
Improving Memory Energy Using Access Pattern
Classification �

Mahmut Kandemir
Microsystems Design Lab

Pennsylvania State University
University Park, PA 16802

kandemir@cse.psu.edu

Ugur Sezer
ECE Department

University of Wisconsin
Madison, WI 53706

sezer@ece.wisc.edu

Victor Delaluz
Microsystems Design Lab

Pennsylvania State University
University Park, PA 16802

delaluzp@cse.psu.edu

ABSTRACT
In this paper, we propose a data-driven strategy to optimize the
memory energy consumption in a banked memory system. Our
compiler-based strategy modi�es the original execution order
of loop iterations in array-dominated applications to increase
the length of the time period(s) in which memory banks are
idle (i.e., not accessed by any loop iteration). To achieve this,
it �rst classi�es loop iterations according to their bank access
patterns and then, with the help of a polyhedral tool, tries
to bring the iterations with similar bank access patterns close
together. Increasing the idle periods of memory banks brings
two major bene�ts; �rst, it allows us to place more memory
banks into low-power operating modes, and second, it enables
us to use a more aggressive (i.e., more energy saving) operating
mode for a given bank. Our strategy has been evaluated using
seven array-dominated applications on both a cacheless system
and a system with cache memory. Our results indicate that
the strategy is very successful in reducing the memory system
energy, and improves the memory energy by as much as 34%
on the average.

1. Introduction and Motivation
Energy consumption is an important consideration in em-

bedded system design as reducing it helps maximize battery
life and reduce heat dissipation [9]. The increasing role of en-
ergy consumption demands that the energy constraints should
be taken into account early in the system design process, along
with other metrics such as performance and form factor.
Memory components of an embedded system are known to

consume a large percentage of the overall system energy [2, 6].
This is particularly true for systems designed to run image and
video processing applications in which large multi-dimensional
arrays of signals are manipulated using nested loops. These
data-intensive applications might put a great pressure on the
memory subsystem and make the memory performance the pri-
mary factor shaping the runtime energy behavior of the system.
For a given memory system, size (capacity) has a large impact
on the energy consumption. Typically, large memory compo-
nents (e.g., banks) consume more energy per access than small
memory components, mainly due to longer bitlines and word-
lines. Consequently, employing several small memory banks
instead of a single large memory bank might reduce the per
access energy cost. Moreover, unused memory banks can be
turned o� to further increase energy savings. Turning o� a
memory bank in this context means placing it into a low-power

�This work is supported by the NSF Career Award 0093082.

operating mode (an energy-saving mode) in which the bank con-
sumes much less energy than it would have if it remained in the
fully-active mode. While such a strategy can, in general, im-
prove the memory energy consumption, it is possible to obtain
even larger savings by re-ordering data elements and/or loop
iteration accesses to take better advantage of the multi-bank
nature of the memory subsystem.
This paper presents a compiler-based strategy that modi-

�es the original execution order of loop iterations in array-
dominated applications to increase the length of the time pe-
riod(s) in which memory banks are idle (i.e., not accessed by
any loop iteration). Such an optimization can bring two main
bene�ts. First, as a result of longer idle period, we can put a
bank into a low-power operating mode (while, in the original
case, it may not be possible to do so). Second, even in the
original case it was possible to use a low-power mode, after the
transformation we might be able to use a more aggressive (i.e.,
more energy-saving) operating mode, and thus obtain larger
savings. Major contributions of this paper can be summarized
as follows:

� We present a data-centric access pattern classi�cation
technique using which an optimizing compiler can clas-
sify loop iterations based on their memory bank access
patterns.

� We discuss a transformation technique that modi�es the
original loop accesses to implement the classi�cation de-
termined by the compiler. The transformation technique
operates with both fully-parallel loops and loops with
data dependences.

