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ABSTRACT
More aggressive design practices have created renewed interest in
techniques for analyzing substrate coupling problems. Most previ-
ous work has focused primarily on faster techniques for extracting
coupling resistances, but has offered little help for reducing the re-
sulting resistance matrix, whose number of nonzero entries grows
quadratically with the number of contacts. Wavelet-like methods
have been applied to sparsifying the resistance matrix represent-
ing the substrate coupling, but the accuracy of the method is very
sensitive to the particulars of the contact layout. In this paper we
show that for the substrate problem it is possible to improve con-
siderably on the wavelet-like methods by making use of the algo-
rithmic structure common to the fast multipole and wavelet-like
algorithms, but making judicious use of low-rank approximations.
The approach, motivated by the hierarchical SVD algorithm, can
achieve more than an order of magnitude better accuracy for com-
mensurate sparsity, or can achieve much better sparsity at commen-
surate accuracy, when compared to the wavelet-like algorithm.

1. INTRODUCTION
Designers of analog blocks that are incorporated in mixed signal

integrated circuits are making more extensive use of layout tech-
niques to block signal interference from the substrate. In order to
assess the effectiveness of these techniques, not only must extrac-
tion tools be developed to accurately compute substrate coupling[1,
2, 3, 4, 5], but the extracted model must be sufficiently efficient that
it can be included in a circuit-level simulation of the analog block.
The difficulty is that a complicated analog block might have more
than 10,000 contacts to the substrate, and a naive representation of
the substrate coupling conductance matrix would have more than
100 million entries.

It is possible to reduce the number of coupling conductances by
”thresholding”, that is by removing all the coupling conductances
smaller than a fixed threshold. In a large substrate, one might ex-
pect that geometrically distant contacts would have small coupling,
but this is often not the case. If the substrate is made of a thin
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top layer of relatively low conductivity and lower layers of higher
conductivity, a situation desirable for latchup suppression, distant
contacts can still have significant coupling. For these problems, an-
other approach is needed to find an efficient representation of the
coupling.

The problem of how to find a sparse representation of a dense
matrix, like the coupling conductance matrix, has received consid-
erable attention in the last decade. There are methods that exploit
analytic properties of the matrix entries, like the fast multipole al-
gorithms developed for the fast integral equation solvers[6], and
methods that exploit a ”near-convolutional” structure to the matrix,
like the precorrected-FFT methods[7]. The conductance matrix has
neither of those properties, because the matrix entries depend glob-
ally on the distribution of contacts. For this reason, general mul-
tiresolution, or wavelet-like, methods were applied to the substrate
sparsification problem[8, 9].

In this paper we show that for the substrate problem it is possible
to improve considerably on the wavelet-like methods by making
use of the algorithmic structure common to the fast multipole and
wavelet-like algorithms, but making judicious use of low rank ap-
proximations. The approach, motivated by the hierarchical SVD
algorithm [10], can achieve more than an order of magnitude bet-
ter accuracy for commensurate sparsity, or can achieve much better
sparsity at commensurate accuracy.

Developing an efficient extraction algorithm based on low-rank
approximation is significantly more difficult for the substrate cou-
pling problem than for potential-from-charge problems. The added
difficulty arises in the substrate coupling problem because one must
rely on substrate analysis algorithms (i.e. finite-difference or fast
integral equation methods) that can compute contact currents due
to an entire set of contact voltages, but cannot efficiently compute
the individual sensitivity of a single contact current to a single con-
tact voltage.

In the next section we begin with a motivating example, and then
in Section 3 we present the low-rank algorithm. Results on several
examples are presented in Section 5 and conclusions are given in
Section 6.

2. SOME INTUITION
In our setting, the substrate model is purely resistive (with layers

of different conductivities), and the voltage (�) to current (�) rela-
tion is therefore linear, denoted by �� � � where � is called the
conductance matrix. The goal is to obtain an efficient representa-
tion of �; the tool we have is a solver which, by discretizing the
layout geometry, gives �� for any particular �.

