
ble

r a
tu-
re,
-
g

or-
by
at

wo
ne
le.

],
r,
f

ach
ti-
ery
ch,
ets

-
g
not

ted
e
la-

d
],
s a
False-Noise Analysis using Logic Implications

Alexey Glebov, Sergey Gavrilov, David Blaauw*, Supamas Sirichotiyakul**, Chanhee Oh**,
Vladimir Zolotov**

MicroStyle - Moscow, Russia, *University of Michigan (blaauw@umich.edu), **Motorola Inc. Austin, TX,

1 Abstract

Cross-coupled noise analysis has become a critical concern in
today’s VLSI designs. Typically, noise analysis makes an assump-
tion that all aggressing nets can simultaneously switch in the same
direction. This creates a worst-case noise pulse on the victim net
that often leads to false noise violations. In this paper, we present a
new approach that uses logic implications to identify the maximum
set of aggressor nets that can inject noise simultaneously under the
logic constraints of the circuit. We propose an approach to effi-
ciently generate logic implications from a transistor-level descrip-
tion and propagate them in the circuit using ROBDD
representations and a newly proposed laterial propagation method.
We then show that the problem of finding the worst case logically
feasible noise can be represented as a maximum weighted inde-
pendent set problem and show how to efficiently solve it. Initially,
we restrict our discussion to zero-delay implications, which are
valid for glitch-free circuits and then extend our approach to timed
implications. The proposed approaches were implemented in an
industrial noise analysis tool and results are shown for a number of
industrial test cases. We demonstrate that a significant reduction in
the number of noise failures can be obtained from considering the
logic implications as proposed in this paper, underscoring the need
for false-noise analysis.

2 Introduction

Advances in process technology have greatly increased the cou-
pling capacitance in VLSI interconnects making it common for as
much as 60-80% of interconnect capacitance to be coupling capac-
itance to other nets. This trend has lead to an increase in the noise
injected on a net due to the unanticipated switching of neighboring
nets, creating the necessity for noise analysis tools [1], [2], [15],
[17]. In noise analysis, the net under consideration is commonly
referred to as thevictim net, while the neighboring nets that inject
noise are referred to asaggressor nets. A victim net with its associ-
ated aggressor nets is referred to as anoise cluster. A functional
noise failureis said to occur when a victim net is in a quiescent
state while its aggressor nets switch, creating a noise pulse injected
on the victim that could potentially be latched. Adelay noise fail-
ure is said to occur if the victim net transitions at the same time as
the aggressor nets, decreasing or increasing the delay of the victim
net depending on the direction of the aggressor switching, and
potentially creating a timing violation.

Noise analysis tools typically make the assumption that all
aggressor nets switch at the same time and in the same direction
[1], [15], [17]. Under this assumption, the noise injected from each
aggressor combines, creating the maximum possible composite
noise pulse on the victim net and yielding a conservative analysis.
(In some cases, it may be necessary to shift the alignment times of
the aggressor transitions by a predetermined amount, to account
for the difference in aggressor driver and interconnect delays.) In
practice, however, the timing and logic constraints present in the
circuit may prevent all aggressors from switching in the same
direction at the worst possible alignment time. Therefore, the noise
reported by an analysis that does not account for timing and logic

correlations can severely overestimate the actual noise realiza
on a victim net and can create a so-calledfalse noise violation.
This is especially important when the number of aggressors fo
victim is high (e.g. 10 or more), as is often the case. In such a si
ation the combined noise from all aggressors will be very seve
while the likelihood of realizing the simultaneous switching sce
nario for all aggressors is small due to inherent logic and timin
correlations.

Industrial noise analysis approaches have exploited timing c
relations in circuits to reduce the pessimism of noise analysis
identifying situations where two aggressor nets cannot switch
the same time. A common example of such a situation is when t
aggressor nets switch in different clock cycles, or where o
switches very early and the other very late in the same clock cyc
To determine when a net can switch, so-calledswitching windows
are propagated in the circuit using static timing analysis [1], [2
[15]. After switching windows are identified for each aggresso
the possibility of overlap between timing windows for a set o
aggressors is determined. It is important to note that this appro
is local in nature, meaning that the switching windows are iden
fied separately for each aggressor net, making this analysis v
efficient. However, this also results in a weakness of this approa
in that it does not identify situations where a pair of aggressor n
can each switch individually at a particular time but cannotboth
switch at that time due to logic relationships in the circuit. A sim
ple example of this situation is shown in Figure 1. Also the timin
window based approach does not identify cases where nets can
switch in the same direction, for instance when they are connec
by an inverter. Therefore, this approach may not identify all fals
noise failures, although it has been shown in practice to be re
tively effective [1].

