicates that, for 87.5% of the input vectors, the power
dissipation in the component is bounded by0:11mW , which is less
than half the worst case of0:260mW . Further, suppose that we divide
the input spaceI for the componentadd rc 16 into two parts -P1,
which contains all input values for which the 8 MSBs of the two vari-
ables being added are0, and �P1, which contains all other input values.
It turns out that, for all input vectors inP1, the power consumption of
the componentadd rc 16 is bounded by0:11mW , i.e., all points in
P1 are contained to the left of pointP in Figure 5. That is because, for
the adder implementation we considered, for all vectors inP1, there is
no switching activity in a significant part of the circuit. Suppose that we
are synthesizing a design under a peak power constraint that only allows
one addition operation to be performed per cycle based on worst case
peak power consumption of componentadd rc 16 . The above dis-
cussion implies that, most of the time, we could have actually allowed
two addition operations to be scheduled in parallel.

•

••
••••

•••••••
•••••••••

••••••••••••
••••••••••••

••••••••••••
•••••••••••

•••••••••
•••••••

•••••
••••

••
•
•
•

•

Percentile of input space

P
e

a
k

P
o

w
e

r
(m

W
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5 0.260 mW

P (87.5%, 0.11 mW)

Figure 5: Percentile power distribution for component
add rc 16 motivating the use of power modes

We alleviate the performance degradation that results from the pes-
simism in peak power consumption values of RTL components by (i)
partitioning the input space for an RTL component (set of all possible
input vectors) into two or more distinct sub-spaces, orpower modes,
and deriving a different bound on power consumption for each power
mode 3, and (ii) modifying the behavior during high-level synthesis
by selectively insertingdata monitoroperations that classify, at run-
time, the values appearing at the component’s inputs into the appropri-
ate power mode. The concept that RTL components display different
power behavior for different parts of the input space (i.e., power modes)
was originally proposed for improving the accuracy of average power
estimation at the register-transfer and behavioral levels [21, 22]. Here,
we are adapting the concept for use in a different context, and we focus
on peak power of the component in each power mode as opposed to the
average power consumption.

Example 4: Consider again the example behavior of Figure 4(a). Re-
call that the schedules of Figures 4(b) and 4(c) were derived using a
peak power constraint of 2 mW, which resulted in sequential execution
of multiplication operations�1 and�2 despite the availability of two
multiplier resources. During the process of characterizing the multiplier
for peak power consumption, we derived two separate power modes
(based on the values at the higher order half of the input bits). The peak
power consumption of the multiplier in the two power modesP1 and
�P1 was found to be 0.562 mW and 1.238 mW, respectively. Based on

the procedure described in Section 3, we inserted two data monitor op-
erations at the inputs of operations�1 and�2. Based on the outputs of
the data monitor operations, we introduce a conditiondm in the behav-
ior that evaluates toTrue if and only if the multipliers implementing
�1 and�2 would both be in power modeP1. When the conditiondm is
True, we can schedule operations�1 and�2 in parallel. Otherwise, we
need to enforce sequential execution as in Figures 4(b) and 4(c). The
STG that implements this optimization is shown in Figure 4(d). There
are two distinct paths that can be taken through the STG for each itera-
tion of the loop - one represents the case when the conditiondm eval-
uates toTrue and requires7 cycles, while the other requires8 cycles.
The expected number of clock cycles for the schedule of Figure 4(d)
was computed to be 140.22 cycles, which is only 1.8% higher than the
ENC of the performance optimized schedule for this behavior without
any transient power management.

The above example demonstrated that the use of data monitor condi-
tions to exploit power modes of RTL components can eliminate or sig-

3In theory, it is possible to have any number of power modes. However,
in practice, we found that the use of two or three power modes was the most
beneficial since the overhead of identifying power modes at run-time based on
input data increases, while the difference in the peak power for the different
power modes decreases, as we increase the number of power modes considered.

nificantly reduce performance bottlenecks. Note that, the monitor op-
erations themselves result in power, performance, and area overheads.
Hence, it is critical that they be used in a judicious manner, as is done
by the algorithms presented in Section 3.

The algorithms proposed in Section 3 for integrating transient power
management into HLS consider the above issues, resulting in imple-
mentations with maximal reduction in power transients at minimum
performance and area overheads. In addition, the enhancements made
were kept independent of the underlying high-level synthesis algo-
rithms in order to ensure easy integration into the framework of any
HLS tool.