We begin by trying to give some intuition for why an approach,



Figure 1: Simple example contact layout

such as ours, which uses information from applying � to form the
new basis for the voltages and currents, may be more effective than
one which simply relies on geometric information. We would like
to find a basis function, nonzero on the two contacts on the left side
in Figure 1, such that the current response at the four right-hand
side contacts is very small. Geometric moment-matching tech-
niques (the technique of [11, 8, 9]), applied in their simplest (order
0) form, require choosing the two voltages such that their integral
over the 2 left-side contacts is 0. Since the area of the larger contact
(call it contact 2) is 2.25 the area of the smaller contact (contact 1),
this suggests � � ������ ��� (-2.25 volts on contact 1, 1 volt on
contact 2) as a basis function.

Unfortunately, the basis function’s response at the left-side four
contacts is not very small. We computed � using the our solver for
the contact layout of Figure 1 and for a two-layer substrate (thin
high-resistivity layer on top of a low-resistivity layer). Forming
the interaction matrix �� giving current responses at contacts 3
through 6 from voltages at 1 and 2, we get (for this particular ex-
ample)
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However, looking at �� we observe that the second column is
very close to a multiple (1.92) of the first column—that is, the
current responses at 3,4,5, and 6 to unit voltage on contact 2 are
very close to 1.92 times the current response at 3,4,5, and 6 to unit
voltage on contact 1. This suggests using ������ ��� as our basis
function. In fact, doing this gives ��� � ����� � ��
 ��
 ��
�� , a
much smaller faraway response.

So, by using information obtained from applying �, we were
able to find a much better basis function, one whose faraway re-
sponse is close to zero and can be zeroed out without too much
loss of accuracy. Our algorithm is a generalization of this idea:
instead of just using information from geometry, use information
from carefully chosen applications of � to form the new basis.

3. THE ALGORITHM

3.1 Overview
The algorithm, like others which have been proposed for this and

similar problems [9, 10] is multilevel, and we now define this more
precisely. The number of contacts is denoted by �. For simplicity
assume the substrate surface is a unit square. The levels start from
�, and on level � there is a grid of �� � �� squares, each with side-
length ���. The finest level ���	
� is chosen so that there are at

most a small constant number of contacts per square. We denote by
��� the number of contacts in a particular square �. The parent of
a square � on level 	 � � is the square  on level 	�� containing �,
and � is a child of . In general, on a given level, the algorithm will
deal with interactions between squares which are not too far apart
(this will be defined more precisely later).

The algorithm is divided into two phases. First, a multilevel row
basis representation is obtained by a process which ascends through
the levels from coarsest to finest. The result is a representation of
the coupling operator which is approximately ��� ��� �� in both
storage cost and cost of applying the operator to a vector—that is,
getting currents on all � contacts from voltages on all � contacts.
This part of the algorithm gives, by itself, a very efficient and accu-
rate way to apply �.

In order to further improve performance, in the second phase,
we use the multilevel row vector representation obtained in the first
phase to create a transformed basis � for the voltages and currents,
in which the coupling interaction is numerically sparse: that is,
���� is numerically sparse. Furthermore, we know enough a pri-
ori about the sparsity structure that only approximately ��� ��� ��
entries of ���� need to be computed at all. This phase descends
through the levels from finest to coarsest.

We describe more precisely the goals of each phase and how they
are achieved in the next sections.

3.2 Coarse-to-fine sweep
The goal of the first phase is to form a multilevel row basis rep-

resentation of �. More precisely, consider an interaction matrix
���� which is applied to voltages in square � and gives currents in
the interactive squares �� of square �. In general, following Green-
gard [12], we use the notation ��� to mean the operator which
takes a length ��� vector � of the region-� voltages and returns a
length ��� vector � of the region-� currents resulting from putting
the voltages in � on the contacts in region � and zero voltage on all
other contacts. That is, ���� � � and ��� has ��� columns and
��� rows.

The interactive squares of a level-	 square � are the squares on
level 	 which are separated from � by at least one square but whose
parent squares are neighbors (adjacent or have a common corner).
The local squares �� of a level-	 square � are � itself and its neigh-
bors on level 	. See Figure 2.