In order to identify all false noise failures, both the timing an
logic correlations of the circuit must be taken into account. In [2
it was shown that in general, this problem can be represented a

Figure 1. Logic relationships between aggressors

Aggressor 1 Aggressor 3

Aggressor 1

Aggressor 2

a) timing correlations between aggressors

b) logic correlations between aggressors

Aggressor 2

Is
I are
list
in

th
l
es

l-

al

ts,

ow
search for a worst-case 2-vector test using a Boolean Constraint
Optimization problem formulation. In [3], a method based on com-
patible observability don’t care sets was proposed. In [16], a
method is proposed using a test pattern generation approach. How-
ever, all these methods have very high complexity and cannot be
applied to large problem sizes. Since noise primarily occurs in
chip-level routes, it is critical to perform false noise analysis at this
level in large designs, and hence heuristic methods must be
employed.

In this paper, we present a new approach for false noise analysis
based on the generation and propagation of logic implications
between signal pairs [4], [18]. Logic implications have been
widely used in logic synthesis [5-8] as well as in peak current esti-
mation [9], although they have not until now been proposed for
false noise analysis. The input to our analysis is a transistor level
description of the circuit. We show how pairwise logic implica-
tions can be efficiently generated using ROBDD representations of
the DC-connected components in the circuit. The generated pair-
wise implications are then propagated in the circuit through for-
ward and backward topological traversals, and we propose a new
method to generate so-called lateral implications.

Given the logic implications between the aggressor nets of a
noise cluster, we show that the problem of finding the subset of
aggressor nets which induce the maximum noise on the victim
under the constraints of these logic implications can be represented
by a constraint graph. We then show that this problem can be
solved by solving the maximum weighted independent set problem
for this constraint graph. Although this is an NP-hard problem, the
number of aggressors coupling to a victim, and hence the size of
the constraint graph, is typically small allowing for an exact solu-
tion of the problem. Since the logic implications only capture pair-
wise relationships, the overall approach remains heuristic and very
efficient, capable of analyzing large circuits in few hours.

The initial formulation presented in this paper uses zero-delay
implications which are valid only during the stationary state of the
circuit before and after all transitions occur. Hence, this formula-
tion for false noise analysis is conservative only for glitch-free cir-
cuits, obtained, for instance, through special transistor sizing
approaches [10]. In the last section of this paper, we show how our
analysis can be extended for timed implications which are valid at
all points during the operation of a circuit.

The proposed approaches were implemented and used in an
industrial noise analysis tool calledClariNet. Results are presented
for a number of industrial test cases. It is shown that the total num-
ber of noise failures is reduced by up to 47%. The remainder of
this paper is organized as follows: Section 2 discusses the genera-
tion and propagation of logic implications. Section 3 shows how to
use logic implications in false noise avoidance. Section 4 presents
extensions of the algorithm for timed implications. Section 5 pre-
sents results, and in Section 6 we draw our conclusions.

3 Computing logic implications

We use the following notation for simple logic implications
(SLI) between two circuit nodesa andb:

(a=Va)->(b=Vb), where

meaning that if nodea is at logic valueVa the resulting value on
nodeb will be Vb. Figure 2 shows a small example circuit where
n3=0 implies that noden7=1. In total, this example circuit has 26
non-trivial SLIs, where a trivial SLI is an implication such as
(a=Va)->(a=Va). Similar to [9], we store the implications for a

node in one of four implication lists:Ha
H, Ha

L, La
H, La

L, where

implication (b=1)->(a=0) would belong to implication listLa
H at

nodea, i.e. . In Figure 2, for example, theHn7
L implica-

tion list at noden7 is {n3, n4, n8, n9}and the implication listHn7
H

is {n11}.

The SLI generation algorithm consists of two steps: First, SL
are generated as explained in Sections 2.1 and 2.2. Second, SL
propagated through the circuit using the basic operations of
union, list intersection, and contra-positive law as explained
Section 2.3

3.1 Generation of SLIs for Simple Gates

We first consider how to generate the initial SLIs for a gate wi
inputsai, and outputx. We start our discussion with some genera
properties about SLIs from gate input nodes to gate output nod
and vice versa.

Property 1: The implication(a=Va)->(x=Vx) is equivalent to
implication(x=Vx)->(a=Va) due to the contra-positive law, and we
consider both implications as a single implication at the inputai.

Property 2: The presence of an SLI(ai=Vi)->(x=Vx) at inputai
of a gate means that this input is a controlling input with contro
ling valueVi.

Property 3: Since a gate inputai can take one of two logic val-
ues, there can be no more than two SLIs atai. The presence of two
SLIs at a gate input implies that the gate is one of the two trivi
cases:

1. If (a=Va)->(x=Vx) and(a=Va)->(x=Vx) thenx is Boolean con-
stant.

2. If (a=Va)->(x=Vx) and(a=Va)->(x=Vx), then eitherx=a or x =
a andx has no dependence on other gate inputs.

It follows that for any non-trivial multi-input logic gate each
input has at most one SLI. If a gate has multiple SLIs at its inpu
all these SLIs must have the same value ofVx, as stated in the fol-
lowing lemma:

Lemma 1.
Consider a gateG with inputsai, i=1,...,n and outputx, imple-

menting a Boolean function. If there are SLIs(ai=Vi)->(x=Vx) at
inputsai then all these SLIs must have the same value ofVx.