3 Methodology and Algorithms
In this section, we describe our algorithm for synthesizing a circuit that
incorporates transient power management capabilities while minimiz-
ing performance overheads (if any). Section 3.1 presents an overview
of this framework, while Section 3.2 details the constituent steps.

3.1 Overview
Figure 6 outlines the basic features of our algorithm. Conventional
design methodologies use a high-level synthesis flow to synthesize an
RTL controller/datapath from a given behavior, design constraints, and
optimization objectives. The design flow typically involves schedul-
ing (Step1) and resource sharing (Step3) in conjunction with many
optimizations targeting design metrics like area, performance,etc. As
shown in the figure, our techniques (shaded boxes in gray) can be incor-
porated into such a flow as a two-phased plug-in (Steps1a and2). The
added steps then judiciously resolve the interplay of synthesis choices
and transient power issues.

The transient power check(Step1a) simply examines the schedula-
bility of an operationop in the current statestate based on the given
transient power constraintsPmax and ÆPmax (see Section 3.2.1). If
the constraints are satisfied, a value ofTrue is returned on the Boolean
variable SCHEDULABLE to the scheduler. When aFalse is returned
to the scheduler, the scheduler removesop from its list of schedulable
operations for the current state. The operationop can then be consid-
ered for scheduling in future states, where the aforementioned transient
power constraints may not be violated.

The scheduled behavior description available at the end of Step1
now obeys the user-specified transient power constraints. However, this
schedule is pessimistic in the sense that it has been derived assuming
that the execution of each operation in each state consumes maximum
power under all conditions. This is clearly not true of all input data, and
as seen earlier, such a hard constraint forms a bottleneck in the deriva-
tion of high-performance schedules. We, therefore, usedata monitor
insertion (Step2) to judiciously insert data monitor operations in the
schedule and aggressively perform performance recovery (recall that
the data monitor operations sample the data at the inputs of a functional
unit and dynamically determine its power mode. During this reschedul-
ing process, we again ensure that the transient power constraints are not
violated.

The expanded flow of Step2 is also shown in Figure 6. Step2a
begins the loop that chooses the bestk operations in the schedule for
which the data monitors are to be inserted. This is done as follows.
First, a short-list ofk operations that are likely to yield the maxi-
mum performance improvements, if implemented with data monitors,
is drawn up. The following criteria are used to assess an operation for
inclusion in the short-list:

� The sensitivity of the ENC of the schedule to the operation: if an
increase in the delay of the operation increases the total schedule
length, the operation is deemed critical, and is a good candidate
for data monitor insertion.

� The probability that the operation will execute in a power mode
with a reduced peak power value.

Step2b (see Section 3.2.2) finds thek operationsbestsatisfying these
two characteristics. SetSmtr represents a collection of these operations.

Schedule

k monitors
 selected ?

For_each m−subset
 of S_mtr

 Lock best
 m−subset

 Select k operations
with highest potential
 (set S_mtr)

N

Y

K−=m Reschedule,
Estimate Perf.

Transient Power
 Check

SCHEDULABLE
 <Boolean>

1

2

3

1a

2a

2b

2c

2d

2e

 Perform resource sharing,
 controller synthesis

(State, op)

(State, op)

SCHEDULABLE
 <Boolean>

Data Monitor
 Insertion

Output: Transient power optimized design
with data monitors

Input: Behavior, resource constraints, design
 objectives, transient power constraints,
 optimization parameters (k, m)

Figure 6: High-level synthesis flow enhanced with transient power management techniques

Steps2c - 2ethen choose the ”best” design that can be obtained by
implementingm of thesek operations with data monitors. Note that,
the best design is not necessarily obtained by choosing them oper-
ations with best individual impact. This is because, the performance
impact of implementing multiple operations with data monitors is not
a simple function of the performance impacts of individual operations.
The overall performance of the design depends, in addition to the delay
of individual operations, on the resource constraints, schedule, and the
topology of the behavior.

In order to consider the cumulative impact of implementing multiple
operations using data monitors, we need to consider all subsets,Sub, of
Smtr , of cardinalitym. This involves the evaluation ofkCm subsets.
Clearly, the complexity of this evaluation increases significantly with
m, and so does the probability of actually determining the best set of
operations to be implemented using data monitors. The parameterm,
which is specified by the user, therefore, trades off the CPU time with
the quality of the output design.

Once the “best” subset has been determined, we lock the operations
implemented with data monitors and go back to Step2a to determine
whether the user specified limit (k) on the number of data monitors has
been reached. If the limit is reached, resource sharing and controller
synthesis follow, resulting in a design optimized for transient power
management.

