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Abstract

We present a methodology for generating black-box timing mod-
els for full-custom transistor-level CMOS circuits. Our approach
utilizes transistor-level ternary symbolic timing simulation to ex-
plore the input arrival time space and determine the input arrival
time windows that result in proper operation. This approach inte-
grates symbolic timing simulation into existing static timing anal-
ysis flows and allows automated modelling of the timing behavior
of aggressive full-custom circuit design styles.

1 Introduction

Over the last 20 years, static timing analysis[3] has become the
dominant approach for the timing verification of integrated circuits,
primarily due to its high efficiency and capacity. The majority of
work on static timing analysis techniques has been focused on an-
alyzing gate-level representations, and the path-tracing and delay-
calculation engines for these tools are quite mature.

However, analysis of transistor-level representations is consider-
ably more complex, although a number of tools have been devel-
oped for this purpose[9, 11]. While most of the techniques from
gate-level analysis transfer nicely, there remain additional issues
which have not yet been adequately resolved. The most difficult
of these is the identification of the timing constraints implied by
clocked logic structures. Since the transistor-level representation
does not include information on functional requirements such as
latch setup and hold times, the timing analyzer must derive them
using pattern matching or other heuristic techniques. While these
heuristics can be quite successful for a given design style, it is
nearly impossible to keep up with innovative new circuit structures
or single-use optimizations created during full-custom design. As
a result, full-custom designers are forced to spend countless hours
reviewing the analyses produced by transistor-level static timing
analyzers to make sure their circuits were properly interpreted.

Symbolic timing simulation (STS) [6] is an alternative approach
for the verification of full-custom transistor-level circuits. Like
conventional timing simulation, it verifies timing by checking func-
tionality under a given timing model, rather than explicitly verify-
ing delay paths against implied timing constraints. Through the
use of symbolic encodings, STS can verify timing over all possible
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input patterns, thus achieving nearly the same verification power
as static timing analysis. Furthermore, STS can be applied to arbi-
trarily complex full-custom digital design styles without requiring
sophisticated heuristics.

While STS has substantial advantages over static timing anal-
ysis in terms of the breadth of circuit styles that can be reliably
analyzed, static timing analysis has vastly higher capacity. Ide-
ally, we would like to use STS only where necessary, while static
analysis would be used for more straightforward portions of the
design. Fortunately, such a divide and conquer strategy is already
well-developed in static timing analysis[13, 9, 2]. Typically, large
macrocells are assigned to one or two design engineers, and are
designed and analyzed in isolation. When a certain level of qual-
ity is reached, different types of timing models can be generated
which capture the timing behavior of the input and output signals.
The timing models from each macrocell on the chip can then be
composed to determine if inter-block timing requirements are be-
ing met. In some cases, even multiple levels of composition are
used, resulting in a hierarchy of timing models.

This paper discusses a method for performing selected low-level
analyses with STS, and generating timing models of the same form
as those generated by static analyzers. In this way, STS can be used
on blocks containing the most difficult circuit styles, while more
efficient static analysis is used elsewhere. The results from both
types of block analyses can then be composed into full-chip-level
runs using the existing hierarchical static analysis methodology.

A number of other researchers have addressed the generation
of black box timing models through simulation. Generally, this
work has concentrated on producing high accuracy models of li-
brary cells, for use in gate-level static timing analyzers. Cirit [1],
Vo[12] and Patel[10] propose methods for ASIC standard-cell char-
acterization based on iterative SPICE analysis. While our approach
also relies on iterative simulation, it differs in that we use symbolic
methods to analyze much larger blocks of logic. Like static timing
analysis-based methods, ours also produces a more approximate
and courser-grained model than direct SPICE analysis of library
cells.

There are a number of important sub-problems in the develop-
ment of timing models, such as determining output drive strengths,
pin capacitances, pin-to-pin delays, and input setup and hold times.
The most difficult of these by far is the determination of setup and
hold times, especially in the presence of multiple interacting inputs.
This paper focuses on an iterative symbolic simulation approach to



compute setup and hold times of inputs to large custom macrocells
based solely on a model of functional correctness.