Proof.
Consider SLIs(a=Va)->(x=Vx), (b=Vb)->(x=Vx) at inputsa and

b and consider the following input combination:a=Va, b=Vb. In
this case, the first SLI implies thatx=Vx while at the same time the
second SLI implies thatx=Vx, which is clearly a conflict.

Based on properties 1-3 and lemma 1, we can now examine h
the Boolean function of a gate is defined by its input SLIs.

Theorem 1.
Let the gateG with inputsai, i=1,...,nand outputx, implement a

Boolean function. The set of non-trivial SLI(a=Va)->(x=Vx) for

Va Vb, 0 1{ , }∈

b LH
a∈

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11
1

0

0

0

0

1

Figure 2. Example of SLIs in simple circuit.

is

l
ot

i-
s
e

o
ol-

he
er-
nc-
y

e
list
t a

ert-
I is

ate
lex
s,
a-
l-
a-

ly
inputsa1,...,am, where , is equivalent to the definition of
its Boolean function as:

px=pa1+...+pam + pa1&...&pam&f(am+1,...,an) (1)
where:

• px=x if Vx=1 or px=x if Vx=0

• pai=ai if Vi=1 or pai=ai if Vi=0

• f is a Boolean function of variablesam+1,...,an.

Proof.
Let px=f0(a1,...,an). Applying the Shannon expansion with

respect topa1, while accounting for the first SLI, gives:
px = pa1 + pa1&f1(a2,...,a3), (2)

where functionf1 has the same SLIs at its inputs asf0, except the
first SLI. Now suppose that for certaink<m

px = pa1 + ... + pak + pa1&...& pak&fk(ak+1,...,an) (3)
Then, substituting Shannon expansion with respect topa,k+1 for

fk, and accounting for

pa1 + ... + pak + pa1&...& pak&pa,k+1 = pa1 + ... + pak + pa,k+1 (4)
we obtain:

px = pa1 + ... + pa,k+1 + pa1&...& pak+1&fk+1(ak+2,...,an) (5)
Finally, settingfm=f , we obtain (1).
Conversely, the set of SLIs of Theorem 1 can be easily derived

from (1).
Since any Boolean function of one variable has two SLIs, we

can conclude thatf in (1) must have at least two variables, i.e.n-
m>1. Therefore, we have the following:

Corollary 1.
For an n-input gateG implementing a Boolean function, speci-

fying SLIs between its inputs and output is equivalent to specify-
ing the Boolean function, if and only ifG has exactly one SLI at
every input.

It is easy to see from (1) that gates for which all inputs have an
SLI to the gate output are either an n-input AND or OR gate (with
arbitrary inversions at inputs and output). We can therefore state
the following Corollary:

Corollary 2.
If a circuit consists of AND, OR and INVERTER gates, then the

logic function of the circuit is completely specified by the full set
of SLIs in the circuit.

If the circuit contains complex gates such as AOIs, OAIs,
XORs, and XNORS, then the generated SLIs in the circuit will
contain incomplete information about circuit’s logic function. For
an AO22 gate, for example, the full set of SLIs consists only of
trivial implications and, therefore, contains no information about
logic function of the gate. However, if we decompose the AO22
gate into two AND gates and one OR gate and construct SLIs with
use of the new internal nodes then, these SLIs will completely
define the logic function of the gate. Therefore, to obtain effective
generation of SLIs, the circuit must be decomposed into the gates
listed in Corollary 2.

3.2 Generation of SLIs for Complex Gates

To generate initial SLIs for a circuit containing complex multi-
input gates, we first represent the circuit as a network of ROBDDs
[11], where each ROBDD represents a single DC-connected com-
ponent (DCCC) in the circuit. We then propose the following algo-
rithm to generate SLI for each DCCC directly from its ROBDD
without explicitly decomposing it into AND, OR and INVERTER
gates. We define intermediate variablesfi for each vertexvi in the
ROBDD representing its Boolean function. Each intermediate
variable will have 4 associated SLI lists as discussed in the previ-

ous Section. For the root vertex, no intermediate variable
needed, since it corresponds to the output node of the gate.

We visit each non-terminal vertex in the ROBDD in topologica
order, starting from the bottom and working up toward the ro
vertex. At each vertexvi with controlling variableci, we define the
Boolean function of the intermediate variablef(xi) in terms of the
intermediate variable of its child vertices and the controlling var
ableci and then create the SLIs associated with this function. A
we visit vertices of the ROBDD, we may encounter one of thre
possible situations:

1. Both sons of vertexv are terminal vertices. In these case, we d
not need to introduce an intermediate variable, since the Bo
ean function ofv is entirely defined by its controlling variable
c. If the high-son ofv is 1, v=c and if the high-son ofv is 0, v=
c.

2. Vertexv, controlled by variablec, has one child vertexx that is
a terminal vertex and one child vertexy that is a non-terminal
vertex with intermediate variablew. Then the Boolean function
of the intermediate variablef of vertexv will be defined by one
of the following four cases:

• if x is 0 and is low-son ofv thenf=c&w.

• if x is 1 and is low-son ofv thenf=c+w.

• if x is 0 and is high-son ofv thenf=c&w.