The important point is that the interaction matrix is numerically
very low-rank. Specifically, there is a small number (denoted �) of
rows, each of which is a linear combination of rows of ���� , such
that these rows form a basis (to a close approximation) for the row
space of ���� . (In our examples, we’ve found that choosing � �
	 rows is a close enough approximation for very good accuracy.)
Write down these few rows in a matrix � �

� (� rows, ��� columns).
Any vector � of voltages in square � which is orthogonal to � �

� (i.e.
� �

�� � �) will have ����� � �, because all the rows of ���� are
approximate linear combinations of rows of � �

� . Thus, we can get
an accurate representation of ���� by projecting � onto the rows
of � �

� and knowing the responses to the � voltage vectors given by
rows of � �

�—in matrix notation the responses are ������. If we
construct � �

� so that its rows are orthonormal, we get a compact
representation of our approximation:

���� � ���������
�

� �

Note that using this representation gives a dramatic efficiency
improvement over using the dense ���� if the number of contacts
in � is large: computing ����� directly requires ��� � ����
multiply-add operations, whereas applying ���������

�

� requires
only ������ multiply-adds. (We will refine this idea to improve
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Figure 2: Interactive (labeled I) and local (labeled L) squares
of shaded square: next-coarser level squares shown with bold
lines

accuracy later.) So the goal is to form the row basis representation
of ���� for every square and its interactive squares at every level,
consisting of � �

� (row basis) and ������ (responses to row basis).
Coarsest level
For this phase, the coarsest level (which is the one we start with),

is chosen to be 	 � �. (The reason is that using our definition,
for squares on levels less than �, there are no interactive squares.)
There are 16 squares on this level. We fix a square �, and show
how to form the row basis � �

� for ���� . One approach is to take
a truncated singular value decomposition (taking only the largest �
singular values, or taking only singular values bigger than a thresh-
old �)

���� � ��� �

where the number of columns of � equals the number of rows of �
equals the number of singular values kept. Then set � �

� � � �. Now
by writing ���� � ����� �

� , it’s clear that � �

� is an approximate
row basis for ���� .

The problem with this approach is that it requires obtaining the
whole dense ���� , which would require a number of black-box
calls equal to the number of contacts in the square, for every square.
We want to keep the number of black-box calls proportional to
��� �. In order to achieve this, we use a version of sampling, sim-
ilar to [10]. The idea is to get a few sample rows of ���� and get
the row basis from the svd of the sample rows (actually, for us a
sample row is a linear combination of rows of ���� ). Specifically,
if we pick a small number (say ��) of column vectors, each with
one entry for each contact in ��, and put them in a matrix of sample
vectors ��, the matrix of sample rows is ������� . Notice that by
symmetry of � and transpose properties,

�
�

����� � ��������
�

�

Thus it suffices to obtain ������, which can be done with ��
black-box solver calls (one for each column of ��). In fact, sample
vectors can be shared among different squares on a given level, by
choosing each sample vector to have support in exactly one square.
Then for a square �, the sample vectors used are those with support
in the interactive squares of �. In our implementation, 1 or 2 sample
vectors per level per square works well.

Then we take the truncated svd ������� � ��� � and set � �

� �
� �. � �

� is our row basis, and with � � additional black-box calls,
we obtain ������. (In fact, we actually have the responses to ��
everywhere, and in particular at the interactive and local squares
together. We denote the interactive and local squares together by

��. We have ������, which will be important on the finer levels.)
Finer levels
The goal for the finer levels is the same: to obtain a small row

basis �� for each square � to represent the interaction of square
� with the interactive squares �� of �. (Notice that even as the
number of squares multiplies on the finer levels, the number of
interactive squares per square is bounded by a small constant—
this is part of the reason for the low-rank algorithm’s efficiency
in deriving the representation.) The same approach of choosing 1
or 2 sample vectors per square and sharing these among the source
squares to form ���� for every � that was described for the coarsest
level is used here.

However, the difference from the coarsest level is in how the
sample vector and row basis responses are calculated in each square.
If this were done in the obvious way, by calling the black-box once
per sample vector and row-basis vector in each square, the resulting
algorithm would be very inefficient, because the number of squares
on the finest level is ����, so ���� solves would be needed.