3.2 Details
In this section, we detail selected aspects of our algorithm. Sec-
tion 3.2.1 describes the transient power check (Step1a), and Sec-
tion 3.2.2 describes the selection phase (Step2b) during the course of
data monitor insertion. Finally, Section 3.2.3 details the rescheduling
phase (Step2d).

3.2.1 Enforcing transient power constraints

In this section, we describe the transient power check performed dur-
ing the course of scheduling. The transient power check examines a
candidate operationop to be scheduled in a stateS with respect to the
following criteria:

� Does the scheduling ofop in S violate the peak power threshold
(Pmax) in a cycle?

� For all states in the STG with transitions into stateS (predecessor
states), does this scheduling violate the specified cycle-to-cycle
peak power differential (ÆPmax)?

In order to perform this check, we need to estimate the power con-
sumption profile of stateS, considering all operations that have already
been scheduled inS and the candidate operationop. As mentioned in
Section 2, we use the following information in this phase:

1. The peak power consumption for each component in the RTL li-
brary. This information is derived once per technology, during
library characterization. Known techniques for peak power esti-
mation at the logic and transistor levels [6, 7] can be used for this
purpose.

2. The set of RTL components that are active in stateS. This is
derived using the operation-to-component mapping (module se-
lection) information for all the operations inS, and the number of
register writes performed in stateS.

3. The clock network capacitance, including the interconnect and
clock buffer parasitics, estimated using high-level techniques such
as those presented in [23].

Suppose that the set of RTL components active during stateS is
Active Comps(S), and the peak power consumption for a library
componentc is given byPeak Power(c). Also, suppose that the esti-
mated clock network capacitance for the entire clock network isCclock,
and the clock frequency isfclock. The peak power consumption of the
stateS is estimated using the formula:P

compi2Active Comps(S)
Peak Power(compi)+

Cclock � V 2
dd �Clock Frac(S)� fclock

The term ClockFrac(S) represents the estimated fraction of the
clock network that switches in stateS, and its value depends on the
clock gating strategy employed. When no clock gating is employed,
Clock Frac(S) = 1; 8S. When the clock gating strategy suppresses
the clocking of registers that do not need to load new values in a clock
cycle, ClockFrac(S) can be approximated as the ratio of the number of
registered variables generated inS to the total number of registers (this
information can be easily derived from the variable lifetime analysis
performed in any high-level synthesis tool).

3.2.2 Selection

In this section, we present a simple technique for determining an ini-
tial set ofk candidate operations for possible implementation with data
monitors. We base our formulation on the following general observa-
tions.

� An operation that frequently sees low switching activity at its in-
puts (and, hence, consumes lower power) is a good candidate for
implementation with data monitors. As mentioned earlier, this
frequency depends on the statistics of the input values.

� An operation whose speedup has a higher impact on the ENC of
the schedule must have a greater chance of selection (i.e., opera-
tions on “critical paths” should be given higher priority).

Given an operationop, E(�(op; out)), the expected length of the
longest path connectingop to the primary outputout, forms a good
measure of operation criticality [24]. This is because, operations which
have longer paths to primary outputs, when re-scheduled, are likely to
influence the computation times of the primary output (and hence the
ENC of the entire schedule). The probability of low switching activity
of an operation, denoted by�, is computed through a simulation of the
schedule by monitoring the variable values.

We multiplyE(�(op; out)) by� to obtain the measure given below.

potential(op) = � � E(�(op; out)) (1)

Thek operations with the highest potential values are selected as can-
didates for further analysis.

%*1

%*1

%*1

%*1

*1

*1

T F

STOP

S0

S1

S2

S3

S4

S5

S6

S7

S8

Original schedule

(a)
(c)

++1,>1,−−1

−1, *1

Modified schedule with
operation *1 implemented
with a data monitor

%*1, *1

%*1, *1

STOP

%*1

%*1

%*1

*1

*1

%*1, *1

T

F
S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

Intermediate schedule

(b)

−1, *1

++1,>1,−−1

−1

%*1, dm(*1)

dm=T
dm=F

%*1, *1

%*1, *1

STOP

%*1

%*1

%*1

*1

*1

%*1, *1

T

F
S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

T F

++1,>1,−−1

++1,>1,−−1
−1, *1 −1

%*1, dm(*1)
dm=F

dm=T

Figure 7:Example schedules shown before and rescheduling

3.2.3 Rescheduling

When an operation in the behavior is implemented with data moni-
tors, its timing behavior is altered. The schedule, therefore, needs to
be modified to reflect this change. It is important that the scheduling
procedure be incremental,i.e., start with the existing schedule informa-
tion and modify the schedule so as to realize the maximal performance
gains. Our procedure operates as a set of transformations to the existing
schedule. These transformations include moving of operations across
states, deletion of empty states,etc., as outlined in [25]. The following
example illustrates our scheduling technique.