• if x is 1 and is high-son ofv thenf=c+w.

3. Both child vertices of vertexv, controlled by variablec are
non-terminal vertices. Suppose that the high-son vertex ofv
has intermediate variablea and the low son vertex ofv has
intermediate variableb. In the case, we introduce two addi-
tional intermediate variablesx andy, wherex=c&a and
y=c&b. Then intermediate variablef of vertexv will be defined
by the Boolean functionf=x+y.

As internal variables are defined during the traversal of t
ROBDD, SLI lists are created for each variable. Since each int
mediate variable is expressed as either a simple AND or OR fu
tion of its input variables, the complex gate will be completel
defined by generated SLIs per Corollary 2.

3.3 Propagation of SLIs

After initial SLIs are generated for each gate in the circuit, w
propagate SLIs through the circuit using the basic operations of
union, list intersection, and contra-positive law. For example, le
2-input AND gate be considered with inputsa, b and outputx. If
we have an implication listLH (LL) at nodesa andb then the impli-

cation listLx
H (Lx

L) at output is calculated as the union of listsLa
H

andLb
H (La

L andLb
L). Similarly, listHH

x (HL
x) is calculated as the

intersection ofHH
a andHH

b (HL
a andHL

b). Accordingly, rules for
implication propagation can be generated for OR gates and inv
ers. Once an SLI is obtained at a gate output, the reverse SL
added by applying the contra-positive law:

if (a=va)->(b=vb) then (b=vb)->(a=va)

Therefore, we visit each gate in topological order and propag
the SLI lists at the input of the gates to the output. Since comp
gates are implicitly decomposed into simple AND and OR gate
SLIs will propagate across complex gates without loss of inform
tion. In order to generate all possible implications in a circuit mu
tiple forward propagation passes through the circuit with contr
positive law application may be required.

In addition to these so-calleddirect implication propagations,
we propose to use so calledlateral SLI propagations. This allows
us to find indirect implications, that are known to be particular
useful in logic optimization [7],[8].

1 m n≤ ≤

ed
d to
r,
of
LIs
lem
s

d
r-
s in
re-

re

t is

sic
in
the

, as
le

of a
sor
ch
int

nd

n
d

t
is

-
li-

n

m

Again, let us consider the 2-input AND gate with inputsa,b and
outputx. When we perform the list intersection betweenHa

L and

Hb
L, we exploit the gate implication (a=1 & b=1)->(x=1) to

obtain the implication list at the output . How-
ever, we can also use the equivalent implication (a=1 & x=0)-
>(b=0) which will result in the following implication list at node

b: and . We call this oper-
ation a lateral propagation of SLIs. Note that both the lateral and
direct propagation of SLIs can be trivially extended to n-input
AND and OR gates.

To illustrate the fact that lateral propagation cannot be obtained
through direct propagation, we consider the following simple ex-
ample in Figure 3.

In this example we obtain, through application of the contra-
positive law and direct propagation across the inverter and OR gate
two implication lists:Ha

L = {y} andLx
L = {y} . Due to lateral prop-

agation, we therefore obtain the following implication at nodeb:
Lb

L = {y} , i.e. (y=0)->(b=0). It is clear that this SLI cannot be
obtained by means of repeated direct propagation only.

Therefore, the overall proposed SLI propagation algorithm con-
sists of the following stages. First, we perform multiple direct
propagations with application of the contra-positive law until con-
vergence. Then, we perform multiple passes of lateral propagation
with application of the contra-positive law, until convergence.
Each pass of lateral propagation is followed by one or more passes
of direct propagation including application of the contra-positive
law. The algorithm is shown in Figure 4. The transitive propaga-
tion can be applied either in forward or reverse topological order
with reverse order yielding faster convergence in practice.

4 False Noise Analysis Using SLIs

After SLIs are generated in the circuit, we apply them in our
false noise analysis. For each victim net, a set of aggressor nets is
identified that inject coupled noise on the victim net, where each

aggressor can potentially contribute a different amount of inject
noise. A victim net and its associated aggressor nets is referre
as anoise cluster. Among the set of aggressors in a noise cluste
we intend to find the subset of aggressors with a maximal sum
injected noise, such that the logic constraints represented by S
between the aggressor nets are satisfied. We refer to this prob
as themaximum realizable noiseproblem and the set of aggressor
responsible for the maximal realizable noise as themaximal realiz-
able aggressor set. Note that each noise cluster can be analyze
individually since the global logic relationships present in the ci
cuit are already represented by pairwise SLIs between the net
the noise cluster. The maximum realizable noise problem is the
fore defined with the following information:

1. a single victim nodeV
2. a set of aggressor nodesAi that inject noisewi (i=1,...,n) on

the victim netV
3. a noise typet

The first four noise types correspond to functional noise whe
the victim net is either at a stable low state (LowRandLowF) or a
stable high state (HighRandHighF), while the aggressor nets are
rising (LowRandHighR) or falling (LowFandHighF). The second
four noise types correspond to delay noise where the victim ne
either rising (RiseRandRiseF) or falling (FallR andFallF) while
the aggressor nets are again rising (RiseRand FallR) or falling
(RiseF andFallF).