The following section presents two levels of block timing models
in detail. Section 3 then describes a methodology for computing
setup and hold times using symbolic timing simulation. Section 4
gives our results, and 5 will conclude.

2 Timing Models

Block timing models attempt to capture the timing behavior of sig-
nificant blocks of logic. As one would expect, various levels of
detail are possible, and the two most common are typically termed
“black-box” and “gray-box”. These terms refer to the level of in-
ternal detail that is made visible to the block’s environment.

Black-box models abstract away all information regarding the
internal nodes of the circuit block. The only information retained
are setup and hold constraints on the input signals and the arrival
times of the outputs relative to a particular clock edge. In some
cases, purely combinational delay values are also included.

Gray-box models[9, 2] retain additional timing information to
model latch transparency. They typically contain absolute timing
arcs between latching points, from clocks and inputs to latches, and
from latches to outputs. In this manner, the gray-box models can
perform latch transparency checks, and are valid at all operating
frequencies. At the cost of some efficiency and frequency indepen-
dence, black-box models can be built which mimic the behavior of
gray-box models using the aliasing technique described in [8].

For each of the entries in black-box or gray-box models, it is
also often possible to specify separate data for rising and falling
transitions. For normally-ratioed static CMOS, where the timing
behaviors of the rising and falling transitions are symmetric, this
separation has little value. However, for dynamic logic styles such
as domino, this ability is crucial, and we typically even need to
specify different clock-phases for each transition direction.

3 Methodology

Our methodology for generating timing models uses iteration to
identify the range of input arrival times that lead to correct oper-
ation. As with our approach to timing analysis, correctness is de-
fined solely by functionality, rather than explicit identification of
the timing constraints implied by certain circuit topologies such as
latches or domino gates.

3.1 Signal Model

In modelling the behavior of input signals, we wish to capture sev-
eral important aspects. First, we must capture a range of possi-
ble arrival times, typically specified as a
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guarantee that they satisfy setup and hold checks. Second, to han-
dle dynamic and other non-symmetric design styles, we want to be
able to separate the timing behavior of rising and falling transitions.

One of the keys to our approach is the use of a ternary signal
model, having values of 0,1, and ‘X’. The additional ‘X’ value,
first introduced by Jephson et.al.[4], can be used to capture un-
known initial states and to model the values of inputs up until their

stabilization times. The second key, which enables exhaustive sim-
ulation of substantially larger systems, is the use of symbolic en-
codings. With symbolic timing simulation, we can apply Boolean
variables to the inputs of the circuit rather than constant 0’s and 1’s,
and these variables are propagated through the circuit as Boolean
functions. If the functions on the output nodes and stored states
match the functional description of the block, then we know that
the arrival times specified satisfy any setup and hold conditions.

To verify setup constraints, we must check if the latest possible
arrival time of a signal satisfies the setup constraints of the block.
This can be modelled under our ternary simulation model by plac-
ing an ‘X’ on the input initially, and then scheduling a transition to
the valid Boolean value at the maximum arrival time.

Hold times are somewhat more subtle. A hold time check is a
requirement that a signal be valid until a particular time, in order
to allow proper sampling by the receiving circuit. Static analyzers
verify that the earliest possible arrival time of an input signal sat-
isfies this hold check. However, in reality, a hold check limits how
early a signal can switch to a new value in the next state. This is
one of the fundamental reasons that static timing analysis models
are limited to synchronous systems. Thus, a
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time window for an input signal translates into input transitions in
two different states.

Figure 1 shows the timing diagram used to model the behavior of
an input taking the Boolean variable a. Note that the ‘X’ value does
not mean “invalid”, but rather “unknown”. In other words, it cap-
tures the fact that the input might be high or low or even glitching
uncontrollably between these two values. Thus we can model the
signal as being ‘X’ initially, taking it’s specified value at the max
arrival time, and then returning to ‘X’ at the min arrival time in the
subsequent clock cycle. If the circuit being verified computes the
correct output function, then we can say that the input arrival time
window satisfies the circuit’s setup and hold requirements.