Our experimental results indicate that our approach is very
successful in optimizing the memory system energy, and re-
duces the memory energy by as much as 34% on the average.
We proceed with a brief review of multi-bank memory system

and low-power operating modes. Next, in Section 3, we present
a loop iteration classi�cation strategy based on bank access
patterns. We discuss an access pattern optimization strategy
in Section 4. Preliminary experimental results are given in
Section 5. Finally, we summarize the main points of this work
in Section 6.

2. Energy Consumption in Memory Banks
We can think of a memory system as a group of banks each

of which can be controlled individually and be put in a low-
power operating mode (energy-saving mode) when it is not in
active use. Typically, a number of low-power operating modes

exist, and selection of a speci�c mode (for a given duration
of idleness) involves a tradeo� between performance and en-
ergy consumption. More speci�cally, each operating mode can
be characterized using two parameters: per cycle energy con-
sumption and re-activation (re-synchronization) cost, the latter
of which is the time (in cycles) it takes to bring the bank back
to the active (fully-operational mode). Typically, the more ag-
gressive the operating mode (in saving energy), the higher the
re-activation cost. Therefore, the low-power mode to be used
should be chosen with care. An important parameter in choos-
ing the most suitable mode is the estimated duration of idle-
ness. If the idleness duration is too short, it may not be a good
idea to place a bank into an aggressive energy-saving mode. It
is important to note that many array-dominated codes from
image and video processing applications allow accurate estima-
tion of bank idleness, thanks to frequent occurrence of nested
loop structures and compile-time determinable mappings of ar-
ray elements to memory banks.
In Active (normal operation) mode, the memory bank is

ready to immediately service a memory request without any de-
lay. In the low-power modes (Standby, Nap, and PowerDown),
energy consumption can be reduced by shutting-o� increas-
ingly larger parts of the bank. The major parts of a memory
bank are the clock generation circuitry, row address/control
decode circuitry, column address/control decode circuitry, con-
trol registers and power mode control circuitry, together with
the memory (DRAM) core consisting of the precharge logic,
memory cells, and sense ampli�ers. The operating modes used
in this study are very similar to those proposed in the Direct
Rambus architecture for mobile PCs [1]. While in a low-power
operating mode, a memory request (read or write) causes the
bank to transition to the Active mode to service the request.
Note that at a given time di�erent memory banks can be in
di�erent low-power operating modes.
One of the objectives of the low-power operating mode man-

agement is selecting the most suitable operating mode for a
given duration of idleness. The compiler needs to detect idle
periods for each bank and transition each idle bank into a low-
power mode. A naive way of doing this is to select an oper-
ating mode arbitrarily and keep the bank in this mode until
it needs to be accessed. Obviously, such a strategy pays the
re-activation (re-synchronization) cost which we want to avoid.
Instead, we use a bank pre-activation strategy that eliminates
the potential performance penalty associated with employing
low-power operating modes. Given that we have a menu of
low-power modes to transition into, the compiler can evaluate
all possible choices (low-power modes) based on the operating
mode energy, corresponding re-activation costs, and the length
of the idle period to select the best choice. A discussion of
compiler-directed operating mode selection can be found in [3].
Note that maximizing the duration in which a memory bank

is idle is bene�cial (from an energy angle) as the bank in ques-
tion can be placed into a more energy-saving (most aggressive)
operating mode. This can be achieved using smart array layout
strategies that place array elements with similar life-patterns
into the same banks, or by re-ordering the computation to iso-
late the data accessed (within a time frame) into a small num-
ber of banks. This paper takes the latter approach and presents
an automatic (compiler-based) technique that �rst classi�es the
iterations of a given loop according to their bank access char-
acteristics, and then exploits this classi�cation to restructure
the execution order of loop iterations.

