
Abstract
Given a test set for stuck-at faults, some of primary input values
may be changed to opposite logic values without losing fault cov-
erage. We can regard such input values as don’t care (X). In this
paper, we propose a method for identifying X inputs of test vec-
tors in a given test set. While there are many combinations of X
inputs in the test set generally, the proposed method finds one in-
cluding X inputs as many as possible, by using fault simulation
and procedures similar to implication and justification of ATPG
algorithms. Experimental results for ISCAS benchmark circuits
show that approximately 66% of inputs of un-compacted test sets
could be X in average. Even for compacted test sets, the method
found that approximately 47% of inputs are X. Finally, we discuss
how logic values are reassigned to the identified X inputs where
several applications exist to make test vectors more desirable.

1. Introduction
Research on test generation for logic circuits has been done

for a long time and many significant results have been obtained
[1]. The traditional tasks of test generation were to achieve high
fault coverage (sometimes it means complete fault efficiency) for
single stuck-at faults with short computing time. Then, with the
progress of VLSI technology, some additional features have been
required to generated test sets as follows:
(1) Not only 100% fault efficiency for single stuck-at faults, but

also defects modeled by other faults such as bridging faults,
delay faults should be detected [2].

(2) The number of test vectors should be small due to reduction of
test application time and memory limits of LSI testers [3].

(3) Power dissipation during testing should be reduced [4].
Once a test set was generated, it may be difficult to modify

them so as to satisfy the above requirements because every pri-
mary input value of test vectors in the test set has been specified
to either 0 or 1. It is obvious that test vectors generated for ran-
dom pattern fault simulation don’t contain Xs. Even for test vec-
tors generated by a deterministic test generator such as
SOCRATES [5], the final test vectors don’t contain Xs. Just after
a test vector was generated for a target fault, X inputs may re-
main. But the X inputs are specified by random fill or static/

dynamic test compaction [6] because faults other than the target
fault may be detected by fault simulation. Thus, no Xs at the
primary inputs remain in the final test vectors.

However, some of primary input values may be changed to
opposite logic values without losing fault coverage. We can regard
such input values as don’t care (X). In this paper, we propose a
method for identifying X inputs of test vectors in a given test set.
Since there are many combinations of X inputs in general, the
proposed method finds one including X inputs as many as pos-
sible, by using fault simulation and procedures similar to implica-
tion and justification of ATPG algorithms. The implication and
justification procedures are restricted so that the obtained test set
covers the original test set. Experimental results for ISCAS
benchmark circuits show that approximately 66% of inputs of
un-compacted test sets are Xs in average. Even if compacted test
sets [8] were given, the method found approximately 47 % of
inputs were Xs.

After a test set including X inputs was obtained, arbitrary
logic values can be assigned to the X inputs. Hence we can make
the test set to have desirable features without losing fault cover-
age and without adding new test vectors. We also discuss in this
paper how logic values are reassigned to the X inputs where
several applications exist.

This paper is organized as follows. In Section 2, we give
problem formulation and definitions of terminology used in this
paper, and then show overview of the proposed method. In Sec-
tion 3, we present more details of the proposed method. In Sec-
tion 4, experimental results for benchmark circuits are given. In
Section 5, we present several applications of the proposed
method, and we conclude this paper in Section 6.

2. Preliminary
2.1 Problem formulation

In this paper, we treat test sets generated for single stuck-at
faults of combinational circuits or full-scan sequential circuits.
Given a circuit and its test set T in which every primary input
value of test vectors has been specified to either 0 or 1, we com-
pute test set T’ including some Xs (don’t cares), where test set T’
has the following properties:

On Identifying Don't Care Inputs of Test Patterns for Combinational Circuits

Seiji Kajihara
Dept. of Computer Sciences and Electronics, and

Center for Microelectronics Systems
Kyushu Institute of Technology

Iizuka 820-8502 Japan

Kohei Miyase
Dept. of Computer Sciences and Electronics

Kyushu Institute of Technology
Iizuka 820-8502 Japan

(1) T’ covers T.
(2) T’ contains Xs as many as possible.
(3) Fault coverage of T’ is equal to that of T.