To separate rising and falling transitions on an input signal, we
must introduce additional steps. Let us assume that the latest rising
transition will occur before the latest falling transition, as shown in
Figure 2. In this case, the input should transition at the latest rising
time only for cases where the input’s valid value a is true. For cases
where the a is false, the signal should remain in the ‘X’ state. A
similar analysis gives the value of the signal between the earliest
rising and falling times in the next cycle. For clarity, Figure 2 also
shows the signal behavior separately for each of the two possible
values of a.

To represent ternary node values ( � 
�����������������
), we utilize a

dual-rail encoding scheme with two Boolean functions value.h and
value.l:

� 
������ �"!#�$� � 
������ �%!&� '
HIGH

� 
������ �"!(�)� � 
������ �%!*�+'
LOW

� 
������ �"!#�$� � 
������ �%!*�+'
UNKNOWN (X)

� 
������ �"!(�)� � 
������ �%!&� '
not defined

As shown in Figure 2, we must create two transitions to capture
edge-specific behavior. The first transition goes to an intermediate
value that represents the fact that only one edge has arrived, and
the second transition places the proper Boolean value on the input
node. Using the two-bit encoding, we can compute a mask qualify-
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Figure 1: Arrival Time Window Modelling
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Figure 2: Separating Rise and Fall Transitions

ing any unidirectional transition from ternary value old to ternary
value new as:

Rising only:� 
 ��� � � � ��� � �	� 
 ��� � ���� � � ��� � ����
 ��� � ��

Falling only:� 
 ��� � � � ��� � ��� 
 ���)� ���� � � ����� ����
 ���)� ��

Given this mask, we can compute the intermediate ternary value
int as:
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3.2 Correctness Criteria

Since our timing verification is based on checking functionality
while considering realistic delay values, we must be very careful
about how we define functional correctness. In particular, we re-
quire a specification of correct behavior that includes both func-
tional and timing information.

For our methodology, we require a model M, which is a tuple
containing all information needed to stimulate the circuit and de-
termine correctness:

� � ��� � � � �"! � �"# �%$ �&$(' �%$)# �&$(��

� '
Set of clock tuples

�
startval

�&*�+ �&*�,$�
offset

�
� '

Set of input pins�-! '
Boolean variables for input pins�"# '
Set of

� � �����	��
���
tuples for

Input arrival time windows$ '
Set of output pins$(' '
Expected functions for output pins$)# '
Set of

� � �����	��
���
tuples for

output required time windows$(� '
Initial values for output pins.

Verification relative to this model is performed by the function
CheckModel which is basically a wrapper around the symbolic tim-
ing simulation engine. It stimulates the input pins based on the in-
put arrival time windows according to the model described in Sec-
tion 3.1. It then runs the simulation and issues probes to verify that
the output nodes matched their expected functions for the duration
of the output required time window. Internal state nodes requiring
initialization and validation are handled in the same manner as out-
puts, except that they are set to the initial values specified in OI at
their latest arrival time in the cycle previous to their required time
window, and then left to float as driven by the circuit.

CheckModel returns a flag indicating whether or not the circuit
outputs were correct, and, as will be discussed below, the equiva-
lence window for a specified input transition.



3.3 Model Generation

Now that we have a model for correct behavior, we need to develop
a strategy to determine valid ranges for input arrival times. Our ba-
sic approach is to start with a nominal set of arrival times, for which
it is known the circuit operates properly, and grow each arrival time
into the largest possible arrival time range without altering circuit
functionality.

However, the handling of multiple inputs requires special atten-
tion. Depending on the circuit being simulated, various combina-
tions of arrival times could result in proper operation of the circuit.
Figure 3 shows a hypothetical valid arrival time region for a two-
input circuit. In other words, this circuit will compute the expected
output function for any combination of arrival times whose coordi-
nates fall in the shaded region. In general, these regions need not
be convex, nor even continuous.

Based on our input signal model, min and max arrival times are
specified relative to clock edges, which remain constant. There-
fore, any combinations of arrival times expressible in our model
represent rectangular regions (or rather hyper-rectangular regions).
Our goal is to identify the largest possible hyper-rectangular re-
gion, since this will represent the least restrictive specification of
allowable input signal behavior.