3. Data-Centric Access Pattern Classification
In this section, we present our computation model and dis-

cuss the relationship between loop iterations and memory bank
accesses. We assume that the compiler is in full control of phys-
ical address management and there exists no virtual memory
support. Consequently, it is possible to calculate at compile-
time the physical memory location accessed for a given array
reference and loop iteration.
Each execution of loop body is represented using an iteration

vector �I = [i1; i2; :::; in]
T , where n is the number of loops. The

loop bounds can be described using a system of a�ne inequal-
ities of the form H �I � �h, where H is a k � n matrix and �h
a k-dimensional vector. Both H and �h have constant entries
and together they de�ne a polyhedron (iteration space) which
contains all loop iterations [11]. The storage form of an array
can also be viewed as a (rectilinear) polyhedron. Each array el-

ement can be identi�ed by its index �J = [j1; j2; :::; jm]
T ; where

m is the dimensionality of the array. Then, the polyhedron (in-
dex space) which de�nes the possible indices for a given array
can be written as S �J � �s, where S and �s are a 2m�m matrix
and a 2m-dimensional vector, respectively.
The subscript expressions of a given reference to an m- di-

mensional array de�ne an a�ne access function (F) from it-
eration space to index space; that is, F (�I) = L�I + �l. In this
formulation, L is an m � n matrix (called access or reference
matrix [11]) and l is a m-dimensional constant vector (called
o�set vector).
Assuming a row-major storage form for multi-dimensional

arrays, the address of the array element U [j1; j2; :::; jm] can be
computed as

addr(U [j1; j2; :::; jm]) = Bu + j1(jS2jjS3j:::jSmj)+

j2(jS3j:::jSm j) + ::: + jm�1jSmj+ jm

under the assumptions that the lower bound for all index posi-
tions (subscript positions) is 1 and that jSpj is the extent (the
number of elements) in the pth dimension and that Bu is the
base address for array U .
Without loss of generality, let us assume the existence of K

memory banks of equal sizes (size). Under this assumption, a
bank mapping function (BMF) G maps a given address into a
memory bank and can be written asG(addr(U [j1; j2; :::; jm])) =
addr(U [j1; j2; :::; jm])=size (where the symbol = denotes integer
division). Consequently, given an array element U [F (�I)] (ac-
cessed by iteration vector �I), G(addr(U [F (�I)])) gives the bank
that it is mapped to.
An iteration vector �I is said to access bank i (1 � i � K)

if at least one of the array elements it touches is mapped into
bank i. In mathematical terms, we say bank(i; �I) is true if and
only if there exists at least one array U and an access function
F (�I) in the nest such that G(addr(U [F (�I)])) = i; otherwise,
we say that bank(i; �I) is false.
Note that we can classify the iterations of a given nested

loop according to the (subset of the) banks they access (i.e.,
their bank access patterns). As an example, let us focus on
a scenario where a nested loop (possibly imperfectly nested)
accesses arrays stored in a memory system that consists of two
banks. We can divide the iterations in this nest into three
groups:

fIg1�2 = f�Ij bank(1; �I) = true and bank(2; �I) = falseg;

fIg�12 = f�Ij bank(1; �I) = false and bank(2; �I) = trueg;

and,

fIg12 = f�Ij bank(1; �I) = true and bank(2; �I) = trueg:

Informally, the �rst group (fIg1�2) corresponds to the iterations
that access only the �rst bank whilst the second group (fIg�12)
corresponds to iterations that access only the second bank. The
third group (fIg12), on the other hand, consists of the iterations
that access both the banks. Note that the original iteration
space, fIgall, is fIg1�2 [fIg�12 [fIg12 (assuming that each loop
iteration accesses at least one bank). A subscript notation such
as 1�2 indicates that the iterations in the class subscripted using
this access only the �rst bank. Other subscript notations can
be interpreted in a similar fashion.
In general, assuming K memory banks, a given iteration

space fIgall can be divided into 2K � 1 disjoint groups (called
classes in the rest of this paper): fIg1�2�3::: �K , fIg�12�3::: �K , ...,
fIg�1�2�3:::K , fIg12�3::: �K , fIg1�23::: �K , ..., fIg123::: �K ,..., fIg123:::K .
This grouping is called access pattern classi�cation (for a given,
possibly imperfectly-nested, loop nest) and forms the basis of
our optimization method presented in the next section.

