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Abstract: This paper describes ASF, a novel cell-level analog
synthesis framework that can size and bias a given circuit topology
subject to a set of performance objectives and a manufacturing
process. To manage complexity and time-to-market, SoC designs
require a high level of automation and reuse. Digital methodologies
are inapplicable to analog IP, which relies on tight control of low-
level device and circuit properties that vary widely across
manufacturing processes. This analog synthesis solution automates
these tedious, technology specific aspects of analog design. Unlike
previously proposed approaches, ASF extends the prevalent
“schematic and SPICE” methodology used to design analog and
mixed-signal circuits. ASF is topology and technology independent
and can be easily integrated into a commercial schematic capture
design environment. Furthermore, ASF employs a novel numerical
optimization formulation that incorporates classical downhill
techniques into stochastic search. ASF consistently produces results
comparable to expert manual design with 10x fewer candidate
solution evaluations than previously published approaches that rely
on traditional stochastic optimization methods.

I. INTRODUCTION

Cost pressures are forcing the creation of highly integrated System-
on-Chip (SoC) solutions for mass-market products. To manage com-
plexity and time-to-market, SoC designs require a high level of reuse.
Cell-based techniques lend themselves well to a variety of strategies
for capture and reuse of digital intellectual property (IP). But these
digital IP strategies are inapplicable to analog IP, which relies on
tight control of low-level device and circuit properties that vary
widely across fabrication technologies. Thus, without an automated
synthesis methodology tailored specifically to the analog problem,
the analog portion has to be manually redesigned for each application
and fabrication technology. So, a new design methodology is needed
that replaces these tedious, technology-specific aspects of analog
design with an automated synthesis solution. This will allow design-
ers to focus on more interesting circuit and system level design prob-
lems. And, it will allow companies to create portfolios of reusable,
retargetable, analog intellectual property than can be deployed in
time-to-market critical products. This document describes an essen-
tial cornerstone of this next new mixed-signal design methodology.

Although many analog synthesis frameworks have been proposed
in the past, none have proven practical and effective enough to be ac-
cepted as an integral part of the industrial design process. ASF ex-
tends the prevalent “schematic and SPICE” design methodology. It
utilizes the simulation methods used by designers to validate manual
circuit designs during the synthesis process. In addition, it incorpo-
rates modular, reusable, user-configurable test benches called evalua-
tors. Evaluators are both topology and technology independent. They
allow us to create a programming-free synthesis methodology that can
be integrated into a commercial schematic capture environment. Our
numerical optimization formulation is robust and consistent. It can
consistently synthesize a 20 variable op-amp in less than 5,000 candi-
date solution evaluations, producing results comparable to expert
manual design. This formulation is up to 10x faster than previously
published approaches that rely on traditional stochastic optimization
methods. This approach reduces the number of state evaluations

while, at the same time, improving solution quality and optimizer con-
sistency. 

II. REVIEW OF PRIOR APPROACHES

A significant amount of research has been devoted to cell-level ana-
log synthesis. Fig. 1 shows the basic architecture of most analog syn-
thesis tools. In this model, the optimization engine visits candidate
circuit designs and adjusts their parameters in an attempt to satisfy
the specified performance goals. An evaluation engine determines
the quality of each circuit candidate. In this survey, we broadly cate-
gorize previous work based upon the evaluation strategy. Specifi-
cally, we subdivide previous approaches into four categories:

• Equation-Based. Early approaches utilized explicit scripts of equa-
tions to directly evaluate the quality of each proposed candidate
circuit design. This formulation offers fast performance evaluation
which is conducive to aggressive search over the entire candidate
solution space. A number of optimization strategies have been at-
tempted with equation-based techniques, including numerical
search [10][2], combinatorial search [14], hierarchical systems that
attempt to decompose the evaluation and optimization [5], qualita-
tive and fuzzy reasoning techniques [25], and geometric program-
ming [6]. However, creating a model that captures the behavior of
a circuit topology as a set of compact, closed form, analytical equa-
tions for performance evaluation is prohibitively time consuming,
indeed, often more time consuming than manually designing the
circuit. Also, the simplifications required in these closed-form an-
alytical models necessarily limit their accuracy and completeness.

• Symbolic Analysis. Since the creation of performance models is
prohibitively time consuming, symbolic analysis techniques have
been developed to mechanically derive these equations [4]. How-
ever, these techniques are still mostly limited to linear performance
specifications.

• Simulation-Lite. While symbolic analysis has successfully auto-
mated select aspects of the equation generation process, it does not
provide a complete solution that can rival the generality, flexibility,
and accuracy of circuit simulation. The first crop of simulation
based tools utilized custom lightweight simulators or hybrid meth-
ods based on simulation and equation-based modeling [19][15].

• Full SPICE. Full SPICE-based evaluation offers superior accuracy,
generality, and easy of use. Simulation, however, is computation-
ally expensive. There are two ways to cope with this drawback: less
search or distributed/parallel evaluation. Gradient and sensitivity
techniques can be used to rapidly find a local minimum in the
neighborhood of a starting point [18]. However, finding an optimal
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solution, without a known good starting point, is a much more dif-
ficult numerical problem which requires a computationally inten-
sive global search strategy to avoid getting trapped in a poor local
minimum. For this reason, [11][20] distribute this computational
burden across a network of workstations.