We have implemented a greedy strategy, whereby we iteratively
select one input transition and maximally expand its arrival time
window while keeping all other arrival windows the same. After
each window is expanded, it remains maximized while all subse-
quent input transitions are processed. In our geometric interpre-
tation, the nominal set of arrival times represents an initial point
in the arrival time space. Expanding each arrival time window
selected corresponds to growing the rectangular region along the
associated axis.

Because we expand along each dimension separately, we can
potentially obtain different answers by processing the input transi-
tions in various orders, as depicted by the two potential sub-regions
in Figure 3. A more concrete example is the dynamic logic stage
in Figure 4(a) having one static and one dynamic input signal – a
risky but not uncommon tactic in full-custom designs. For proper
logical operation, we must guarantee that either both signals sta-
bilize before the clock rises, or that the static signal A stabilizes
before B rises. This combination of constraints is captured by the
valid arrival time region in 4(b). The nominal arrival times are de-
picted in the timing diagrams and marked as an ‘X’ in the arrival
time region. Based on our choice of which arrival time window to
expand first, we could obtain either of the rectangular subregions
shown.

Various search methodologies could be employed for finding
the largest arrival time window for a given input. The first such
methodology is simple binary search, which proves to be quite ef-
fective. However, in some cases, we can utilize the fact that we are
using an event-driven simulator to accelerate the process.

3.3.1 Equivalence Windows

We can often accelerate the search by reporting equivalence win-
dows, which are ranges of time over which inputs can arrive that are
guaranteed to preserve the circuit’s functionality. Since our simula-
tion environment is event-driven, we can examine the event lists to
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Figure 3: Arrival Time Regions

determine a lower bound on acceptable variations to a particular in-
put’s arrival time. As long as changing an input’s arrival time does
not cause any internal events to become re-ordered, we know that
the same sequence of states will be visited by every node in the cir-
cuit. Consequently, we can safely vary input arrival times right up
to the point where re-ordering occurs. By automatically detecting
these equivalence windows for input arrival times, we effectively
convert our search over the arrival time space from a continuous to
a discrete problem.

The basic concept is to mark the input transition of interest, and
all internal events which it spawns, as active. All other input tran-
sitions and internal events are then marked inactive. Delaying the
active input transition will delay all other active internal events by
exactly the same amount, so long as we can guarantee that all in-
ternal node-to-node delays will remain unchanged. Since internal
delays are based solely on topology and node state, we need only
guarantee that node state will remain unaffected. This in turn is
satisfied so long as no event reordering occurs. Taken together,
these conditions guarantee that we can delay the active input tran-
sition up until it causes any active event to become re-ordered with
respect to any inactive event.

Computation of these equivalence windows is quite straightfor-
ward, and requires only that we determine the minimum separation
time between active and inactive events. We determine the maxi-
mum amount we can retard the event (make it arrive later) as the
minimum time separation between any active event and a subse-
quent inactive event. Correspondingly, the maximum amount we
can advance the input transition will be the minimum time separa-
tion between any inactive event and a subsequent active event. The
only complications arise from the symbolic nature of our events.
The reader is referred to [5] for complete details.

3.3.2 Search Algorithm

Our algorithm for identifying these rectangular regions using bi-
nary search and equivalence windows is shown in Figure 5. It takes
as input a nominal model M, and iteratively expands the input ar-
rival time windows of M in a greedy fashion.

The function Grow is broken into two parts, one each to deter-
mine the min and max arrival times for a particular signal. To deter-
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Figure 4: Dynamic Stage Example

mine the max time, we initialize the upper and lower bounds ( ���
and ��� respectively) to search over the full clock cycle after the
nominal max arrival time. We then iteratively shrink the bounds
until they are within a prespecified tolerance value. We can further
shrink the bounds after any simulation by using the equivalence
window information. The min time calculation follows similarly.