The false noise analysis algorithm now consists of three ba
steps. First we compute the SLIs in the circuit, as was explained
Section 2. Second, we represent the logic constraints between
aggressors for a particular noise type using a constraint graph
presented in Section 3.1. Finally, we find the maximum realizab
noise by solving theMaximum Weight Independent Setproblem
for the constraint graph as presented in Section 3.2.

4.1 Forming the Constraint Graph

A constraint graph is an undirected graphG=(V,E,w)of vertex
setV = {v1,...vn}, edge setE={(u,v):u, , } and a vertex

weighting functionw such that . The vertices
represent the aggressor nets of a noise cluster while the weight
vertex is the amount of injected noise by the associated aggres
net on the victim net. We form a separate constraint graph for ea
noise type. An edge exists between two vertices in the constra
graph if the two associated aggressorscannot simultaneously
switch and inject noise on the victim net.

For each particular noise type, we first determine the initial a
final state of the victim netsVv

i and Vv
f and the initial and final

state of the aggressor netVa
i andVa

f. For instance, for noise type

LowR, Vv
i=0, Vv

f=0, Va
i=0, Va

f=1 and for noise typeRiseF, Vv
i=0,

Vv
f=1, Va

i=1, Va
f=0. We then determine which aggressor nets ca

have a transition that is logically compatible with the initial an
final victim state for this particular noise type. If for a victim /
aggressor pair(v, ai), either of the following two SLIs exist:

(v=Vv
i)->(ai=Va

i) or (v=Vv
f)->(ai=Va

f) then, the aggressor net is
not compatible with the victim net for this noise type and is no
included in the constraint graph. For instance, if the noise type
RiseF, the victim is switching from low to high, while the aggres
sor must switch from high to low. Therefore, the presence of imp
cation (v=0)->(ai=0) would prohibit aggressorai from switching
and injecting noise on netv, since it would already be in its final
state at the start of the victim transition. Similarly, the implicatio
(v=1)->(ai=1) would prohibit the aggressorai from switching
since it would be already in its initial state at the end of the victi

H
x
L H

a
L H

b
L∩=

L
b

L H
a

L L
x
L∩= L

b
H H

a
H L

x
H∩=

a
b

y

x

Figure 3. Circuit with possible lateral SLI propagation

0

1

0
0

1.Initialize trivial SLIs;
2. Repeat the following steps until convergence

{
2.1Repeat the following steps until convergence

{
For every gate in topological order
perform forward SLI propagation
with application of contra-positive law.

}
2.2 For every gate in reverse topological order

perform lateral SLI propagation with
application of transitive and contra-positive laws.

}

Figure 4. SLI propagation algorithm

t LowR LowF HighR HighF
RiseR RiseF FallR FallF

, , , ,
, , ,

{
}

∈

v V∈ u v≠
w u() 0 u V∈()∀,≥

l:

he

e

a-
d

r-
-

as
s
xed
fol-

ble

g-
s.
transition. In this case,ai would not be included in the constraint
graph for victim netv under noise typeRiseF.

After the vertices of the constraint graph have been identified,
we determine which edges exist in the graph. We examine each
pair of vertices(vi, vj), , . Again, we can determine

if vi andvj can both switch in the required direction by searching
for an SLI that renders their transitions logically incompatible. In
this case, if we find either of the following two SLIs:
(ai=Va

i)->(aj=Va
i) or (ai=Va

f)->(aj=Va
f), vi andvj cannot both par-

ticipate in the maximal realizable aggressor set and an edge(vi, vj)
is created in the constraint graph.

4.2 Solving MWIS problem

Given the constraint graph constructed according to section 3.1,
we can find the maximal realizable aggressor set and the associ-
ated maximal realizable noise by solving theMaximum Weighted
Independent Set(MWIS) problem for the constraint graph. Con-
sider the constraint graphG=(V,E,w) and theglobal weighting

function , for . An independent setS

is a subset, , such that for any . The
Maximum Independent Setis the independent setS, such thatW(S)
is maximum.

For a general constraint graph, the MWIS problem is known to
be NP-complete [12]. However, in our problem formulation, we
have the advantage that the number of significant aggressors in a
noise cluster is typically small (< 15). Therefore the MWIS prob-
lem for the associate constraint graph can in most cases be solved
exactly by exhaustive enumeration of all independent sets. For
larger graphs, we use the heuristic algorithm of [13].

As simple example of our approach, let again the circuit in Fig-
ure 2 be considered. Letn7 be victim node withLowRnoise, and
let all 10 other nodes be potential aggressors, each aggressor net
contributing the same injected noise. As shown in Figure 5, the
resulting constraint graph consists of the{n1, n2, n5, n6, n10}
aggressors vertices and two edges(n1,n6)and(n6,n10). The final
set of maximal realizable aggressor nets is{n1,n2,n5,n10}.