4. Access Pattern Optimization
In this section, we show how to optimize the memory accesses

based on the classi�cation given above. The main idea is to re-
order the loop iterations such that all the iterations that belong
to the same class are executed one after another (successively).

4.1 Optimizing Dependence-Free Accesses
Let us �rst assume that the nested loop we want to optimize

is fully-parallel (i.e., does not have any loop-carried data de-
pendence). In this case, the iterations can be executed in any
order. Consider, for example, the following abstract nested
loop assuming two banks:

for each �I 2 fIgall
fU1[Fu1(�I)]; U2[Fu2(�I)]; U3[Fur(�I)]; :::; Ur[Fur(�I)]g

U1, U2, ..., and Ur in this loop are di�erent arrays, and Fuk is
the access function (access matrix plus o�set vector) for Uk (it is
straightforward to extend the idea to the case where there exist
multiple references to the same array). Let fIg1�2, fIg�12, and
fIg12 be the classes de�ned as above. Then, we can transform
this loop nest into:

for each �I 2 fIg1�2
fU1[Fu1(�I)]; U2[Fu2(�I)]; U3[Fur(�I)]; :::; Ur[Fur(�I)]g

for each �I 2 fIg�12
fU1[Fu1(�I)]; U2[Fu2(�I)]; U3[Fur(�I)]; :::; Ur[Fur(�I)]g

for each �I 2 fIg12
fU1[Fu1(�I)]; U2[Fu2(�I)]; U3[Fur(�I)]; :::; Ur[Fur(�I)]g

Each nested loop in this code executes the iterations from
a single class and such a division of the iteration space (into
classes) is called classi�cation. Note that it is not necessary
that these three nested loops should be executed in this order.
In fact, as compared to the original code above, any execution
order of these new nests (as long as the iterations in a class are
executed successively) will usually bring an improvement. To
see this impact in a concrete example, consider the following C-
like code that consists of a two-dimensional imperfectly-nested
loop nest:

for(t = 1; t � T ; t++)
f

for(i = 1; i � 10; i++)
k1+ =W [30� i]� 1;
for(j = 1; j � 10; j ++)
k2+ = (U [j] + V [j])=2;
for(k = 1; k � 10; k ++)
k3+ = V [k + 10] + 1;
for(l = 1; l � 10; l++)
k4+ =W [l] + V [16];
for(m = 1;m � 10;m++)
k5+ = V [15 �m] + 1;
.........
g

assuming the following array mapping (to a memory system
of two banks each holding, for illustrative purposes, 45 array
elements):

Bank 1:fU [a]j1 � a � 30g + fV [a]j1 � a � 15g;

Bank 2:fV [a]j16 � a � 30g+ fW [a]j1 � a � 30g:

We also assume here that the scalar variables k1 through k5 are
stored in registers. Figure 1(a) shows the bank access pattern
for this code. We clearly identify �ve di�erent regions corre-
sponding to �ve inner loops and see that four opportunities
exist for putting a memory bank into low-power mode: one in
the �rst region (for bank 1), one in the second region (for bank
2), one in the fourth region (for bank 1), and one in the last
region (for bank 2).
Let us now consider the following equivalent code where iter-

ations of the nested loop are classi�ed according to their bank
access patterns:

for(t = 1; t � T ; t++)
f

fIg�12 :
for(i = 1; i � 10; i++)
k1+ =W [30� i]� 1;
for(l = 1; l � 10; l++)
k4+ =W [l] + V [16]

fIg12 :
for(k = 1; k � 10; k ++)
k3+ = V [k + 10] + 1;

fIg1�2 :
for(j = 1; j � 10; j ++)
k2+ = (U [j] + V [j])=2;
for(m = 1;m � 10;m++)
k5+ = V [15 �m] + 1;
.........
g