III. GOALS

From the literature survey, we believe that the following attributes
are necessary for a circuit synthesis solution to gain acceptance:

• Accuracy. Even though a significant amount of research has been
devoted to cell-level analog synthesis, previous approaches have
not seen widespread adoption as an integral part of industrial de-
sign process. This is primarily due to the prohibitive effort needed
to reconcile the simplistic circuit models employed during synthe-
sis with the “industrial-strength” models used for validation in a
production environment. The synthesis formulation must leverage
the existing investment in simulators, device models, process char-
acterization, and “cell sign-off” validation methodologies.

• Ease of Use. Preparing a synthesis task should require no more
work than specifying the topology, reasonable numerical search
ranges for each of the independent variables, and the desired per-
formance specifications. No methodology that attempts to turn a
circuit designer into a programmer will gain acceptance.

• Generality. No methodology that limits the user to a set of topolo-
gies, no matter how arbitrarily large, will gain wide acceptance. A
successful solution must allow the user to synthesize any arbitrary
topology for any desired manufacturing process. It also must pro-
vide the user with a open framework for measuring arbitrary circuit
characteristics with minimal effort.

• Robustness. The optimization/search heuristic should be able to
produce good solutions consistently. A tool that requires an unpre-
dictable number of synthesis runs or a tool that requires the user to
tinker with numerous obscure “tuning” parameters will not gain ac-
ceptance.

• Reasonable Run-Time. Synthesis should be accomplished in a rea-
sonable amount of time. While one could argue about the definition
of “reasonable run-time”, an analog designer’s time is clearly more
valuable than CPU compute time. Thus, any trade-off that saves
designer time in favor of compute time is clearly worthwhile.

The next section describe a new synthesis strategy that addresses all
of these concerns.

IV. SYNTHESIS FORMULATION OVERVIEW

Our circuit synthesis strategy relies on five key ideas, which have
been implemented in ASF (Analog Synthesis Framework).

A. Simulator Encapsulation for Simulation-Based Evaluation

Simulator encapsulation creates a layer of abstraction that allows
ASF to utilize a wide variety of different circuit simulators. Although
different SPICE-class simulation engines share core mechanisms and
offer similar input/output formats, they remain highly idiosyncratic
in many features. Simulator encapsulation is a layer of insulating
code that hides the idiosyncrasies and peculiarities of a simulator,
rendering its behavior more generic. Encapsulation allows us to treat
a given simulator as an abstract evaluation method. It turns the simu-
lator into an object with formalized methods to invoke a simulation,
to change circuit parameters, to retrieve simulation results as a sim-
ple vector of numbers, etc. The encapsulation hides varying data for-
mats from the rest of the synthesis formulation.

After the test circuit has been built from information in an evalua-
tor package (see Subsection IV.B. and Fig. 2), the encapsulation
wrapper starts the simulator and opens an interactive data link. The
simulator loads and simulates the instantiated evaluator to measure
one or more performance characteristics of the candidate solution. Af-
ter the interactive data link to the simulator is established, many can-
didate solutions can be evaluated in sequence. Specifically, the encap-
sulation library sends the candidate solution through the interactive

data link to the simulator. After all modifications associated with each
candidate solution are made, the simulator executes the set of simula-
tions associated with the evaluator to assess the performance of the
candidate solution.

Full simulation provides a level of accuracy impossible to obtain
from first order equations. This formulation allows us to leverage the
existing investment in simulators, device models, process character-
ization, and “cell sign-off” methodologies that already exist as part of
the current design environment. In addition, users do not have to pro-
vide any topology specific performance modelling equations, making
this approach considerably easier to use than previously proposed ap-
proaches. Also, this approach affords us a level of generality that is
impossible to obtain with equation based approaches. Essentially, one
can synthesize any circuit that can be efficiently characterized with
the use of simulation.

B. Evaluator: A Modular, Reusable, User-Configurable Test Circuit

The second key idea is the evaluator, which consists of a test circuit
and an analysis script. An evaluator allows the user to measure cir-
cuit performance characteristics via simulation. The test circuit
defines the bias and/or feedback network and stimulus for the simula-
tion. As illustrated in Fig. 2, a candidate solution is simulated, pro-
ducing simulation output that is analyzed with the use of the script.
The purpose of the script is to reduce a potentially large amount of
simulation data to a small set of numbers that capture one or more of
the performance characteristics of the circuit. Creating evaluators is
usually a small effort compared to writing an intricate set of perfor-
mance equations.

Section V describes evaluators and their reuse strategy in greater
detail. We demonstrate that it is possible to create a set of modular and
reusable evaluators that can, with appropriate configuration, be uti-
lized to characterize a whole family of analog blocks. This allows the
maintainer of the synthesis framework to create a set of evaluator li-
braries that cover a broad range of analog blocks, thereby establishing
an easy to use general purpose methodology for synthesizing any ar-
bitrary topology. At the same time, it enables the measurement of rel-
evant circuit properties with minimal effort. Assuming all evaluators
are instantiated from a library, this methodology can be integrated
with an existing commercial schematic capture environment. A dialog
driven user interface can instantiate and configure each desired eval-
uator. This is a natural extension of the schematic annotations already
created by designers on a daily basis and does not require any pro-
gramming background.