We show a simple example. Suppose that test set T in Table
1(a) was generated for a circuit in Fig. 1. Test set T’ in Table 1(b)
is one of the solutions. Test vector t1 detects fault a/0, b/0, and c/
1, where s/v denotes stuck-at v fault on signal line s . While a/0
have to be detected by t1, fault c/1 does not have to be detected by
t1 because t3 detects it too. Hence value 0 at input c becomes an X.
Similarly, value 0 at input a of t4 becomes an X. Thus, test set T’
in Table 1(b) is obtained.

In this paper, a given test set and a derived test set are
denoted by T and T’, respectively. Similarly, a test vector in T and
a test vector in T’ are denoted by ti and ti’, respectively. Note that
ti’ is derived from ti, as shown in Table 1.

2.2 Definitions
We define some terminology used in this paper below.

Given a test set T, if any fault detected by test vector ti in T is
detected by at least one test vector in T-{ti}, ti is called a redun-
dant test vector. When ti is redundant, fault coverage of T-{ti}
keeps that of T. If fault f is detected by tj in T, but not detected by
any test vector in T-{t j}, f is called an essential fault of tj [7].
Redundant test vectors do not detect essential faults. If there is
no redundant test vector in T, T is called a minimal test set. A
minimal test set can be obtained easily by double detection [8].

2.3 Overview of the proposed method
We explain a basic procedure to obtain test set T’ from given

test set T. In order that T’ might cover T and that fault coverage of
T’ might keep that of T, essential faults of ti in T must be detected
by ti’ in T’. Not-essential faults of ti, however, don’t have to be

detected by ti’ because they have a chance to be detected by
another test vector. Hence we first fix logic values to detect essen-
tial faults of each test vector, and then fix logic values to detect the
other faults that are undetected by the fixed values for the essen-
tial faults. Unfixed logic values are dealt with as Xs after all.

In Fig. 2, we give a basic procedure to obtain T’ from T. For
each test vector ti, we collect essential faults at Step 1. Then,
calculate logic values of ti which contribute to the detection of the
essential faults, and let the value at primary inputs be ti’ at Step 2.
The details of this calculation will be described in Section 3. Note
that ti’ at Step 2 is still intermediate, not final one yet. As ti’ may
detect faults other than the essential faults, we perform fault
simulation for ti’ at Step 3. The fault simulator used in this proce-
dure can deal with test vectors including X inputs. By applying
these three steps for each test vector, test set T’, which is still
temporary, is obtained.

Since some faults are not detected by the temporary T’, we
return some of the Xs in ti’ to the original value of ti, such that all
faults are detected. At Step 4, we collect faults which are undetec-
ted but detectable by T, and let a set of the collected faults be G.
Then, calculate logic values of ti which contribute to the detection
of faults in G at Step 5, and add the value at primary inputs to ti’.

3. Logic values to detect a fault
As described above, the proposed method calculates and

fixes necessary logic values of each test vector, and regards the
unfixed logic values as Xs. In this section we describes how to
calculate the logic values to be fixed.

3.1 Selection of fault propagation paths
When a test vector detects a fault, there exist internal logic

values to activate the fault and to sensitize at least one fault

a

b

c

f

g

d

e

Fig. 1: Example circuit

Table 1(a):
 Given test set T

 a b c
 t1 1 1 0
 t2 1 0 1
 t3 0 1 0
 t4 0 1 1

Table 1(b):
 Obtained test set T'

 a b c
 t1' 1 1 x
 t2' 1 0 1
 t3' 0 1 0
 t4' x 1 1

 Basic Procedure X-search(C, T)
Circuit C; Test set T;

 {
 for each test pattern ti in T {

F=collect_essential_fault(ti); /* step 1 */
ti’ = find_value(F); /* step 2 */
fault_simulation(ti’); /* step 3 */

 }
 for each test pattern ti in T {

G=collect_undetected_fault(ti); /* step 4 */
ti’ += find_value(G); /* step 5 */
fault_simulation(ti’); /* step 6 */

 }
 return T’ composed of ti’;
 }

Fig. 2: Basic procedure for identifying X inputs

propagation path to a primary output. We collect such internal
logic values, which are a value on the faulty line and values on fan-
in lines of gates along the fault propagation path. Then, we calcu-
late logic values at primary inputs to satisfy the values by impli-
cation and justification procedures used in ATGP algorithms.