5 Extension to timed SLIs

Up to this point, we have only considered false noise analysis
based on zero delay implications. These implications are only
valid when the circuit has reached a stable state, i.e. at the begin-
ning and end of a clock cycle. However, when the circuit is in tran-
sition, it is possible that two aggressor nets can switch
simultaneously, even though their zero delay SLIs would indicate
that such switching is impossible. This occurs when there are
glitches in the circuit, as shown in the simple example in Figure 6a.
In this example, nodesz1 andz2 are aggressor nodes of victimv.
Using the contra-positive law and direct SLI propagation, the fol-

lowing implication will be computed under the zero delay mode
(z2=0)->(z1=1), which will disallow both aggressors from switch-
ing in the same direction, which is correct when we consider t
final transition of these nets. However, if we switch signala low,
while setting inputsb andc high, signalz1 glitches, as shown in
Figure 6b, and can inject noise simultaneously with aggressorz2.

Therefore, zero-delay implication will yield a conservative fals
noise analysis only if the circuit in question is glitch free.

In this Section, we therefore show how our zero delay implic
tion can be extended with delay information, to obtain so-calle
timed implicationsthat can be used for false noise analysis in ci
cuits that have glitching signals. In [9] simple timed SLIs are pro
posed using the following formulation:

 (a(t)=Va) -> (b(t+T)=Vb) (6)
Here, a transition of neta to valueVa implies that netb will be

at valueVb after some fixed time intervalT. This model is applica-
ble if all gates have a constant delay and we refer to these SLIs
fixed delaySLIs. In practice, however, the delay of a gate varie
due to process variation and state dependence. Therefore, fi
delay SLIs cannot be used in such cases and we propose the
lowing two types of timed logic implications:.

Definition 1. An exclusive timed SLI (or E-SLI) is the follow-
ing relations between signalsa, b:

(a(t)=Va) ->

(b(t)=Vb) (7)

An E-SLI reflects the situation where the presence of a sta
value of signala during the entire time interval[t 1, t2] guarantees
the stable value of signalb during the entire time interval[t 1+T1,
t2+T2] . The SLI is said to be exclusive, since other values for si
nal a andb are not permitted during the respective time interval
We use the following short notation to denote an E-SLI:

(a=1) -> (b=0) (T1,T2) (8)
Definition 2. An inclusive timed SLI (or I-SLI) is the following

relations between signalsa, b;
a(t)=Va) -> (9)

i j≠ vi vj, V∈

W K() w u()
u K∈
∑= K V⊆

S V⊆ u v, S u v,() E∉;∈

Figure 5. Example of the constraint graph

n1 n6 n10

n2 n5

w(n1)=0.1 w(n6)=0.1 w(n10)=0.1

w(n2)=0.1 w(n5)=0.1

Maximum Weighted Independent Set:{n1,n2,n5,n10}
with total weight 0.4

a
b=1

c=1

d

e

f

z1

z2

v

Figure 6. Noise injection by glitches

a

e

f

z1

z2

a)

b)

t t1 t2,[]∈()∀

t t1 T1+ t2 T2+,[]∈()∀

t t1 t2,[]∈()∃

ial

tly
ly-

to
nt

el.
el
-

er-
s

er
on
its
-
ol-
ct
ec-
of
ed.
the

lat-
the
of
5 -

cir-
de

cir-

-
he
e
ith
um-
(b(t)=Vb)

An I-SLI implies that if signala is at valueVa at least once in
the time interval[t 1, t2] , signalb will be at valueVb at least once in
the time interval[t 1+T1, t2+T2] . Since the I-SLI allows for other
signal values to exist during the respective time intervals, it is said
to be inclusive. We use the following short notation to denote an I-
SLI:

(a=1) =>> (b=0) (T1,T2) (10)
We can see that (7) and (9) are only meaningful if

. Also, note that zero delay SLIs and

fixed delay SLIs (6) are special cases of E-SLIs and I-SLIs.
We now introduce the following two useful definitions:
Definition 3. An E-SLI or I-SLI is said to be expanding if

T2>T1. An E-SLI or I-SLI is said to be contracting ifT1>T2.
An E-SLI or I-SLI is neutral if it is both non-expanding and non-
contracting (i.e.T1=T2). Clearly, zero delay SLIs and the fixed de-
lay SLIs (6) are neutral.

Let us now examine a logic gate with inputa and outputb and
zero delay SLI(a=1)->(b=1). Also, assume that the rise and fall
minimum and maximum delays of the gate areTR

min, TR
max,

TF
min, TF

max. A rising transition of signala may be accompanied
by a rising transition ofb with a time shift lying between
TR

min,T
R

maxas shown in Figure 7. Similarly, falling transition ofa
may be accompanied by a falling transition ofb with a time shift
lying betweenTF

min,T
F

max. We can see from Figure 7 that when
signala is at a stable high value during the entire interval[t1,t2], b
will be guaranteed to be at a stable high value for the entire time
interval[t 1+TR

max,t2+TF
min] , excluding the shaded areas in Figure

7. Therefore, we can formulate the following exclusive-SLI:

(a=1)->(b=1) (TR
max, T

F
min).