C. Stochastic Search

As was shown in [11], circuit synthesis tasks have a highly non-linear
cost surface with many local minima, jagged obstacles, and gently
sloping plateaus. Stochastic style algorithms are a good choice for
these types of landscapes because of their hill-climbing abilities.
However, stochastic search algorithms, like simulated annealing [9],
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have a reputation for slow execution due to the large number of solu-
tion candidates that must be visited to ensure consistently good
results. In this particular application, this problem is greatly exacer-
bated by the use of simulation to fully characterize each candidate
solution. We use three avenues of attack to mitigate the excessive
run-time problem:

• Parallel Stochastic Search. This type of search evaluates multiple
chains (sequences) of points in the cost landscape in parallel, pro-
viding some manner of synchronization that guarantees conver-
gence to a final set of circuits of similar quality. Subsection IV.D.
introduces parallel stochastic search as a component of our optimi-
zation methodology.

• Less Search. To further reduce the run-time, one has to look be-
yond traditional stochastic search. Subsection IV.E. will introduce
Downhill Set MegaMoves; they embody a novel strategy that com-
bines classical downhill techniques with stochastic search.

• Parallel Circuit Evaluation. Each candidate solution usually has to
be characterized with multiple evaluators. These tasks can be dis-
tributed across a network of workstations. Subsection IV.F. pro-
vides an overview of our synthesis distribution strategy.

D. Parallel Stochastic Search

The fourth cornerstone of our strategy is parallel stochastic search.
Specifically, our strategy is based on parallel recombinative simu-
lated annealing (PRSA) [13]. PRSA is an algorithmic method that
permits parallel annealing-type stochastic optimization. Conceptu-
ally, PRSA can be thought of as transforming a single annealing task
into a population of parallel annealing tasks. In other words,  paral-
lel computing nodes each anneal the same problem. The duration of
each annealing run is divided by the degree of parallelism . For
example, suppose a serial annealer required 100,000 candidate solu-
tion evaluations, or moves in annealing nomenclature, to converge to
an acceptable answer consistently. Further, suppose this serial
annealer will be transformed into a population of 10 annealers. To
maintain a constant move count, each annealer in the population can
do at most 100,000/10 = 10,000 moves. Obviously, if each annealer
in the population were to be run independently, none would converge
to an acceptable result consistently. For this reason, PRSA introduces
a synchronization mechanism that allows portions or entire solutions
states to migrate between PRSA nodes.

Each annealer randomly communicates its current candidate circuit
solution to a subset of the other PRSA nodes. Given these migrant
candidate solutions from other PRSA nodes, each annealing task may
choose to do one of two kinds of moves, where  is
the vector of  independent variables:

• A classical perturbation that alters the last visited solution by ran-

domly altering some of its variables, i.e. .

• A crossover operation that combines the current solution  with
components of a migrant solution from another node, i.e.

. This operation is done in the style
of classical mating-style crossover from genetic algorithms [7].

[13] provides a proof of finite-time convergence for PRSA. In addi-
tion, [13] demonstrates the feasibility of this approach on some clas-
sical optimization problems.

E. DeviationTracker and The Downhill Set

To further reduce run-time, we look beyond traditional stochastic
methods to an approach that incorporates classical gradient free
downhill methods. The Downhill Set is a library of modular downhill
optimizers. It consists of DownhillGreedy, a random walk compo-
nent optimizer, DownhillCS, a coordinate search component opti-
mizer, DownhillSimplex, a Nelder-Mead Simplex component
optimizer [17], and DownhillPowell, a Powell’s method component
optimizer [22]. These optimizers are invoked explicitly as part of a
novel annealing cooling schedule called DeviationTracker. Each such
invocation, referred to as a MegaMove, searches out a local mini-

mum in the neighborhood of the current annealer state. After the
MegaMove completes, DeviationTracker ensures that the annealer
remains in the neighborhood of the local minimum while ensuring
that the annealer does not remain trapped in that local minimum. The
size of the neighborhood is reduced over the course of the annealing
run, eventually preventing the annealer from leaving its final solu-
tion. Section VI describes the Downhill Set and the DeviationTracker
cooling schedule in greater detail. Section VII will show that this
approach reduces the number of required state evaluations while, at
the same time, improving solution quality and optimizer consistency.

F. Synthesis with “Idle” Cycles across a Network of Workstations

The final cornerstone of our methodology is synthesis with “idle”
cycles across a network of workstations. Even if the number of itera-
tions is greatly reduced through intelligent search, simulation based
characterization is computationally expensive. To ensure that our for-
mulation is viable and deployable across an existing hardware infra-
structure, we have implemented a synthesis strategy that uses
unused/idle CPU resources on a generic network of workstations.
Large design organizations usually maintain a large pool of desktop
workstations that are completely idle for 12 hours a day. This
approach has the potential to yield an enormous amount of compute
power at essentially no cost.

Fig. 3 provides an overview of our distribution strategy. The strat-
egy consists of four separate applications that have been implemented
as part of the ASF synthesis framework:

• asf_prsa_node. asf_prsa_node implements all the stochastic and
deterministic components of our optimization strategy, as de-
scribed above. Each PRSA node submits candidate solution char-
acterization requests to the asf_master for evaluation. After a re-
quest is completed processed, the characterization results are
passed back to the corresponding asf_prsa_node. The PRSA nodes
also exchange state information in peer-to-peer transactions. A
small queue of recent crossover states is maintained in each
asf_prsa_node as source material for crossover splicing.