The new bank access pattern is illustrated in Figure 1(b).
We can label this access pattern as [fIg�12; fIg12; fIg1�2]. Fig-
ures 1(c-d), on the other hand, depict two alternate (optimized)
bank access patterns corresponding to [fIg�12; fIg1�2; fIg12] and
[fIg1�2; fIg�12;fIg12], respectively. It should be noted that it-
eration re-ordering clusters the idle regions in both the banks.
Note also that these three optimized access patterns (shown
in Figures 1(b), (c), and (d)) are only representative and that
there are other access patterns (for this example) which cluster
the idle regions.
Note that while our approach to clustering array accesses is

similar to the data-centric tiling technique proposed by Ko-
dukula et al. [8], there are three important di�erences. First,
our approach deals with physical addresses rather than virtual

X

X
X
X

X

X

X
X X
X
X

X
X

X

X
X X

(d)

(a)

X
X

X X
X

X

Bank 1 Bank 2 Bank 1 Bank 2

Bank 1 Bank 2Bank 1 Bank 2

i
j

k
l
m

i

j
m

k
j

m

j
m

k

i
l

(b)

(c)

k X

l

i
l

Figure 1: Di�erent access patterns to a memory system
of two banks. A `X' indicates that the corresponding
region is in use.

addresses which makes expected runtime bene�ts more realiz-
able. Second, instead of clustering the accesses to array blocks,
we cluster accesses to memory banks. Third, our strategy clus-
ters loop iterations for low power and is not concerned whether
the iterations executed together (within a block) will have cache
locality.

4.2 Optimizing Accesses with Dependences
So far, we have assumed that once the classes are deter-

mined, they can be executed in any order. This assumption
holds true as long as there are no data dependences between
iterations belonging to di�erent classes. In this section, we ad-
dress the problem when the loop nest to be optimized exhibits
loop-carried dependences.
A class fIg is said to be dependent on another class fI 0g if

there exists two iterations, �I 2 fIg and �I 0 2 fI 0g, such that
there is a dependence from �I 0 to �I. We express this relation-
ship saying dep(fI 0g ! fIg) is true (or, fIg is class-dependent
on fI 0g). Otherwise, we say that dep(fI 0g ! fIg) is false.
Then, given a classi�cation, we can de�ne the class-level de-
pendence graph, CLDG(V; E), as a directed-graph where each
node v 2 V denotes a class and each edge e 2 E indicates a
data dependence from one class to another. That is, there is a
directed edge from fI 0g to fIg i� dep(fI 0g ! fIg) holds true.
Note that class dependences prevent the compiler from execut-
ing the classes in any order; instead, these dependences should
be satis�ed when selecting an execution order for classes.
Let us assume that fIg1, fIg2, fIg3, ..., fIg2K�2, fIg2K�1

is the classi�cation that we would like to optimize. As a �rst
step, we re-number each class using a K-bit binary number as
follows. Each bank is assigned a bit position (in the binary
number) starting from the �rst bank. If a given class accesses
bank i, then the ith bit of the number associated with the class
is set to 1; otherwise, it is set to 0. For example, in a four bank
memory system, if a class accesses only the �rst and the fourth
banks, it will have `1001' as its number. We express this fact
by writing this class as fIg1001. The binary number associated
with a class (e.g., 1001 in this example) is termed as the class
number.
The problem of optimizing bank accesses can be de�ned as

one of determining a suitable traversal order of the nodes in
the CLDG. When a node is visited, a nested loop which enu-
merates only the iterations in that class is constructed and
inserted in the code. A traversal order is valid (or legal) if it
respects all the data dependences. Note that the intra-class

C1 C2

C3 C4

C5 C6 C7

C1 C2

C4

C5 C6 C7

C3

(a) (b)

Figure 2: Two di�erent class-level dependence graphs
(CLDG).

dependences are satis�ed if we execute the iterations in a given
class in their original order with respect to each other. Inter-
class dependences (class-level dependences), on the other hand,
are satis�ed by visiting a node in the CLDG only after all the
nodes that it is dependent on have been visited.
Note that a given CLDG can have several valid traversals,

and selecting the most suitable one is the primary factor that
determines the memory system energy consumption (through
low-power mode selection). The following observation guides
us in selecting a suitable order:

If fIga and fIgb are the two classes that are suc-
cessively visited, the variation in bank access (acti-
vation) and bank idleness (deactivation) patterns in
going from fIga to fIgb is a function of the Ham-
ming distance between a and b.