Sometimes more than one fault propagation path exists. In
order to leave Xs at as many inputs as possible, we select only
one among them, because sensitization of one of the paths is
enough to detect the fault. Since values to be fixed are different
depending on the path selected, it is important which path is
selected. We select a path to a primary output to which more
faults are propagated. This is because, if a value is related to
sensitization of many paths, total number of the fixed values
becomes small potentially.

3.2 Limited implication and limited justification
In order to fix values at primary inputs to activate a fault and

to sensitize a fault propagation path, we employ procedures
similar to implication and justification used in ATGP algorithms.
Unlike procedures used in ATPG algorithms, a limitation exists
so that conflicts with the original value must be avoided. We refer
to the implication and the justification used in the proposed
method as limited implication and limited justification.

Fig. 3(a) illustrates an example of limited implication. Logic
values outside the parenthesis mean values for ti’, and logic values
inside the parenthesis mean values for ti. Suppose that values of
gate inputs, a and b, have not been assigned yet for ti’ and logic
value of the gate output c is newly assigned to 0. In this case, the
limited implication procedure derives “c=0 implies a=0” because
b cannot take value 0 for ti’ due to b=1 for ti.

Fig. 3(b) illustrates an example of limited justification. Con-
sider to justify logic value 0 on output d when values of gate
inputs, a, b, and c, have not been assigned yet for ti’. In this case,
the limited justification procedure can select “b=0” or “c=0”, but
cannot select “a=0” because value of a was 1 for ti.

By applying limited implication and limited justification
until no unjustified line remains, primary input values to satisfy
value assignments to detect the faults are found. If no value was
assigned to a primary input, the primary input takes X in ti’ .
Otherwise, the value, which is the same of ti, is fixed in ti’. Note
that backtracking is never needed during the procedures because
the original test guarantees that unjustified lines are justifiable.

3.3 Extended implication
Limited implication and limited justification are based on 3-

valued logic (0, 1, X). Hence it takes only fault-free values into
account, and ignores faulty values. Due to the 3-valued logic in

limited implication and limited justification, the obtained test set
T’ may miss some detectable faults, even though the faults has
been treated explicitly. We show an example in Fig. 4. Test vector
(a, b, c) = (0,0,0) detects stuck-at 1 fault on line b. Since a fault
propagation path is b-e-f as shown in Fig. 4(a), b=0, d=0 and c=0
are required to detect the fault. Since b and c are primary inputs,
and d=0 is implied by b=0, we don’t need additional assignments.
As a result, value of a becomes an X as shown in Fig. 4(b). How-
ever, as shown in Fig. 4(c), detection of stuck-at 1 fault on b is not
guaranteed, i.e., it is not detected when a=1. Such a case seldom
occurs, but we give an additional procedure to solve the problem.

The reason why such undetected faults are produced is that
limited implication and limited justification do not look at values
of the faulty circuit. For example in Fig. 4, while d=0 is required
for the faulty circuit, d=0 is implied by b=0 on the fault-free
circuit. This implication, however, results in d=1 on the faulty
circuit. In order to avoid such undetected faults, we propose ex-
tended implication that is applied to backward implication.

In the extended implication, when a fault effect is propa-

(a) Limited implication (b) Limited justification
Fig. 3: Limited implication and justification

a X (0)

b X (1)
0 (0)
ti’(ti)

c 0 (0)
a X (1)
b X (0)
c X (0)

d

0/0

0/1

0/0

0/0

1/0

1/0
a

b

c

d

e
f

(fault-free)/(faulty)

X

0

0

0

1

1
a
b

c

d

e
f

(c) missed fault
Fig. 4: Missed fault by limited implication

(b) Don't care on input a

(a) Given test vector

x/x

0/1

0/0

0/x

1/0

1/x
a
b

c

d

e
f

(fault-free)/(faulty)

gated to at least one fan-in line of a gate, values of all fan-in lines
of the gate are fixed. An example of extended implication is given
in Fig. 5. Assume that values of gate inputs, a, b, c were 0, 1, 0 for
ti, respectively, and faults were propagated to a and b, as shown in
Fig. 5(a). Now, consider a case that values of gate inputs, a, b, c
have not been assigned yet for ti’ and logic value of gate output d
is newly assigned to 0. Extended implication is “d=0 implies a=0,
b=1, and c=0” as shown in Fig. 5(b). Limited implication de-
scribed in Section 3.2 cannot fix any input value, and limited
justification take either a=0 or c=0, as shown in Fig. 5(c). On the
other hand, extended implication may fix unnecessary values to
detect a fault. For example of Fig 5(b), c=0 is enough to d=0. So
extended implication should not be used for many faults. Note
that when extended implication is used, forward implication from
the fault site are not performed to avoid missing cases that need
extended implication.