By using equivalence windows, we can often substantially re-
duce the remaining bounds. Take, for example, an input which ar-
rives nearly a full cycle before it is sampled. In this case, the equiv-
alence window will reflect that the signal can be delayed nearly
a full cycle without impacting functionality. This can potentially
eliminate several iterations, each of which can be fairly expensive.
Even if the gain from using this information were slight, or only
occasionally useful, we might as well use it since it requires little
extra effort to compute.

3.4 Limitations

This approach has some limitations that should be mentioned.
First, before the iteration process can begin, the designer must sup-
ply a set of nominal input arrival times that produce correct func-
tional behavior. In this way, we can start from a known-correct
point in the input arrival space and search outwards until failure.
While this is a constraint that is not present in static timing analysis,
it should not be difficult to satisfy in practice. Since we envision
designers using STS as a design and debug aid during the imple-
mentation process, a nominal set of input arrival times should be
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Figure 5: Model Generation

readily available at the time model-generation is begun.
The second limitation of our approach is that, while non-

synchronous circuit design styles can exist internally, the block in-
terface must be synchronous. This limitation is imposed primarily
by the need to integrate with static timing analysis. The timing
models that we generate produce setups and hold-times relative to
reference clocks that exist only in synchronous systems. This limi-
tation still allows for application to a much broader range of circuits
than static timing analysis, since only the interface is constrained.

Lastly, since we are generating black-box models, we are unable
to capture the timing behavior of transparency. Our approach will
still safely model transparent latches, but it will do so in a conserva-
tive manner by forcing a setup check and setting the output arrival
time relative to the reference clock. Unfortunately, since our cur-
rent model does not incorporate combinational arcs, we can only
adequately model state-holding circuitry. However, static timing
analysis can easily handle blocks containing only static combina-
tional circuits and would be preferred for its efficiency.

4 Results

Runtime results for our iterative model generation approach are
shown in Table 1. All results were compiled on a 300 MHz Ul-



Table 1: Model Generation Runtimes
Name FETs Search Iterations Runtime

Dimensions Required

simple 21 2 13 6 sec
s27 93 8 59 1 min
s208 582 22 166 32 min
s298 1092 6 44 33 min
s400 1397 6 52 1.5 hr
s820 2959 36 289 13.3 hr
adder4-l 190 4 12 23 sec
adder32-l 1478 4 14 1.1 hr

trasparc, using SirSim[6] and a Perl implementation of the model-
generation layer. For these experiments, the Elmore delay calcu-
lator was used. High accuracy TETA-based delay calculation, as
discussed in [7], incur runtime multiples of 2-50x depending on
circuit topologies.

The first test-case, simple, contains a single input, for which the
min and max arrival times were found. The number of iterations
shown (13), are representative of the work required for each input
on the larger simulations. The next 5 testcases are from the IS-
CAS benchmark suite. Transistor level networks for these cases
were generated using nominally sized static logic gates, with the
flip-flops implemented as pulsed transparent latches. The final two
testcases are 4- and 32-bit dynamic Manchester carry-chain adders
followed by transparent latches.

Since we use an iterative search technique, runtimes are affected
solely by the number of iterations required and the time for each it-
eration. The iteration time is itself heavily dependent on the circuit
topology, and the efficiency with which its internal Boolean func-
tions can be represented. The iteration count is most dependent on
the number of dimensions to the search, and to a lesser degree, the
complexity of interactions between input signals. For the ISCAS
benchmarks, the number of dimensions is always twice the number
of inputs, one each for the min and max arrival times. The adders
on the other hand, require only 4 search dimensions, regardless of
their width, since the individual bits of each operand bus can be
grouped together.

In general, we found the use of equivalence-window information
often substantially reduced the number of iterations required. For
the 4-bit adder, we required 32 iterations with simple binary search,
and only 12 using equivalence windows. For the 32-bit adder, the
count was similarly reduced from 34 to 14 runs. In each case, the
overall runtime was cut by nearly 60%.

5 Conclusion

We have described a methodology by which black-box timing mod-
els can be generated using symbolic timing simulation. This ca-
pability integrates symbolic timing simulation into existing static
analysis verification flows, and allows full-chip static timing anal-
ysis to include automatically generated models for aggressive full-
custom circuit styles.
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