To reduce the number of solves, we combine solves as described
in [9]. For a square � on level 	, a vector �� (length ���) of the
voltages in that square can be expressed as a sum of two vectors
in the parent square  as follows. First extend �� to a vector � of
voltages in  (length ��) in the natural way, that is by copying
the voltages in �� to the entries corresponding to square � in � and
putting zeros in the entries corresponding to the other three children
of . Then:

� � ���
�

�� � �� � ���
�

��� (1)

Now

����� � ���������
�

�� ������� � ���
�

����

The reason we need to show how to obtain the current responses
in ��, which contains the local squares as well as the interactive
squares of �, is that the first term on the right relies on having
������ from the parent level, which we do, since �� is contained
in ��. �� is not contained in ��, so the algorithm wouldn’t work if
we substituted �� for �� above.

The first term on the right is computed from the next-coarser
level (	 � �) row-basis representation. The second term is ����

applied to ������
�

���, and ������
�

��� is orthogonal to the level
	 � � row-basis in square . Thus we expect that ��� � ���

�

���
will be nearly 0 outside local squares of . As described in [9], it is
possible to combine black-box applications of � for many vectors
into one solve under these circumstances, and to keep the number
of solves per level constant. In this way we compute the second
term.

Adding the two terms we obtain the responses to sample vectors
with support in square � at the interactive squares ����. We use the
same technique to obtain responses to the row basis obtained on
level 	 at the interactive and local squares � ���.

Finest level
At this point, we have represented all of � corresponding to

squares which are interactive (this is a symmetric relation) at some
level. The only part of � that remains to be computed is the inter-
actions of local squares on the finest level. In fact, for each finest-
level square � we already have the local responses to the row-basis
vectors ��. Denote by �� a matrix the columns of which form a
basis for the vectors in � which are orthogonal to ��. (If �� has
� columns then �� has ��� � � columns.) The combine-solves
technique is used to obtain local responses to the ��. Since any
vector � with support in square � can be written as a sum of a vec-



tor in �� and a vector orthogonal to �� (that is, in ��), this gives
the complete local interaction for the finest level.

3.3 Applying the operator
On each level, for each square �, we now have a low-rank rep-

resentation of the current response in the interactive squares due to
voltages in � given by ���������

�

� . It can be applied quickly (lin-
ear in the number of contacts in ��). However, we gain a substantial
improvement in accuracy by refining this technique. For the refine-
ment, we consider the interaction between two interactive squares
on a given level, denoted by ��� where � is the voltage source
square and � is the square where the current is being measured.

Since ��� just restricts the contacts at which current is measured,
compared to ���� , we know that because ���� � ���������

�

� , it’s
also true that ��� � ��������

�

� . (We have ����� because it’s just
a subset of the rows of ������.)

We claim that

��� � ���
�

����

as well, and we use this to refine the approximation. Note that we
have �� since we have a row basis for every square at every level.
To justify the claim, observe that �� is an approximate row basis
for ��� � ��

�� by symmetry, and thus it’s an approximate column
basis of ���. So, writing

���
�

����� � ����
�

���������

we see that ��� �

���� is the projection of the exact ���� onto the
(approximate) column space of ���. But ���� is a linear combi-
nation of the columns of ��� anyway, so the projection is accurate
to the extent that the columns of �� span the columns of ���. The
approximation for ��� is obtained as follows:

��� � ������
�

� ������ � ���
�

� �

� ������
�

� � ���
�

������ � ���
�

� �
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� � ���������
��� � ���

�

� �

A similar observation applies to the decomposition step described
in the previous subsection (Equation 1). This is analogous to the
improvement in accuracy gained in wavelet techniques [9] by not
dropping interactions between fast-decaying wavelet basis voltage
functions and standard basis current basis functions, but instead
dropping only wavelet-wavelet interactions.)

If we sum up the interactions between each square and its inter-
active squares on every level, this covers everything but the local
interactions at the finest level, which we have a complete represen-
tation for (discussed at the end of Section 3.2.)