For instance, if we traverse fIg1001 and fIg1010 one after an-
other, the �rst two banks preserve their states (between these
traversals), whereas the remaining two banks change their states
(more speci�cally, the third bank is activated {corresponding
to a 0 to 1 transition in the associated bit{ in going from the
�rst class to the second, and the fourth bank is deactivated
{corresponding to a 1 to 0 transition).
We claim that minimizing the Hamming distance between

the numbers of classes that are visited successively is useful in
reducing the energy consumption. In other words, for a given
memory bank, in going from one class to another, it is better
to keep its state the same (active or idle) as much as possible.
This is because if the �rst state is 0 and the second is also 0, the
bank will have a long idle period (which is good from an energy
viewpoint); and similarly, if the both states in question are 1,
this means that the active periods are clustered together, so
hopefully, we will also have clustered idle periods for the bank
in question (later when we visit the remaining classes). Note
that then the problem of optimizing memory energy consump-
tion becomes one of scheduling a group of nodes taking into
account some constraints (inter-class dependences) to minimize
(optimize) some objective function (minimizing the Hamming
distance between the numbers of successively visited classes).
This problem is a constrained scheduling problem and is known
to be NP-hard [4]. Consequently, we propose a greedy heuristic
similar to the list scheduling algorithm used in low-level (back-
end) compilation to schedule the instructions in a basic block.
Informally, in each step, our algorithm selects a class to sched-
ule (visit) such that the Hamming distance between the (class)
number of this class and that of the most recently scheduled
one is minimum (among all alternatives). After scheduling a
class, it determines all classes that can be scheduled in the next
step, and evaluates their Hamming distance with respect to the
scheduled class.
We can evaluate a given traversal order using two di�erent

metrics, both of which are directly related to the bank energy
consumptions. The �rst metric is the sum of the number of bit

C1 C2 C3

C4 C5

C8 C9 C10

C12 C13 C14 C15

C11

C1,C5 C2 C3

C4,C9C6 C6

C8,C13

C7 C7

C10

C12,C14,C15

C11

(a) (b)

Figure 3: (a) A cyclic CLDG. (b) Transformed version
of (a).

transitions between successive class numbers (i.e, the cumula-
tive Hamming distance). Let jai � aj j represent the Hamming
distance between the class numbers ai and aj . Assuming a
traversal order of fIga1 , fIga2 , fIga3 , ..., fIga2K�1 , the cumu-

lative Hamming distance is de�ned as

2K�2X

j=1

jaj � aj+1j:

Note that the scheduling technique discussed above tries to
reduce this cumulative sum. The second metric is the maximum
number of consecutive 0s in the bit positions of each bank. Note
that, in a K-bank memory system, there might be, at the most,
2(K�1) consecutive 0s.
For an example, let us consider the CLDG in Figure 2(a) for

a three-bank system, assuming that the class numbers for C1,
C2, C3, C4, C5, C6, and C7 are 100, 010, 011, 101, 111, 001,
and 110, respectively. An unoptimized scheme can traverse the
classes in the order C1, C2, C3, C4, C5, C6, and C7, leading to a
cumulative Hamming distance of eleven. We also see that the
maximum number of consecutive 0s (as a result of this class
traversal pattern) in this case is 2, 1, and 2, for bank 1, bank
2, and bank 3, respectively. However, if we use our approach,
we obtain the traversal order of C1, C4, C5, C3, C6, C2, and C7.
This new order results in a cumulative Hamming distance of
7. Also, it achieves the maximum possible consecutive 0s for
the �rst bank (for the other banks, it achieves two consecutive
0s), a de�nite improvement over the unoptimized traversal. As
another example, consider the CLDG given in Figure 2(b). As-
suming the same class numbers used in Figure 2(a) and the
same memory bank architecture, our approach selects the or-
der of C3, C5, C4, C6, C1, C7, and C2, achieving a cumulative
Hamming distance of seven (which is only one more from the
optimal which is six) and obtaining the maximum number of
consecutive 0s for two out of three banks.
In some cases, the CLDG may contain cycles which prevent