Similarly, we can see that the presence of a high value for signal
a during at least one point in time interval[t1,t2] implies that for
signalb a high value will exists for at least one time point in the
interval [t 1+TR

min,t2+TF
max] , including the shaded areas in Figure

7. We can therefore formulate the following inclusive-SLI:
(a=1)=>>(b=1) (T R

min,T
F

max).
For typical gates, the time intervals of I-SLIs will shrink as we

propagate them through the circuit, while the time intervals of E-
SLIs will expand. It is clear that forward and lateral propagation
rules and contra-positive laws can be formulated for timed E-SLIs
and I-SLIs analogous to that for zero-delay SLIs. Also, we can use
the same implicit decomposition for ROBDD for complex gates
and formulate the constraint graph discussed in Section 3.1 for E-
SLIs and I-SLI. Therefore, we can use the results of timing analy-
sis, combined with zero-delay SLIs, to calculate timed E-SLIs and
I-SLIs in the circuit. Timed SLIs can then be used to perform a
conservative false noise analysis for circuits with glitches.

6 Implementation and experimental results

The presented algorithms were implemented in an industr
noise analysis tool calledClariNet [1]. The system was architected
using a separate logic analysis engine call DiNo, which curren
generates the zero delay SLIs for the circuit. First, the noise ana
sis tool performs the analysis without logic information. If a victim
fails, the noise tool will request the SLIs for the nets belonging
the noise cluster of the failing victim net and form the constrai
graph to determine the maximum feasible noise.

The analysis can be performed both at the block and chip lev
At the block-level, the tool directly operates on the transistor lev
description of the circuit. At the chip-level, DiNo first pre-charac
terizes each gate in the library with a so-calledlogic implication
black box. These black boxes are then used in the chip-level gen
ation of SLIs to allow for increased efficiency. Figure 8 illustrate
both the block and chip level analysis methodology.

In Table 1, we show the number of generated SLI for a numb
of circuits using the proposed SLI generation and propagati
approach. The first two circuits are ISCAS benchmark circu
[14], while the remaining circuits are industrial circuits synthe
sized using a commercial synthesis tool. The third and fourth c
umn show the number of generated SLIs using only dire
propagation and using both direct and lateral propagation resp
tively. In the fifth column the percentage increase in the number
generated SLI due to the use of lateral propagation is record
The final column shows the number of SLI as a percentage of
total number of node pairs.

The results in Table 1 demonstrate the effectiveness of the
eral SLI propagation proposed in this paper, which increased
number generated SLI on average by 38%. The total number
SLIs, as a percentage of the number of nodes pairs ranges from
38%, revealing significant dependence on the structure of the
cuit. On average, the algorithm generated SLIs for 21% of all no
pairs.

The false noise analysis was used on a number of industrial
cuit, as shown in Table 2. Circuitplldriver andcntrl are small con-
trol blocks. Circuitxbar is a small crossbar switch, circuitrot8,
rot16androt32are 8, 16 and 32 bit shifters, circuitadder32is a 32
bit adder, circuitcontro1is a large control block. The second col
umn shows the number of top level nets analyzed for noise. T
fourth column shows the number of noise failures without fals
noise analysis and column 5 shows the number of failures w
false noise analysis as presented in this paper. Note that the n

t t1 T1+ t2 T2+,[]∈()∃

t2 t1– max 0 T1 T2–,()≥

a

b

t1 t2

t1+TR
min

t1+TR
max

t2+TF
min

t2+TF
max

Figure 7. Timed SLI a->b (TR
max,T

F
min).

 DiNo

blocks/cells in spice

 logic

 DiNo

 chip level
logic constraints

chip-level required
netlist

implications
black box Noise tool

Block / Cell Level Chip Level

correlations

Figure 8. Block diagram of SLI based noise analysis
algorithms.

-

it.
or-
ted

LIs
ise
re
a

or-

l-
-

-

l

9.

-

-
,

g,

ts
ber of failures can exceed the number of nodes, since there are sev-
eral noise types for each net. The final column shows the
percentage decrease in the number noise failures due to the use of
false noise analysis. On average, a decrease of 27% is obtained
over all test cases, which significantly reduced the task of fixing
noise failures for the designers. The test results show that for the
controlcircuit the reduction obtained from using false noise analy-
sis is smaller than for the other blocks. This is due to the fact that it
is a large random block constructed using standard place and route
tools. Therefore, the likelihood that a significant number of the
aggressor nets in a noise cluster have a close logic distance is
small. We therefore found our analysis to be especially effective
for structures where routing is highly controlled, such as bus struc-
tures, and the neighboring nets have a small logic distance. Fortu-
nately, these are often also the interconnects with the most severe
noise problems. Besides reducing the number of noise failures,
SLIs reduce the noise value of the nets, that remain failures. For
example for the circuitcontrol the proposed approach reduces the
noise estimation for 3500 nets.