• asf_sleeper. An asf_sleeper process runs on all potential slave
nodes. It monitors user active and system resource utilization. The
asf_sleeper supports several usage policies. Under the most strin-
gent usage policy (the default), a machine is only used if there is no
user activity for at least 20 minutes and the machine is completely
idle. It is also the responsibility of the asf_sleeper to enforce the us-
age policy. If a usage policy violation occurs (e.g., if the user re-
turns and moves the mouse), the asf_sleeper kills all asf_slaves and
associated SPICE jobs within 2 seconds, leaving the machine com-
pletely unloaded. The asf_sleeper also ensures that a host has suf-
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ficient resources (such as physical memory) to host additional
asf_slaves before they are started. 

• asf_master. The asf_master starts asf_slaves on idle compute re-
sources and administers the distribution of evaluation requests such
that all available nodes are equally utilized. As noted previously,
candidate solutions are usually characterized with several evalua-
tors. The asf_master makes sure that each evaluator gets run for
each characterization request in an environment where the resource
set is perpetually changing. For example, when an asf_sleeper kills
a set of asf_slaves as a result of a usage policy violation, the
asf_master reschedules the evaluation requests associated with the
dead asf_slaves with other asf_slaves. Further, as the available re-
source set changes, the asf_master changes the allocation of
asf_slaves to ensure that the resource set is fully utilized.

• asf_slave. Each asf_slave instantiates one evaluator and its associ-
ated SPICE simulator. It processes evaluation requests from the
asf_master in FIFO order. Execution continues until a kill signal is
received from either the asf_master or asf_sleeper.

V. EVALUATORS

Given a sizing and biasing solution, an evaluator measures a set of
one or more circuit performance attributes with the use of simulation.
Fig. 2 illustrated this process. After it is fully instantiated, an evalua-
tor consists of a test circuit SPICE deck and a simulation output anal-
ysis script. The candidate solution is embedded into the test circuit.
The test circuit contains the bias and/or feedback network necessary
to configure the candidate solution such that the desired circuit per-
formance characteristics can be measured. The test deck also deter-
mines the stimulus that will be applied to the test circuit during the
simulation and specifies the set of simulation results that will be cap-
tured for output analysis. After the test deck is loaded into the simu-
lator, the simulation output is captured as a set of two-dimensional
data vectors.

As shown in Fig. 2, the simulation output is typically a set of one
or more waveforms, representing a potentially large amount of simu-
lation data. This data has to be analyzed and reduced to a meaningful
set of performance attributes. This task is performed by the output
analysis script. This script examines the simulation data and computes
the performance attributes. In the ASF framework, analysis scripts are
written in Octave [3], a GNU open source clone of Matlab [16]. Oc-
tave was chosen for this task for several reasons. First, like Matlab, it
is particularly well suited for this task because it provides an extensive
and powerful set of functions for manipulating data in matrix form.
Second, many analog designers are already familiar with Matlab.
Matlab, with its rich set of constructs for signal processing, is fre-
quently used as a system-level macro modeling language and environ-
ment. In addition, because Octave is a free open source project, we
were able to modularize and incorporate it directly into the ASF
framework. The tight integration eliminates the overhead associated
with inter-process communication and improves efficiency and reli-
ability.

A. Evaluator Components

Evaluators consist of three components that fulfill the functionality
of the evaluator and enable the built-in reuse strategy:

• Test Circuit Template. As shown in Fig. 4, the test circuit template
is the basis for the test deck that will be loaded and simulated. The
final test deck is constructed from the test circuit template when the
evaluator is instantiated with the user’s topology and configuration
parameters.

• Simulation Analysis Script Template. The analysis script, which is
used to extract the performance attributes from the simulation data,
is generated from its template based upon the user’s configuration.

• Evaluator Configuration File. This file specifies three aspects of
the evaluator configuration. First, the configuration file specifies
the simulator and its configuration options. The second component
of the configuration file specifies the evaluator parameters. A de-
fault value and change string is specified for each parameter. The

default value is utilized in the instantiation of the evaluator, unless
the user provides an overriding value in the synthesis task descrip-
tion. The second item of information, the change string, is utilized
after the evaluator has been instantiated. It is frequently desirable
to specify adjustable evaluator parameters. Consider a parameter
that controls the temperature in the circuit simulation. It needs be
set as a function of a variable that captures the temperature range
over which the circuit has to function according to its specifica-
tions. The change string is required to tell the synthesis framework
what command to use to alter such an adjustable configuration pa-
rameter. The final component of the configuration file specifies the
set of performance attributes that are be computed by the evaluator.
They are used to construct the optimization objectives of the syn-
thesis task.

B. Build-In Reuse Strategy

Reconfigurability allows the evaluator to be reused for various syn-
thesis tasks. This is achieved through parameterization of relevant
values in the test circuit and the analysis script. Consider the simple
test circuit for single-ended op-amps shown in Fig. 5. The load
capacitor (CL) and feedback network components (RF and RI) are
parameterized. For each parameter, the default value is specified in
the evaluator configuration file. Unless the user provides an overrid-
ing value in the synthesis task description, the default value is uti-
lized in the instantiation. Thus, in the example shown in Fig. 5, CL
gets the value from the synthesis task description (1pF), while RF
and RI retain their default values (both 1GΩ). The methodology also
allows evaluator parameters to determine the test circuit topology. As
an example, RL is an optional element. If the user specifies RL, it is
incorporated into the test circuit; otherwise it is completely omitted.