3.4 Fine-to-coarse sweep
In this part of the algorithm, the goal is to use the row-basis rep-

resentation just obtained to obtain a representation which is wavelet-
like in structure [11, 9]. That is, we obtain a sparse orthogonal
change-of-basis matrix and a sparse approximate �	 which gives
the conductance matrix in the new basis,

� � ��	�
�

�

This is a simpler representation to work with and has the advan-
tage that further sparsity in �	 can be obtained by thresholding out
small entries, trading off the better sparsity for decreased accuracy.
It also makes comparisons to previous work [9] possible. Because
we have the row basis representation to work with, no further calls
to the black-box solver are needed in this phase.

On each level, starting at the finest, we construct fast-decaying
and slow-decaying basis functions in each square. Denote by ��

and �� the matrices whose columns are the fast- and slow-decaying
basis functions respectively. That is, the current response to the
fast-decaying basis functions in a square � should be close to 0 out-
side the local squares of �, and the whole basis (columns of ������)
will be orthogonal.

The finest level is very easy: for a square � on the finest level,
�� consists of the row basis for �; i.e. �� � ��. The columns of
�� form a basis for the orthogonal space of ��, i.e. �� � �� in the
notation of the “finest level” discussion of Section 3.2.

Coarser levels
For each parent square  on level 	, the idea is to recombine slow-

decaying basis functions from the level-	� � children of  to form
many fast-decaying and some slow-decaying basis functions in .
This is done using the singular value decomposition. Let �� be the
matrix whose columns are the columns of ��� , ��� , ��� , and ���

for each of the four children ��, ��, ��, �� of . Take the svd of
������, and set �� and �� to sections of � as shown:

������ � ��� � � �

�
�large �

� �small

��
� �

�

� �

�

�
�

Choose the number of columns of �� equal to the number of
singular values in �
��� (i.e., the number of large singular values
according to whatever threshold we are using). Notice that if we
multiply both sides by ��, we obtain

���������� � ���� � � ��small���small���

The right-hand side is close to zero (assuming the ����

 are in
fact very small), suggesting that the columns of ���� are a very
good “fast-decaying” basis on the parent level 	.

We proceed through the levels, transforming the slow-decaying
basis functions on a level into fast-decaying basis functions on the
next-coarser level. At the end, the only slow-decaying basis func-
tions left are at the coarsest level. Eventually all the basis functions
together form our new orthogonal change-of-basis matrix �.

We briefly sketch how the entries of �	 can be computed ef-
ficiently, given the new basis � and the multilevel row-basis rep-
resentation. The only interactions which need to be kept are those
between fast-decaying (��) basis functions in squares which are lo-
cal to each other. (For two basis functions on different levels, we
take the conservative approach of defining “local” to mean that the
finer-level square’s ancestor on the coarser level is the same as or
a neighbor of the coarser-level square. In fact, many of these in-
teractions are very small, and are zeroed when a small threshold is
applied). We also keep the top-level slow-decaying basis-function
interactions with everything else. There are at most a small con-
stant number of these.

The essential idea is to keep a data structure for each level con-
taining the local responses to the �� and �� basis vectors in each
square at that level. We have this already for the finest level, from
the Phase 1 representation. On coarser levels, the interaction be-
tween a parent square  and its neighbors can be decomposed into
the four interactions between each of its children �� � � � �� and the
neighbors of . For each child ��, this interaction can be decom-
posed into the interaction with squares local to that child (on the
child level), and the interaction with interactive squares of that child
(on the child level). (This is a consequence of the fact that the local
squares on the parent level are the same as the interactive squares
plus the local squares on the child level, as can be seen in Figure 2.)
The local interactions we get from the data structure maintained on
the child level, and the interactive square interactions can be ob-
tained using the row bases of �� and the interactive squares of ��.



(Why not just use the Phase 1 row-basis representation directly? It
can be shown for reasonably regular contact layouts that this leads
to an ��� ���� �� algorithm, whereas the approach just described
leads to an ��� ��� �� algorithm.)