7 Conclusions

In this paper, we presented a new approach for false noise anal-
ysis. We propose the use of logic implications for eliminating
aggressor nets that cannot simultaneously switch. We first show
how simple logic implications can be effectively generated and
propagated in the circuit. We prove that SLIs fully represent the
logic function of a circuit only if it consists of simple NAND,
NOR, and INV gates. We then show how SLIs can be generated for

complex gates using implicit decomposition of their ROBDD rep
resentation. We also introduce a new, so-called,lateral propaga-
tion method to increase the number of obtained SLIs in a circu
Using the SLIs we show how the false noise problem can be f
mulated as a constraint graph and solved as a maximum weigh
independent set problem. Finally, we show how the proposed S
can be extended to timed implications for conservative false no
analysis in non-glitch-free circuits. The presented algorithms we
implemented and used on industrial circuits. The results show
reduction of 27% in the number of failures on average, undersc
ing the importance of false noise analysis.

8 References

[1] R.Levy, D.Blaauw, G.Braca, et.al. “ClariNet: A noise ana
ysis tool for deep submicron design”, DAC-2000, pp.233
238.

[2] P.Chen, K.Keutzer. “Towards True Crosstalk Noise Analy
sis”, ICCAD-99, pp.132-137.

[3] D.A.Kirkpatrick, A.L.Sangiovanni-Vincentelli. “Digital
Sensitivity: Predicting Signal Interaction using Functiona
Analysis”, ICCAD-96, pp.536-541.

[4] F.M.Brown. “Boolean reasoning”, Kluwer Academic Pub-
lishers, 1990.

[5] G.Hachtel, R.Jacoby, P.Moceyunas, C.Morrison. “Perfor-
mance Enhancements in BOLD using Implications”,
ICCAD-88, pp.94-97.

[6] W.Kunz, P.R.Menon. “Multi-Level Logic Optimization by
Implication Analysis”, ICCAD-94, pp.6-13.

[7] R.I.Bahar, M.Burns, G.D.Hachtel, et.al. “Symbolic Com-
putation of Logic Implications for Technology-Dependent
Low-Power Synthesis”, ISPLED-96.

[8] W.Long, Y.L.Wu, J.Bian. “IBAW: An Implication-Tree
Based Alternative-Wiring Logic Transformation Algo-
rithm”, ASPDAC-2000, pp.415-422.

[9] S.Bobba, I.N.Hajj. “Estimation of maximum current enve-
lope for power bus analysis and design”, Int. Symp. on
Phys. Des., 1998.

[10] A.Wroblewski, C.V.Schimpfle, J.A.Nossek. “Automated
Transistor Sizing Algorithm for Minimizing Spurious
Switching Activities in CMOS Circuits”, ISCAS-2000,
pp.291-294.

[11] R.E.Bryant. “Graph-Based Algorithms for Boolean Func-
tion Manipulation”, IEEE Trans. on Computers, 1986,
v.35, pp.677-691.

[12] M.R.Garey, D.S.Johnson. “Computers and Intractability, A
Guide to the Theory of NP-Completeness”, Freeman, 197

[13] E.Loukakis, C.Tsouros. “An Algorithm for the Maximum
Internally Stable Set in a Weighted Graph”, Intern. J. Com
puter Math., 1983, v.13, pp.117-129.

[14] F. Brglez, H.Fujiwara, A Neutral Netlist of 10 Combinato
rial Benchmark Circuits”, Proc. IEEE ISCAS, IEEE Press
Piscataway, N.J., 1985, pp.695-698

[15] K.L. Shepard, V. Narayanan, P.C.Elementary and G.Zhen
“Global Harmony: Coupled noise analysis for full-chip RC
interconnect networks”, Proc. ICCAD ,1997 pp. 139-146

[16] A. Rubio, N. Itazaki, X. Xu, and K. Kinoshita, “An
Approach to the Analysis and Detection of Crosstalk Faul
in Digital VLSI Circuits”, IEEE Trans. on CAD, Vol. 13,
No. 3, 1997

[17] Shepard K.L. “Design methodologies for noise in digital
integrated circuits”, Proc., DAC, 1998, pp. 94-99

[18] Tafertshower P., Ganz A., Antreich K.J. “IGRAINE - An
Implication GRaph-bAsed engINE for Fast Implication,
Justification, Propagation”, IEE Trams. on CAD, Vol. 19,
No 8, 2000, pp. 907-927

circuit #nets
#SLIs w/o

laterial
#SLIs with

laterial
%

laterial
#SLIs/
pair(%)

cnt_0 83 1196 1466 23 21

cnt_1 87 1222 1516 24 20

cnt_ones 97 1976 2248 14 24

cnt_zeros 99 1812 2098 16 21

c432 248 7826 20210 158 33

cla1 333 5136 5672 10 5

testckt 474 82572 86444 5 38

c1355 559 27218 32802 21 10

Table 1. Results of testing SLI propagation algorithm

circuit #nets
#SLIs

computed
#failures

#failures
with DiNo

%
reduction

plldriver 35 188 59 31 47

cntrl 47 112 73 63 14

srot8 308 24380 401 358 11

xbar 433 2336 384 314 18

srot16 622 55976 975 841 14

adder32 1168 195902 112 81 28

srot32 1588 451422 2005 1417 29

control 46168 10910 11603 10452 10

Table 2. Results of SLI based noise analysis on block level.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