In the ASF framework, the final test deck and analysis script are
generated with the use of cpp [23], the C preprocessor. cpp is a macro
processing and text substitution engine. It offers the correct balance of
functionality and simplicity for the parameter substitution task. Also,
because it is a standardized component of ANSI C, it should be famil-
iar to all individuals who have taken a C programming class.

Fig. 4 Evaluator Instantiation
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VI. DEVIATIONTRACKER AND THE DOWNHILL SET

DeviationTracker is a novel annealing cooling schedule that has been
designed to integrate a set of classical downhill optimization methods
into a stochastic optimization formulation. Each downhill optimizer
invocation, referred to as a MegaMove, returns a local minimum in
the neighborhood of the current annealer state. After the MegaMove
completes, DeviationTracker encourages the annealer to remain in
the neighborhood of that local minimum, while ensuring that the
annealer does not remain trapped in that local minimum. The size of
the neighborhood is reduced over the course of the annealing run,
eventually preventing the annealer from escaping its final solution.

The DeviationTracker cooling schedule is derived from the Modi-
fied Lam cooling schedule [24]. Like Modified Lam, it is an empirical
fixed length cooling schedule that adjusts the temperature at a pre-
specified fixed interval. DeviationTracker also builds a trajectory ar-
ray and uses a feedback mechanism to adjust the temperature. Unlike
Modified Lam, the temperature is adjusted such that the cost devia-
tion follows a specified trajectory. The cost deviation is defined as the
standard sample deviation of all accepted cost values sampled during
the previous temperature,

(1)

where  is the cost of the ith accepted candidate solution evaluated
at the previous temperature and  is the sample mean. The target
deviation is computed with the use of a target trajectory array
referred to as the . The array entries specify the
target deviation as a function of the current best cost. Specifically, the
target deviation is given by

(2)

where the  variable keeps track of the annealer’s
progress through the fixed length schedule. Fig. 6 shows the trajec-
tory stored in the  as a function of temperature
count. Under the control of the DeviationTracker cooling schedule,
the optimization process can be divided into three phases that are
repeated until the optimizer terminates. Each phase is described
below.

Phase I: MegaMove. DeviationTracker selects, at random, one of
the downhill optimizers. Each of the available optimizers has an equal
probability of being selected. The Downhill Set consists of:

• DownhillGreedy. DownhillGreedy is a random walk component
optimizer. It starts with the annealer’s current candidate solution
state. Like the annealer, it stochastically selects design variables,
perturbing them one at a time according to a step range. The algo-
rithm only accepts perturbations that decrease the cost. The step
range is gradually reduced if the algorithm fails to make progress.
The algorithm terminates if insufficient progress is made.

• DownhillCS. DownhillCS is a coordinate search component opti-
mizer, derived from [20]. Like DownhillGreedy, DownhillCS
starts with the annealer’s current candidate solution and perturbs
design variables one at a time. The optimization process consists of
perturbation sets, where each design variable is perturbed once.
The order in which variables are perturbed is selected stochastical-
ly and changes for each perturbation set. The algorithm only ac-
cepts perturbations that decrease the cost. For each variable, the al-
gorithm attempts a perturbation in one randomly selected direction
and, if the perturbation fails to yield a lower cost state, it attempts
a perturbation in the opposite direction. The size of each perturba-
tion is bounded by a step range. DownhillCS starts with a large step
range, which is gradually reduced if the algorithm fails to make
progress. The algorithm terminates if insufficient progress is made.

• DownhillSimplex. DownhillSimplex is a Nelder-Mead Simplex
component optimizer [17]. [8] provides an overview of the algo-
rithm with a useful flow diagram. [22] provides further discussion
of the algorithm and an implementation in C. A detailed discussion
of Nelder-Mead Simplex is beyond the scope of this document.
[12] provides a detailed description of our implementation.

• DownhillPowell. DownhillPowell is a Powell’s method component
optimizer [21]. [8] provides a useful overview of the algorithm. [1]
provides a detailed discussion of this algorithm, several insightful
extensions, and a complete implementation in ALGOL W. [22]
also provides an overview of the algorithm and an implementation
in C. [12] provides a detailed description of our implementation.

Most of the component optimizers in the Downhill Set take a set of
configuration parameters that determine how hard and with what tol-
erance the downhill optimizer will look for a local optimum. These
configuration parameters are set as a function of the percentage of the
cooling schedule that has been completed. At the beginning of the
cooling schedule, the optimizer favors less accuracy and shorter
search. Conversely, at the end of the cooling schedule, the optimizer
favors more accuracy and longer search. At the beginning of the run,
the annealer is primarily interested in finding a neighborhood with
good solutions. Finding the exact bottom of the local minimum is a
waste of compute time since the annealer will most likely skip out of
it anyway. However, towards the end of the run, the annealer is inter-
ested in finding the best final solution. At that time, seeking out the
exact minimum is worthwhile.

Phase II: Anneal Set. The selected Downhill Set optimizer returns
its solution to the annealer. The annealer, in turn, adopts this solution
as its current state. At this point, DeviationTracker has to select a tem-
perature that will encourage the annealer to remain in the neighbor-
hood of the MegaMove solution while, at the same time, ensuring that
the optimizer does not remain permanently trapped in that minimum.
Specifically, we want to set the temperature such that we obtain the
cost deviation specified in . Setting the tempera-
ture to match the target deviation after a MegaMove is a two step pro-
cess. For the first temperature after the MegaMove, the temperature
value is approximated with the use of a heuristic.