Fig. 6 shows the complete procedure of the proposed
method to identify X inputs in a given test set. Steps 7 to Step 9
are added to the basic procedure in Fig. 2. The extended implica-
tion is used only at Step 8.

4. Experimental results
We implemented the proposed method on a PC (PentiumIII

700MHz, 384MB memory) using C programming language and
applied it for ISCAS’85 and full-scan version of ISCAS’89
benchmark circuits. We gave two kinds of test sets for each cir-
cuit, an un-compacted test set and a compacted one [8]. Table 2
and Table 3 show results for un-compacted test sets and com-
pacted test sets, respectively.

The first three columns of the Tables give the circuit name,
the number of primary inputs, and the number of test vectors of
the given test set. The next three columns show the average per-
centage of X inputs for each test vector, the percentage of X
inputs of the test vector with the most Xs, and the percentage of
X inputs of the test vector with the least Xs. The next two col-
umns show the number of target faults, and the number of faults

which were undetected after the basic procedure. All the undetec-
ted faults were finally detected using the procedure with extended
implication described in Section 3.3. The last column shows CPU
time in second.

For un-compacted test sets, the proposed method found
that values of approximately 66 % of primary inputs are X in
average. Even for compacted test sets, values of approximately
47% of primary inputs were X. However, the percentage of X
inputs depends on the circuit and its test set. In general, The more
the number of primary inputs is, the more X inputs its test set
has. When the given test set is not minimal, there exists a test
vector of which all inputs are Xs. Faults detected by using ex-
tended implication are at most 2 % for every circuit. CPU time
strongly depends on the number of test vectors of the given test
set and circuit size. This is because the proposed method pro-
cesses each test vector in serial.

5. Applications
Since we can re-assign arbitrary logic value to X inputs iden-

tified by the proposed method, we can make a test set to have
desirable features without losing fault coverage and without in-
creasing the number of test vectors. In this section, we present
some applications of the proposed method.

5.1 Test compaction
The most typical application is test compaction. For ex-

ample, test set T’ in Table 1(b) can be compacted by merging t1’
with t4’. This is static compaction [6] and would be useful when

(b) Extended implication (c) Limited justification
Fig. 5: Extended implication

(a) Given test vector

 Complete Procedure X-search(C, T)
Circuit C; Test set T;

 {
 for each test pattern ti in T {

F=collect_essential_fault(ti); /* step 1 */
ti’ = find_value(F); /* step 2 */
fault_simulation(ti’); /* step 3 */

 }
 for each test pattern ti in T {

G=collect_undetected_fault(ti); /* step 4 */
ti’ += find_value(G); /* step 5 */
fault_simulation(ti’); /* step 6 */

 }
 for each test pattern ti in T {

H=collect_undetected_fault(ti); /* step 7 */
ti’ += extended_find_value(H); /* step 8 */
fault_simulation(ti’); /* step 9 */

 }
 return T’ composed of ti’;
 }

Fig. 6: Complete procedure for identifying X inputs

a 0/1
b 1/0

0/0

c 0/0
d

a 0
b X

0

c X
d

a 0
b X

0

c X
d

a 0
b 1

0

c 0
d

a 0
b 1

0

c 0
d

(fault-free)/(faulty)

circuit #PIs #tests %X-ave %X-max %X-min #faults #flt-ext time(sec)