3.5 Algorithm summary

Phase 1: get multilevel row-basis representation
for lev:=2 to maxlev

for each square � on level lev
choose a random sample vector �� (nonzero only in �)

end
get responses to sample vectors:
if lev �� �

for each square � on level lev
Get response ��� to sample vector
using black-box solver

end
else get response to sample vectors using splitting method:

for each square � on level lev
Decompose �� � �� �  � (�� in span of
parent level row-basis,
 � orthogonal to parent level row-basis)

end
Use combine-solves technique to get local and
interactive (=local on parent level) responses
���� � to all  � with ���� black-box calls
Use parent-level row-basis responses to get local
and interactive responses ������ to all �� with ����
work.
for each square � on level lev

get ������ � ���� � �������
end

end

Get row basis in each square � on level 	
�
using sample vectors and svd

Get responses to row basis: same method
as getting responses to sample vectors

end
for each square � on finest level (lev=maxlev)

get local responses to every standard basis function in �

using combine-solves technique for orthogonal space
of row basis ��

end

Phase 2: get wavelet-structure basis �
for lev:=maxlev downto 2

Form �� (fast decaying response),
�� (slow decaying response)
for each square at level lev:
if lev �� maxlev

for each square � at level maxlev
set �� � ��, set �� orthogonal to ��

end
else

for each square � at level lev
use svd to get ��, �� from
child ��� � � ����

end
end
For each square � on level lev,
put vectors in �� into � (wavelet-structure basis)

Example Sparsity Sparsity Max. rel. Max. rel.
factor factor error error

(low rank) (wavelets) (low rank) (wavelets)
1 2.8 2.5 1.0% 69%
1a 1.6 1.3 0.3% 18%
1b 6.8 6.1 1.9% 105%
2 2.7 2.5 0.7% 1.3%
3 2.4 2.3 0.9% 30%

Table 1: Accuracy achieved without thresholding

end
Fill in �	: form interactions of fast-decaying
basis functions with each other and with coarsest-
level slow-decaying basis functions

4. COMPUTATIONAL RESULTS
In presenting our results, the key point is that arbitrary sparsity

can always be obtained by reducing accuracy—i.e., set a threshold
! and drop entries of � with absolute value below !. Or, in our
representation � � ��	�

�, drop entries of �	 below !. By
setting ! large enough, any desired sparsity is obtained. Of course,
when ! is set very large the sparsified representation will be of very
poor quality. Thus, to address algorithm performance, sparsity and
accuracy must be considered together.

We will compare our results using the new low-rank algorithm
to the geometric-moments wavelet algorithm presented in [9]. It
is worth noting that both these algorithms obtain substantial spar-
sification on many examples and are clearly better than naive ap-
proaches such as thresholding out small entries in the original dense
�. However, we believe the results here show a much better sparsity-
accuracy tradeoff for the low-rank algorithm. First we mention
that the number of solves needed for our method is slightly larger
than for the wavelet method (essentially because we’re doing extra
solves for the sample vectors), but in none of our examples more
than 20% larger. This is not a major issue for many applications,
where the representation will be derived once and applied many
times in a circuit simulator. The important point is that the opera-
tor derivation takes only a very efficient ����� �� solves for both
methods.

To make the comparison, we will consider two ways of using the
sparsification algorithms. First, we can apply the conservative as-
sumptions described earlier to obtain some sparsity, but try to main-
tain high accuracy. In this case we measure the maximum relative
error in all the �� entries of the dense matrix ����

� (for medium
sized examples where it is tractable to compute this). (� is the
orthogonal basis and �� the sparsified operator, for whichever al-
gorithm, geometric moment-matching or low-rank approximation,
is being used.) Notice that this is a particularly harsh standard for
small entries in � where small relative errors will require extremely
small absolute errors, but the low-rank algorithm still delivers very
good results. Table 1 summarizes the results. The sparsity factor
of a sparse matrix is the ratio of the number of entries in a dense
matrix of the same size to the number of nonzeros in the sparse
matrix.