(A)
(B)

(C)
In our formulation, we have found that a  equal to
1.2 works reasonably well. This value typically produces a deviation
slightly less than the desired amount. We correct for the pessimistic
estimate in the next step.

Phase III: Anneal Adjust. The temperature value computed with
the heuristic above is used until the next temperature check point. At
that juncture, a feedback mechanism, conceptually derived from
Modified Lam, is used to adjust the temperature. So, if the actual de-
viation is greater than the target deviation, the temperature is de-
creased. A decrease in temperature should decrease the deviation of
accepted move costs. Conversely, if the actual deviation is less than
the target deviation, an increase in temperature should increase the de-
viation of accepted move costs. Pseudo-code for adjusting the temper-
ature is shown below:

Cdeviation

Ci C–( )
2

i 1=

n

∑
n 1–

----------------------------------=

Ci
C

TargetDevPercentAry

TD BestCost TargetDevPercentAry TemperatureCount[ ]⋅=

TemperatureCount

Fig. 6 Target Deviation Percent for the DeviationTracker Schedule
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(default 15%) (default 60%)

Deviation
(default 17%)

Begin
Deviation

(default 20%)

100%

End
Deviation
(default 1%)

TargetDevPercentAry

TargetDevPercentAry

DevCostPercentTarget TargetDevPercentAry TemperatureCount[ ]=

DevCostTarget DevCostPercentTarget BestCost⋅=

Temperature
new

DevCostTarget DevToTempConstant⋅=

DevToTempConstant



(A) Retrieve the cost deviation of accepted moves during the last 
temperature from the annealer’s cost statistics and assign it to

(B) Set 

(C) Set 

(D) Set 

(E) Place limits on : if 
(1) Set 

(F) Else if 
(1) Set 

(G) Compute new temperature:

(1) Set 

In the default DeviationTracker configuration, the temperature is
adjusted three times according to this feedback mechanism before at-
tempting another MegaMove. So, the DeviationTracker schedule can
be summarized by the following sequence of six steps:

(A) MegaMove: Pick a downhill optimizer and execute it.
(B) Anneal Set: Set the annealing temperature according to desired

deviation. Perform 50 (default) moves.
(C) Anneal Adjust #1: Use feedback mechanism to adjust the 

temperature to the desired deviation and perform 50 moves.
(D) Anneal Adjust #2.
(E) Anneal Adjust #3.
(F) Go to step (A).

Before continuing to the next topic, some concluding remarks re-
garding this cooling schedule need to be made. First, this cooling
schedule discards many traditional ideas found in an annealing style
optimization formulation. It attempts to minimize run-time by nar-
rowing the search to a subset of interesting local minima. To phrase
this differently, this approach could be characterized as random multi-
start in the neighborhood of a good answer. The annealer, using this
cooling schedule, serves as a stochastic mechanism for generating
starting points. Initially, all starting points have an equal probability
of selection. However, as the cooling schedule progresses, the mech-
anism increasingly favors starting points in the neighborhood of pre-
viously obtained good answers.

VII. EXPERIMENTAL RESULTS

A. Three Benchmark Circuits

To demonstrate the viability of our methodology, we have tested our
synthesis approach on several circuits of varying degrees of diffi-
culty. Fig. 7, Fig. 8, and Fig. 9 show three production op-amps from
Texas Instruments. The folded cascode op-amp in Fig. 7 and the sim-
ple two-stage op-amp in Fig. 8 were synthesized in a 0.6µm, 3.3V
technology. The power amplifier in Fig. 9 was synthesized in a
1.0µm, 5.0V technology. The synthesis tasks had 13, 15, and 20 inde-
pendent variables, respectively. Each of the variables had a broad
(yet reasonable) range. A randomly generated starting was used.

This synthesis methodology supports two types of objectives: con-
straints and goals. Each constraint has a target value that has to be sat-
isfied to make that circuit useful for its application. Each goal has a
target range. The synthesis tool seeks a solution where all constraints
are satisfied and each of the goals falls within its target range. Once a
satisfactory solution is found, the optimizer tries to further push each
goal, while ensuring that the constraints continue to be satisfied.

Table 1 shows that the synthesis result for the folded cascode op-
amp. The result satisfies all constraints and both goals (MOS area and
static power) were optimized beyond the original hand design. 3,573
candidate solution states were evaluated during the synthesis run.
Since each candidate solution state characterization utilized 6 evalua-
tors and each evaluator ran one SPICE simulation, a total of 21,438
SPICE simulations were performed. The slave pool consisted of 10
desktop Ultra Sparc Solaris machines. This synthesis run employed

ActualDevCost

DevCostPercent
ActualDevCost

BestCost
-----------------------------------------=

DevCostTarget TargetDevPercentAry TemperatureCount[ ]=

Adjust
DevCostPercent DevCostTarget–
DampingConstant DevCostTarget⋅
----------------------------------------------------------------------------------------=