c432 36 54 49.0 100 13.9 520 3 0.03
c499 41 94 20.5 100 0 750 41 0.05
c880 60 78 64.3 100 11.7 942 7 0.07
c1355 41 129 25.3 100 0 1566 0 0.16
c1908 33 150 33.7 100 0.0 1862 17 0.32
c2670 233 142 84.0 100 27.9 2630 17 0.69
c3540 50 207 59.2 100 12.0 3291 42 1.71
c5315 178 186 80.7 100 25.8 5291 34 2.04
c6288 32 38 13.5 100 0 7710 16 1.91
c7552 207 290 76.2 100 16.4 7419 90 5.01
s1238 32 195 62.0 100 28.1 1286 1 0.16
s1423 91 93 76.5 100 20.9 1501 29 0.12
s1494 14 166 38.1 100 7.1 1494 1 0.16
s5378 214 333 88.7 100 19.2 4563 11 2.89
s9234 247 480 88.3 100 23.9 6475 58 7.74
s13207 700 586 96.0 100 33.0 9664 158 14.84
s15850 611 500 94.0 100 24.7 11336 77 15.71
s35932 1763 76 84.8 99.9 0.6 35110 16 18.44
s38417 1664 1243 96.7 100 24.2 31015 271 108.53
s38584 1464 854 96.3 100 8.3 34797 187 75.02
Average 66.3 99.9 14.8

circuit #PIs #tests %X-ave %X-max %X-min #faults #flt-ext time(sec)

c432 36 28 46.9 66.7 8.3 520 0 0.02
c499 41 52 0.6 14.6 0.0 750 34 0.03
c880 60 21 31.7 63.3 11.7 942 0 0.04
c1355 41 84 0.0 2.4 0.0 1566 2 0.13
c1908 33 106 15.8 63.6 3.0 1862 22 0.28
c2670 233 45 70.1 86.3 20.6 2630 3 0.33
c3540 50 93 49.3 76.0 26.0 3291 58 0.98
c5315 178 186 59.5 89.3 23.0 5291 3 0.81
c6288 32 14 0 0 0 7710 0 1.18
c7552 207 75 52.7 82.1 10.6 7419 64 1.90
s1238 32 125 55.0 65.6 25.0 1286 0 0.10
s1423 91 24 41.1 71.4 17.6 1501 7 0.08
s1494 14 100 25.5 57.1 0.0 1494 0 0.11
s5378 214 100 71.0 88.3 8.9 4563 5 1.13
s9234 247 111 67.2 87.5 36.0 6475 35 2.45
s13207 700 235 91.6 98.4 16.4 9664 149 7.34
s15850 611 97 76.1 96.6 24.2 11336 60 4.87
s35932 1763 12 34.4 83.5 0.0 35110 345 9.03
s38417 1664 87 73.4 89.4 20.1 31015 93 13.73
s38584 1464 114 79.7 95.6 14.3 34797 88 15.78
Average 47.0 68.8 13.2

Table 2: Results for un-compacted test sets

Table 3: Results for compacted test sets

the size of the given test set is large. Even if it is impossible to
compact T’ by static compaction, we can apply dynamic com-
paction for T’ so as to make some test vectors be redundant [9].

Reduction of test application time for full-scan circuits is

also possible by T’. If there exist Xs at pseudo-primary inputs
close to the scan-out output, the scan-in operation can be omit-
ted. Similarly, if there exist Xs at pseudo-primary outputs close
to the scan-in input, the scan-out operation can be omitted. Sub-

sequently, we can reduce scan shift operation, which contributes
to the reduction of test application time [10],[11].

Another application is test compression using encoding
technique. For examople, the storage of a test set on a ROM is
reduced by statistically encoding the test set [12]. The test set
including Xs would bring smaller codes.

5.2 Reduction of power dissipation during testing
Power dissipation under testing condition is sometimes

100-200% higher than that of normal operation [13]. Therefore
fault-free circuits may produce faulty responses for some test
vectors even though each test vector has statically no problem for
the circuits. Since power dissipation of LSIs increases in propor-
tional to switching activity, it can decrease by assigning appropri-
ate logic values to Xs [14].

5.3 Enhancement of test quality
It is known that defect coverage of a test set is improved if

the test set is generated so that each stuck-at fault is detected
more than once [2][15]. By using X inputs identified by our
method, the test set can detect each faults more times than the
original one, and would improve defect coverage.

The method proposed in this paper has not developed to be
applied to a test set for path delay faults. But it is possible to
identify Xs of the test set for path delay faults, because internal
logic values to sensitize target paths can be specified easily. Since
power supply noise affects propagation delay of paths [16], by
using Xs, the given test set can be modified to one with the worst
case delay.