Example 5: Consider the original schedule shown in Figure 7(a) de-
rived (with transient power management) for the following input speci-
fication.

� An initial allocation constraint that does not include any func-
tional units with data monitors.

� In any given iteration, the dependencies are as follows.�1 is
schedulable if and only if%�1 (modular multiplication operation)
has been scheduled. Likewise,�1 and%�1 are schedulable if and
only if > 1 and++ 1 have been scheduled.++ 1 and> 1 are
schedulable if and only if�1 of the previous iteration terminates.

� Operations�1 and% � 1 cannot be scheduled in the same cycle
since the sum of the peak powers associated with their respective
functional units violate the peak power constraint.

Observe that operation�1 is schedulable in stateS1 but for the tran-
sient power constraint. Now, assume that operation�1 is now deemed
a suitable candidate for implementation with a data monitor. Then, a
scheduler has to perform the basic actions enumerated below to incor-
porate this solution.

1. The addition of data monitor operationmtr(�1) creates an alter-
native path (S1 ! S9 ! S10 ! S11 ! S12 ! S13 !
S14 ! S0 in Figure 7(b)) that the schedule can take. Since this
represents the power mode for *1 with reduced peak power, *1
can be scheduled in parallel with% � 1 in statesS9; S10; and
S11. Consequently,�1 is absent from statesS12! S14.

2. Empty statesS13 andS14 can be deleted since the functionality
of the schedule will still be preserved.

3. Since�1 finishes earlier in theS1! S9! :::! S12 path, op-
erations dependent on its output become immediately schedulable
subject to the input allocation constraint. For example, we can ad-
vance the operations in stateS0 to stateS12. The composite state
S12 shown in Figure 7(c) captures this scenario. This move also
adds the additional edges fromS12 to S1 andS8.

The above re-scheduling steps are no different from a set of sim-
ple rearrangements across dependencies for a piece of code. They ex-
tract whatever parallelism remains in the schedule without affecting the
execution semantics. These tasks map directly to the transformations
employed in scheduling algorithms like Percolation Scheduling [25].
When the scheduler is called, these transformations operate on the orig-
inal schedule to derive intermediate representations leading to the final
output as shown in Figure 7(c).

4 Experimental Results
We applied the proposed transient power management techniques to
several example benchmarks and evaluated them using a commercial
design flow. We generated structural RTL implementations (controller
and datapath) for each benchmark, without and with the use of tran-
sient power management, using identical resource and clock period
constraints for both cases. We refer to these as theoriginal andtransient
power optimizedRTL implementations, respectively. For each design,
the expected number of clock cycles (ENC) metric, computed as de-
scribed in [20], was used to compare the performance of the synthesized
RTL implementations. Logic synthesis was performed using Synopsys
Design Compiler [17] and the design was technology mapped to the
NEC CB-C9VX 0.35 micron technology library [18]. We performed
experiments to evaluate the transient power reduction obtained through
the use of the proposed techniques. Power estimation was performed
through simulation using input sequences that were specified for func-
tional verification (i.e., they provide high behavioral and RTL code and
value coverage). NEC’s in-house gate-level power estimation tool [19]
was used to generate a cycle-by-cycle report, which was post-processed
to compute the peak power as well as the peak power differential.

We evaluated the proposed technique using ten example benchmarks.
ExamplePoly represents the computation of a polynomial.PPsumis a
parallel prefix sum routine used in address calculations.SeqDevis a
sequential implementation of the standard integer division algorithm,
while Findmin finds the minimum of a set of given values.Quad is
a subroutine used in the computation of Gauss-Jacobi abscissas and
weights, andSpHarmcomputes spherical harmonics for solving wave
equations.Matrix is an algorithm for matrix multiplication andWavelet,
FIR andDCTare well known signal processing algorithms.

Table 2 summarizes the results of our experiments. Major columns
Peak Power, Peak Power Differential, ENC, Avg. P.O.and A.O.
report the expected number of clock cycles (in tens of cycles), peak
power consumed in any cycle (in milliwatts), the peak cycle-to-cycle
power differential (in milliwatts), the average power consumption over-
head that is incurred due to transient power management and the area
overhead, respectively. Minor columnsOrig andTP-Opt represent the
original and transient power optimized RTL implementations for each
example.