Adjust Adjust 0.5>( )
Adjust 0.5=

Adjust 0.5–<( )
Adjust 0.5–=

Temperature
new

Temperature
old

1 Adjust–( )⋅=

Table 1. ASF Result for Folded Cascode Opamp Circuit in Fig. 7

Manual
Design

Objective
Type

Synthesis
Target

Synthesis
Result

Constraints/Goals:
DC gain (dB) 72 Constraint ≥ 71 73
Gain Bandwidth (MHz) 167 Constraint ≥ 162 172
Phase Margin (deg) 53 Constraint ≥ 52 52
Noise 1kHz (nV Hz-0.5) 70 Constraint ≤ 70 63
Noise 10MHz (nV Hz-0.5) 3.9 Constraint ≤ 4.0 3.6
CMRR (dB) 108 Constraint ≥ 108 108
PSRR Vss (dB) 89 Constraint ≥ 89 92
PSRR Vdd (dB) 72 Constraint ≥ 72 74
Settling Time1 (ns) 17.3 Constraint ≤ 17.3 16.7
DC Offset (mV) 0.10 Constraint ≤ 0.20 0.088
DC Bias (mV) 0 Constraint ≤ 30 22
MOS Area (103µ2) 28 Min Goal 26 to 35 26
Static Power (mW) 11.4 Min Goal 9 to 12 11.1
Run-time Info:
Independent Variables 13
States Evaluated 3573
Eff. Run-time (min) 26

Fig. 7 Folded Cascode Op-Amp
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Table 2. ASF Result for Simple Two-Stage Op-Amp in Fig. 8

Manual
Design

Objective
Type

Synthesis
Target

Synthesis
Result

Constraints/Goals:
DC gain (dB) 68 Constraint ≥ 68 69
Gain Bandwidth (MHz) 255 Constraint ≥ 255 258
Phase Margin (deg) 60 Constraint ≥ 56 58
Noise 1kHz (nV Hz-0.5) 145 Constraint ≤ 145 145
Noise 10kHz (nV Hz-0.5) 46 Constraint ≤ 46 46
CMRR (dB) 76 Constraint ≥ 76 77
PSRR Vss (dB) 85 Constraint ≥ 85 86
PSRR Vdd (dB) 70 Constraint ≥ 70 71
Settling Time1 (ns) 5.0 Constraint ≤ 5.0 4.9
DC Offset (mV) 0.123 Constraint ≤ 0.125 0.124
DC Bias (mV) 0 Constraint ≤ 30 27
Gain Margin (dB) 18 Constraint ≥ 17 17
Area (103µ2) 9.4 Min Goal 9 to 15 9.0
Static Power (mW) 24.6 Min Goal 20 to 24.5 24.2
Run-time Info:
Independent Variables 15
States Evaluated 17952
Eff. Run-time (min) 74

Fig. 8 Simple Two-Stage Op-Amp
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Vdd = 2.7V
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the most restrictive slave host usage policy; machines were only used
if there was no user activity for at least 20 minutes and the machines
were completely idle. Wall clock run-time was 46 minutes, but ASF
was completely idle for the first 20 minutes to ensure compliance with
the usage policy. Thus, effective run-time was 26 minutes.

Table 2 and Table 3 show the results for the simple two-stage op-
amp and the power amplifier, respectively. These results were ob-
tained with the same machine configuration as was used for the folded
cascode result in Table 1. The two-stage op-amp synthesis task uti-
lized 6 evaluator instances. The power amplifier utilized 8 evaluator
instances. The same set of eight single-ended op-amp evaluators were
reused in all three synthesis tasks. These benchmark circuits have dif-
ferent topologies and are targeted to a set of two different manufactur-
ing technologies that utilize different power supply voltages. So,
while this evidence is limited in scope, it does demonstrate that it is
possible to create a set of modular and reusable evaluators that can,
with appropriate configuration, be utilized to characterize a whole
family of analog blocks. This allows the maintainer of the synthesis
framework to create a set of evaluator libraries that cover a broad
range of analog blocks. Reusable evaluators are a critical cornerstone
of this formulation. They are essential to satisfying our goal of creat-
ing a easy to use general purpose methodology. Assuming all evalua-
tors are instantiated from a library, this methodology can easily be in-
tegrated with an existing commercial schematic capture environment.

B. Serial Modified Lam vs. Parallel DeviationTracker

Fig. 10 compares a serial Modified Lam configuration to a parallel
DeviationTracker configuration. The graph shows the final cost as a
function of the number of characterization requests for 10 serial
Modified Lam synthesis runs and 10 parallel DeviationTracker syn-
thesis runs. The Modified Lam configuration utilized one annealer.
The cooling schedule trajectory was configured for 3000 temperature

adjustments. 50 moves were performed at each temperature. Since
the configuration only utilized one annealer, all crossover related
mechanisms were disabled. The DeviationTracker configuration
explored the solution space in parallel with a population of 10 opti-
mizers. Only standard uniform crossover [12] was used as a synchro-
nization mechanism. The cooling schedule trajectory was configured
for 80 temperature adjustments. 50 moves were performed at each
temperature. A MegaMove was performed every 4 temperatures (200
moves). It should be noted that ASF terminates early if it finds the
bottom of a feasible local minimum.