6. Conclusions
We proposed a method for identifying X (don’t care) inputs

of test vectors in a given test set. The proposed method found by
using fault simulation and procedures similar to implication and
justification of an ATPG algorithm. Experimental results for
ISCAS benchmark circuits showed that approximately 66% of
inputs of un-compacted test sets could be X in average. Even if
compact test sets were given, the method found approximately
47 % of inputs were X although the non-compacted test sets have
more X inputs than the compacted ones. We also discussed how
logic values are reassigned to the X inputs and presented several
applications. We will report the effectiveness of the test pattern
modification in the future.

References
[1] M. L. Bushnell, V. D. Agrawal, Essentials of Electronic

Testing for Digital, Memory & Mixed-Signal VLSI Circuits ,

Kluwer Academic Publishers, 2000.
[2] S. C. Ma, P. Franco, and E. J. McCluskey, "An Experimen-

tal Chip to Evaluate Test Techniques Experiment Results,"
1995 International Test Conf., pp. 663-672, Oct. 1995.

[3] I. Pomeranz, L. N. Reddy, and S. M. Reddy,
"COMPACTEST: A Method to Generate Compact Test
Sets for Combinational Circuits," 1991 International Test
Conf., pp. 194-203, Oct. 1991.

[4] S. Wang, S. K. Gupta, “ATPG for Heat Dissipation
Minimization during Test Application,” IEEE Trans.
Computer, Vol. 47, No. 2, pp. 256-262, Feb. 1998.

[5] M. Schulz, E. Trischler, and T. Sarfert, "SOCRATES: A
Highly Efficient Automatic Test Pattern Generation
System," IEEE Trans. on CAD., pp. 126-137, Jan. 1988.

[6] P. Goel, and B. C. Rosales, "Test Generation and Dynamic
Compaction of Tests," Digest of Papers 1979 Test Conf.,
pp. 189-192, Oct. 1979.

[7] J. -S. Chang, C. -S. Lin, "Test Set Compaction for Combina-
tional Circuits," First Asian Test Symposium, pp. 20-25,
Nov. 1992.

[8] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy,
"Cost-Effective Generation of Minimal Test Sets for Stuck-
at Faults in Combinational Logic Circuits," IEEE Trans.
Computer-Aided Design of Integrated Circuits and Sys-
tems, Vol. 14, No. 12, pp.1496-1504, Dec. 1995.

[9] L. N. Reddy, I. Pomeranz, and S. M. Reddy, "ROTCO: A
Reverse Order Test Compaction Technique," 1992 IEEE
EURO-ASIC Conference, pp. 189-194, Sept. 1992.

[10] S. Y. Lee and K. K. Saluja, "An Algorithm to Reduce Test
Application Time in Full Scan Designs" Proc. Int'l Conf. on
CAD, pp. 17-20, Nov. 1992.

[11] Y. Higami, S. Kajihara, and K. Kinoshita, "Reduced Scan
Shift: A New Testing Method for Sequential Circuits,"
IEEE International Test Conference, pp. 624-630, Oct.
1994.

[12] V. Iyengar, K. Chakrabarty, and B. T. Murray, "Built-in
Self Testing of Sequential Circuits Using Precomputed Test
Sets," 16th VLSI Test Symposium, pp. 418-423, 1998.

[13] Y. Zorian, “A Distributed BIST Control Scheme for
Complex VLSI Devices,” 11th VLSI Test Symposium, pp.
4-9, 1993.

[14] R. Sankaralingam, R. R. Oruganti, N. A. Touba, “Static
Compaction Techniques to Control Scan Vector Power
Dissipation,” 18th VLSI Test Symposium, pp. 35-40, 2000.

[15] S. M. Reddy, I. Pomeranz, and S. Kajihara, "Compact
Test Sets for High Defect Coverage," IEEE Trans. Com-
puter-Aided Design of Integrated Circuits and Systems,
Vol. 16, No. 8, pp.923-930, Aug. 1997.

[16] A. Krstic, Y. -M. Jiang, K. -T. Cheng, "Delay Testing
Considering Power Supply Noise Effects," International
Test Conf., pp. 181-190, Sept. 1999.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