On the other hand, for many applications a less stringent stan-
dard is appropriate, and we can obtain a more efficient represen-
tation by thresholding out small entries of ��. To get a handle
on this we’ll use as our measure of accuracy the percentage of en-
tries in ����

� which deviate by more than �� percent from the
corresponding entry in �. A threshold will be chosen which gives



Example Sparsity of Entries Wavelet Wavelet
thresholded Off by more sparsity ��	�

� Entries
�� (low than 10% (equiv. Off by More

rank rep.) accuracy) than 10%
(equiv.

sparsity)
1 17.0 1% 2.5 (*) 85%
1a 9.6 2% 1.3 (*) 86%
1b 41.0 2% 6.1 (*) 82%
2 16.2 3% 8.5 20%
3 14.3 8% 5.5 92%

Table 2: Sparsity/accuracy tradeoff for low rank vs. wavelet
representation: the (*) indicates that even with no threshold-
ing the wavelet method didn’t achieve the same accuracy as the
low-rank method

the low-rank algorithm a 6x increase in sparsity factor from using it
without thresholding. Then the wavelet algorithm will be compared
to the low-rank algorithm in two ways: first, choose a threshold to
obtain equivalent accuracy to the low-rank algorithm, and compare
the sparsity achieved. Second, choose a threshold to obtain equiv-
alent sparsity to the low-rank algorithm, and compare the accuracy
of the two methods. Table 2 summarizes the results.

The new low-rank method is the clear winner in all the examples.
In each case the maximum relative error for the very accurate (with-
out thresholding) representations is worse (sometimes much worse)
for the wavelet method. In the more efficient lower-accuracy rep-
resentations, the low-rank method achieves more accuracy at the
same sparsity as the wavelet-method, and more sparsity at the same
accuracy as the wavelet method.

Example 1 (see Figure 3) represents a bad case for the wavelet
method due to the proximity of large and small contacts throughout;
this is where the greatest advantage is seen for the new method. For
this example we also show a sparsity structure plot of ��; they are
similar in appearance for the other examples. Examples 1a and 1b
a are the same except the grid of contacts is smaller (16 by 16=256
contacts) for Ex. 1a and larger (4096 contacts) for Ex. 1b—they
are included mainly to show that the sparsity factor increases as
we increase the problem size (9.6 for 256 contacts, 17 for 1024
contacts, 41 for 4096 contacts), suggesting the algorithm is much
closer to ���� than �����, which is how it was designed. (Also,
due to the extremely large size of the dense 4096 x 4096 matrix,
the results for example 1b are based on a 10 percent sample of the
columns of �.) Example 2 (see Figure 5) is a regular grid of con-
tacts, and a good case for the wavelet algorithm (the fact that all
the contacts are the same size makes the moment-matching repre-
sentations more effective), but the low-rank algorithm still wins.
Example 3 (see Figure 6) illustrates that our method can handle
quite irregular layouts, with different sizes and shapes of contacts,
including such features as guard rings. They are each about 1000
contacts in size.

5. CONCLUSIONS AND FUTURE WORK
We have shown a new method for efficiently extracting a sparse

representation of the conductance matrix of substrate coupling. The
results show very high accuracy for the low-rank algorithm com-
pared to previously known methods, and also demonstrate a better
sparsity/accuracy tradeoff.

Future work may include putting this model in a circuit simulator
such as SPICE to try to simulate the substrate effectively. There are
some improvements to the algorithm which are possible but not yet

Figure 3: Example 1, alternating rows of large and small con-
tacts (1024 contacts)— Example 1a is the same but with only
16x16=256 contacts
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Figure 4: Example 1 sparsity structure plot for low-rank alg.
�	

Figure 5: Example 2, regular grid (1024 contacts)



Figure 6: Example 3, with guardrings, long contacts, different-
sized contacts (836 contacts)

implemented (for example, we believe the coarsest level can be set
at level 1 instead of the current level 2). We would like to use
real substrate layouts to test the algorithm further. Some form of
automatic error estimation (outputting an error estimate with the
new representation) would be desirable. It may also be interesting
to see if any reasonable accuracy can be achieved with the new
algorithm by reducing the rank-6 assumption for faraway squares
even further, which would result in a very sparse representation.
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