Both experiments were performed on the two-stage op-amp syn-
thesis task shown in Fig. 8. For this synthesis task, a cost less than or
equal to 28 signifies that all goals and constraints have been satisfied.
If the final cost is greater than 28, one or more of the constraints and
goals are not satisfied. As shown in Fig. 10, the DeviationTracker
configuration was successful in 9 out of 10 runs. The Modified Lam
configuration failed in all 10 runs. On average 47,275 characterization
requests were performed for each synthesis run in the Deviation-
Tracker experiment. On average 157,052 characterization request
were performed for each synthesis run in the Modified Lam experi-
ment. In a similar experiment, DeviationTracker successfully synthe-
sized the power amplifier (Fig. 9) in 10 out of 10 runs. On average
3,684 characterization requests were performed in each run. These re-
sults show that the DeviationTracker approach produces consistently
higher quality results while, at the same time, reducing the number of
required state evaluations.

It is also important to note that the parallel DeviationTracker con-
figuration has a larger maximum degree of parallelism than the serial
Modified Lam configuration. The DeviationTracker configuration
uses 10 optimizers, which synchronize asynchronously through cross-
over, to exploring the candidate solution space simultaneously. Thus,
at any point in time, the framework is evaluating 10 candidate solu-
tions in parallel. In contrast, all candidate solutions are evaluated se-
quentially in the Modified Lam configuration. Thus, even though both
experiments were conducted on roughly equivalent pool of 10 ma-
chines, the DeviationTracker configuration performed, on average,
20.8 SPICE evaluations per second while the Modified Lam configu-
ration performed 8.7 SPICE evaluations per second.

C. Comparison of Downhill Set Optimizers

Fig. 11 compares the effectiveness of all the component optimizer
variants implemented in the Downhill Set. These component opti-
mizers are invoked explicitly as part of the DeviationTracker cooling
schedule to search out a local minimum in the neighborhood of the
current annealer state. Four experiments, each consisting of 10 syn-
thesis runs, were performed. In each experiment, only one of the
Downhill Set component optimizers was utilized. Except for the
MegaMove configuration, the same optimizer configuration was uti-
lized for all experiments. The defaults were used for all Deviation-
Tracker trajectory parameters as shown in Fig. 6, except the end
deviation was set to 2%. The cooling schedule trajectory was config-
ured for 80 temperature adjustments, with 50 moves at each tempera-
ture. A MegaMove was performed every 4 temperatures (200

Table 3. ASF Result for Power Amplifier in Fig. 9

Manual
Design

Objective
Type

Synthesis
Target

Synthesis
Result

Constraints/Goals:
DC gain (dB) 92 Constraint ≥ 92 93
Gain Bandwidth (MHz) 0.67 Constraint ≥ 0.60 1.0
Phase Margin (deg) 86 Constraint ≥ 84 84
Noise 1kHz (nV Hz-0.5) 52.2 Constraint ≤ 52.5 48.9
Noise 10kHz (nV Hz-0.5) 22 Constraint ≤ 40 20
CMRR (dB) 140 Constraint ≥ 138 140
PSRR Vss (dB) 91 Constraint ≥ 90 99
PSRR Vdd (dB) 94 Constraint ≥ 94 102
THD1 0.057 Constraint ≤ 0.060 0.046
THD2 0.10 Constraint ≤ 0.11 0.086
DC Offset (mV) 0.066 Constraint ≤ 0.20 0.029
DC Bias (mV) 0 Constraint ≤ 50 46
Area (103µ2) 81.6 Min Goal 75 to 100 90.5
Static Power (mW) 19 Min Goal 14 to 19 15
Run-time Info:
Independent Variables 20
States Evaluated 3085
Eff. Run-time (min) 38

Fig. 9 Power Amplifier
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moves). A population of 10 optimizers was used with all crossover
mechanisms enabled [12]. The two-stage op-amp synthesis task was
used. For this synthesis task, the DownhillPowell component opti-
mizer proved to be the most reliable. It is also worth observing that
the coordinate search variant is actually more robust than the greedy
random walk. Both of these optimizers perform an undirected sto-
chastic exploration of the cost surface. The only difference is that the
search is structured more rigidly in the coordinate search formula-
tion. As these results suggest, the structure of the search can have a
non-trivial impact on robustness.

Additionally, it should be noted that the best choice of component
optimizer depends on the cost surface and difficulty of the synthesis
task. The power amplifier, for example, is considerably easier to syn-
thesize. All of the component optimizers can synthesize that circuit
with a perfect success rate. Given that all variants in the Downhill Set
can do the job, DownhillGreedy has the lowest average run-time. Al-
so, DownhillSimplex provides the best overall solution quality for
that synthesis task. These results show that no one component opti-
mizer is ideally suited for all synthesis task cost surfaces. Thus, the
optimizer formulation should incorporate a variety of different com-
ponent optimizers to ensure the best possible results across a broad
range of synthesis tasks.

VIII. CONCLUSIONS

This paper described a novel cell-level analog synthesis solution that
can size and bias a given circuit topology subject to a set of perfor-
mance objectives and a manufacturing process. It incorporates modu-
lar, reusable, user-configurable test benches called evaluators.
Evaluators are both topology and technology independent. They
allow us to create a programming-free synthesis methodology that
can be integrated into a commercial schematic capture environment.
Furthermore, ASF employs a novel numerical optimization formula-
tion that incorporates classical downhill techniques into stochastic
search. It can, for example, consistently synthesized a 20 variable op-
amp in 10x fewer candidate solution evaluations than previously
published approaches that rely on traditional stochastic optimization
methods. The approach reduces the number of state evaluations
while, at the same time, improving solution quality and optimizer
consistency.
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