Circuit Peak Power (mW) Peak Power Differential (mW) ENC (tens of cycles) Avg. P.O. A.O.
Orig TP-Opt Orig TP-Opt Orig TP-Opt

Poly 5.1 4.1 (-19.61%) 1.1 0.7 (-36.36%) 289 295 (2.07%) 0.74% 3.72%
PPsum 32.6 25.8 (-20.85%) 9.3 4.4 (-52.69%) 256 262 (2.34%) 1.09% 4.14%
Seqdiv 11.3 8.0 (-29.20%) 2.9 1.6 (-44.83%) 155 159 (2.58%) 0.67% 2.98%

Findmin 7.7 5.2 (-32.46%) 3.1 1.3 (-58.06%) 409 422 (3.18%) 0.55% 5.03%
Quad 40.6 30.5 (-24.87%) 8.4 4.9 (-41.67%) 783 799 (2.04%) 0.97% 6.81%

SpHarm 13.3 9.6 (-27.82%) 3.6 2.7 (-25.0%) 927 941 (1.51%) 1.14% 3.16%
Matrix 13.2 10.9 (-17.42%) 4.4 2.9 (-34.09%) 312 319 (2.24%) 1.06% 2.52%
Wavelet 8.2 6.1 (-25.61%) 3.1 1.7 (-45.16%) 1564 1595 (1.98%) 0.87% 3.47%

FIR 5.2 4.0 (-23.07%) 2.1 1.3 (-38.10%) 902 910 (0.88%) 0.91% 5.66%
DCT 13.4 9.7 (-27.61%) 4.7 2.6 (-44.68%) 484 493 (1.86%) 1.21% 7.13%

Table 2: Transient power, performance, and area results

The results indicate that the proposed transient power management
technique achieves up to 32% (average of 25%) reduction in peak power
consumption in the synthesized circuits over a state-of-the-art high level
synthesis tool. The peak cycle-to-cycle power differential was also re-
duced by up to 58% (average of 42%). These benefits come with mini-
mal performance, area and average power dissipation overheads (aver-
age of 2.07%, 4.5% and 0.92% respectively). These results reflect the
overheads for a complete RTL implementation including data monitors,
additional control logic, and multiplexers.

Since our transient power management technique consists of two op-
timizations (i.e., transient power check and data monitor insertion) ap-
plied together, we investigated the effect of these optimizations when
applied individually. We performed an additional experiment with ex-
amplesSeqdivandQuad. We generated and compared implementations
of these benchmarks without and with the use of data monitor units.
While the peak power and the power differential remained almost the
same for the two implementations, we found that data monitor inser-
tion decreased the performance overhead (in terms of ENC) from 9.6%
and 8.5% to 2.58% and 2.04%, respectively, for the two benchmarks,
compared to designs without any transient power management.

In our experiments, we found that data monitor insertion does not
cause any overhead in terms of average power consumption. While
monitor units dissipate some power, the use of these units leads to a de-
crease in overall average power consumption due to the following rea-
son. Data monitor insertion leads to a reduction in the number of clock
cycles to complete the design’s computation, which translates into re-
duced switched capacitance in the clock network and registers. This
reduction compensates for the power consumed by the monitor units
themselves, thus eliminating any average power consumption overhead.
Monitor units also cause a negligible overhead in terms of implementa-
tion area. For the above two examples, the area overhead due to monitor
insertion was found to be 1.98% and 1.81%, respectively.

These results clearly suggest that incorporating transient power man-
agement techniques into high-level design results in architectures that
have significantly improved power transient profiles with negligible
performance, area, and average power consumption overheads.

5 Conclusions

We have presented techniques to manage power transients through high
level synthesis. We have shown that significant impact can be made
on the transient power profile of the resulting implementation by con-
sidering power transients during generation of the architecture. We
have demonstrated how to incorporate our technique into a high-level
design flow in order to minimize the associated performance over-
heads. Our technique does not assume any specific high-level synthesis
tools/algorithms and can be plugged into any high-level synthesis sys-
tem. Results show that RTL implementations synthesized through the
use of our technique have significantly lower peak power consumption
and cycle-to-cycle power differential.

References
[1] A. P. Chandrakasan and R. W. Brodersen,Low Power Digital CMOS De-

sign. Kluwer Academic Publishers, Norwell, MA, 1995.
[2] J. Rabaey and M. Pedram (Editors),Low Power Design Methodologies.