a legal traversal. We call these types of graphs cyclic CLDGs.
In order to schedule them, we need to apply some node trans-
formations and eliminate the cycles. An example cyclic CLDG
is illustrated in Figure 3(a) for a four-bank memory system.
We use two types of transformations to handle these graphs,
namely, node merging and node splitting, details of which are
omitted due to lack of space. Figure 3(b) shows the transformed
version of Figure 3(a) using node merging.

5. Experimental Results
We used the Omega library [7] to transform the programs'

access patterns into bank-e�cient ones. The Omega library is
a polyhedral tool that allows enumeration of bounded polyhe-
drons and helps us to determine the iteration classes and create
the loops that enumerate them.

Operating Energy Resynchronization
Mode Consumption (nJ) Cost (cycles)

Active 3.570 0

Standby 0.830 20

Nap 0.320 300

PowerDown 0.005 9,000

Figure 4: Energy consumptions and resynchroniza-
tions costs for our operating modes. During transi-
tions from a low-power mode to the active mode, a full
active mode energy is assumed to be spent.

Benchmark Input Size (MB) Base1 (mJ) Base2 (mJ)

phods 40.1 44,492 36,007

seq 44.5 50,525 39,237

flt 58.8 53,078 43,521

tomcatv 49.0 44,221 30,012

swim 55.2 51,660 33,964

eflux 33.7 86,719 71,900

lu 40.5 73,868 60,384

Figure 5: Benchmark codes used in the experiments
and their important characteristics.

Figure 4 shows the energy consumptions (per access) and
resynchronization costs for the operating modes used in our
experiments.
We used seven array-dominated codes to measure the ben-

e�ts of our approach. The important characteristics of these
codes are given in Figure 5. phods and seq are two di�er-
ent motion estimation codes; flt is a digital �ltering routine;
tomcatv and swim are two array-based benchmarks from the
Spec suite; eflux is an array-based benchmark from the Per-
fect Club suite; and lu is an LU decomposition code. Base1
and Base2 refers to base (original) memory system energy con-
sumptions (data accesses only) for a cacheless system and a
system with a 16KB, 2-way set-associative cache with a line
size of 32 bytes, respectively. Note that the energy �gures in
the Base2 column include the energy expended in cache as well
as main memory. In both the cases, the default memory con-
�guration consists of eight 8MB memory banks (denoted 8 �
8MB). The remaining �gures given in this section are percent-
age improvements (reductions) over these base �gures. In all
experiments, we employed a powerful back-end compiler which
performs several important optimizations such as global reg-
ister allocation and instruction scheduling. The use of node
merging was necessary in only one case (eflux) to eliminate
a cycle in the CLDG; we did not use node merging to reduce
the loop overhead. The increase in execution times due to our
optimizations was always less than 1%. Also, there was no
opportunity to use node splitting.
The second column in Figure 6 (Imprv1) gives the percent-

age reductions over Base1 (in a cacheless system) when our
approach is used. We see that our strategy based on the iter-
ation class concept brings a 26.3% improvement on the aver-
age. The third column in the same �gure reports the energy
improvements (again, over Base1) when classical cache local-
ity optimizations are used.1 The locality optimizations used
include linear loop transformations and iteration space tiling

1Note that in this case, these locality optimizations should nor-
mally not be applied as the system does not contain cache. Our
purpose here is to see whether locality-oriented optimizations
are as successful as our strategy in optimizing o�-chip memory
energy.

Benchmark Imprv1 Imprv2 Imprv3 Imprv4 Imprv5

phods 31.4 13.0 27.5 14.4 33.8

seq 28.6 6.8 22.0 10.2 24.2

flt 18.9 12.1 16.3 10.6 22.1

tomcatv 34.1 13.2 29.8 11.1 41.0

swim 20.4 10.1 19.7 9.9 20.5

eflux 16.6 5.4 18.5 4.2 18.5

lu 33.8 2.5 29.9 5.6 31.3

Figure 6: Percentage energy improvements.

Figure 7: Impact of memory bank con�guration.

(blocking) [11]. We experimented with di�erent tile sizes and
(for each benchmark) selected the one which gave the best re-
sult. In comparing the second and third columns of Figure 6,
we observe that our approach, in general, performs much better
than a pure locality-oriented approach. The fourth column of
the �gure (Imprv3) gives the percentage improvements due to
our approach over Base2 (with cache). We see that the average
energy improvement is about 23.4%. Using cache locality opti-
mizations instead brings an improvement of 9.4% (see the �fth
column). The last column (Imprv5), on the other hand, shows
the percentage energy improvements if our current strategy is
slightly modi�ed to take cache considerations into account (and
if doing so does not conict with our iteration class based op-
timizations). Note that this last strategy has not been fully
implemented yet and obtained here through hand optimiza-
tions. The results show that by incorporating locality based
techniques into our framework, we can achieve (on average) a
27.4% improvement (over Base2). This last result motivates
us to integrate our strategy with locality optimizations in the
future.
So far, we have used only a single memory con�guration: 8 �

8MB. Figure 7 gives normalized energy consumptions (with re-
spect to Base1) for two representative codes, lu and tomcatv,
when di�erent memory con�gurations are used (in a cache-
less system). We observe from this �gure that increasing the
number of banks (by keeping the total memory size constant)
generally increases energy savings (as it gives more control to
the compiler in placing larger sections of the address space into
low-power modes). In many codes, however, beyond a certain
point (depending on the access pattern), a �ner-granular mem-
ory system does not bring more bene�ts. This happens for
example with the lu code beyond sixteen banks (see Figure 7).

6. Conclusions
In this paper, we have presented a compiler-oriented mem-

ory energy optimization technique based on a concept called
(loop) iteration classi�cation. The objective of this technique

is to increase the duration of idle periods of memory banks,
thereby saving energy using low-power operating modes more
aggressively. Our experimental evaluation indicates that large
energy savings are possible using this technique.

7. REFERENCES
[1] 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc.,

May 1999.

[2] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L.
Nachtergaele, and A. Vandecappelle. Custom Memory
Management Methodology { Exploration of Memory
Organization for Embedded Multimedia System Design.
Kluwer Academic Publishers, 1998.

[3] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A.
Sivasubramaniam, and M. J. Irwin. DRAM energy
management using software and hardware directed power
mode control. In Proc. the 7th International Conference
on High Performance Computer Architecture, Monterrey,
Mexico, January 2001.

[4] G. De Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, Inc., 1994.

[5] C. Ellis. The case for higher level power management. In
Proceedings of HotOS, March 1999.

[6] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye.
Inuence of compiler optimizations on system power. In
Proc. the 37th Design Automation Conference, Los
Angeles, California USA, June 5-9, 2000.

[7] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman,
and David Wonnacott. The Omega Library interface
guide. Technical Report CS-TR-3445, CS Dept.,
University of Maryland, College Park, MD, March 1995.

[8] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric
multi-level blocking. In Proc. SIGPLAN
Conf. Programming Language Design and
Implementation, June 1997.

[9] J. R. Lorch and A. J. Smith. Software strategies for
portable computer energy management. IEEE Personal
Communications, pp. 60{73, June 1998.

[10] V. Tiwari, S. Malik, A. Wolfe, and T. C. Lee. Instruction
level power analysis and optimization of software,
Journal of VLSI Signal Processing Systems, Vol. 13, No.
2, August 1996.

[11] M. Wolfe. High Performance Compilers for Parallel
Computing, Addison-Wesley Publishing Company, 1996.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