Kluwer Academic Publishers, Norwell, MA, 1996.
[3] A. Raghunathan, N. K. Jha, and S. Dey,High-level Power Analysis and

Optimization. Kluwer Academic Publishers, Norwell, MA, 1998.
[4] L. Benini and G. De Micheli,Dynamic Power Management: Design Tech-

niques and CAD Tools. Kluwer Academic Publishers, Norwell, MA, 1997.
[5] E. Macii, M. Pedram, and F. Somenzi, “High-level power modeling, es-

timation, and optimization,” inProc. Design Automation Conf., pp. 504–
511, June 1997.

[6] C. Y. Wang and K. Roy, “Maximum power estimation for CMOS circuits
using deterministic and statistical techniques,”IEEE Trans. VLSI Systems,
pp. 134–140, Mar. 1998.

[7] Y. M. Jiang, A. Krstic, and K. T. Cheng, “Estimation of maximum instanta-
neous current through supply lines for CMOS circuits,”IEEE Trans. VLSI
Systems, vol. 8, pp. 61–73, Feb. 2000.

[8] Y. S. Chang, S. K. Gupta, and M. A. Breuer, “Analysis of Ground Bounce
in Deep Sub-Micron Circuits,” inProc. VLSI Test Symp., pp. 110–116,
Apr. 1997.

[9] Y. M. Jiang, A. Krstic, and K. T. Cheng, “Dynamic timing analysis consid-
ering power supply noise effects,” inProc. Int. Symp. Quality of Electronic
Design, pp. 137–143, Mar. 2000.

[10] RailMill, Synopsys Inc. (http://www.synopsys.com).
[11] VoltageStorm SoC, Simplex Solutions Inc. (http://www.simplex.com).
[12] M. D. Pant, P. Pant, D. S. Wills, and V. Tiwari, “Architectural Solution

for the Inductive Noise Problem due to Clock-Gating,” inProc. Int. Symp.
Low Power Electronics & Design, pp. 255–257, Aug. 1999.

[13] M. D. Pant, P. Pant, D. S. Wills, and V. Tiwari, “Inductive noise reduction
at the architectural level,” inProc. Int. Conf. VLSI Design, pp. 162–167,
Jan. 2000.

[14] R. San Martin, and J. P. Knight, “Power Profiler: Optimizing ASICs power
consumption at the behavioral level”, inProc. Design Automation Conf.,
pp. 42–47, June 1995.

[15] C. F. Chiasserini and R. R. Rao, “Energy efficient battery management,” in
Proc. IEEE Infocomm, pp. 396–403, Mar. 2000.

[16] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi,
“Extending lifetime of portable systems by battery scheduling,” inProc.
Design Automation & Test Europe (DATE) Conf., pp. 197–201, Mar. 2001.

[17] Design Compiler, Synopsys Inc. (http://www.synopsys.com)
[18] CB-C9 Family VX/VM Type 0.35um CMOS CBIC Users Manual. NEC

Electronics, Inc., Sept. 1998.
[19] OpenCAD V 5 Users Manual. NEC Electronics, Inc., Sep. 1997.
[20] S. Bhattacharya, S. Dey, and F. Brglez, “Performance analysis and opti-

mization of schedules for conditional and loop-intensive specifications,”
in Proc. Design Automation Conf., pp. 491–496, June 1994.

[21] L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli, “Regression models
for behavioral power estimation,” inProc. Int. Wkshp. Power & Timing
Modeling, Optimization, and Simulation, 1996.

[22] N. R. Potlapally, A. Raghunathan, G. Lakshminarayana, M. S. Hsiao, and
S. T. Chakradhar, “Accurate macro-modeling techniques for complex RTL
components,” inProc. Int. Conf. VLSI Design, pp. 235–241, Jan. 2001.

[23] R. Mehra and J. Rabaey, “Behavioral level power estimation and explo-
ration,” in Proc. Int. Wkshp. Low Power Design, pp. 197–202, Apr. 1994.

[24] G. Lakshminarayana, K. S. Khouri and N. K. Jha, “WAVESCHED: A novel
scheduling technique for control-flow intensive behavioral descriptions” in
Proc. Intl. Conf. Computer Aided Design, pp. 244–250, Nov. 1997.

[25] R. Potasman, J. Lis, A. Nicolau, and D. Gajski, “Percolation based synthe-
sis,” in Proc. Design Automation Conf., pp. 444–449, June 1990.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

