
CALiBeR: A Software Pipelining Algorithm for Clustered
Embedded VLIW Processors*

Cagdas Akturan and Margarida F. Jacome
Department of Electrical and Computer Engineering

The University of Texas at Austin

E-mail: {akturan, jacome}@ece.utexas.edu

Abstract

In this paper we describe a software pipelining framework,
CALiBeR (Cluster Aware Load Balancing Retiming
Algorithm), suitable for compilers targeting clustered embedded
VLIW processors. CALiBeR can be effectively used by
embedded system designers to explore different code
optimization alternatives, i.e., can assist the generation of high-
quality customized retiming solutions for desired program
memory size and throughput requirements, while minimizing
register pressure. An extensive set of experimental results is
presented, considering several representative benchmark loop
kernels and a wide variety of clustered datapath configurations,
demonstrating that our algorithm compares favorably with one
of the best state-of-the-art algorithms, achieving up to 50%
improvement in performance and up to 47% improvement in
register requirements.

1. Introduction

Software pipelining is an effective performance enhancing loop
transformation aimed at extracting instruction level parallelism
(ILP) hidden in inner loop bodies. Software pipelining increases
throughput by overlapping the execution of loop body
iterations. Since the time critical segments of embedded digital
signal processing and multimedia applications are typically
loops, software pipelining is very effective in improving the
performance of such applications.
In order to take full advantage of the fine grained instruction
level parallelism extracted by software pipelining, Very Large
Instruction Word (VLIW) processors with large number of
functional units (FUs) are typically required. Unfortunately,
centralized (register file) architectures scale poorly with the
number of functional units, that is, as the number of FUs
increases, centralized architectures quickly become
prohibitively costly in terms of power dissipation, delay, and
area [1]. Clustered VLIW architectures address this problem by
restricting the connectivity between FUs and registers.
Specifically, the datapath of such machines consists of a set of
clusters, each containing a sub-set of FUs connected to a local
register file (see example in Figure 1). In such architectures,

however, inter-cluster data transfers may lead to undesirable
increase in schedule latency and energy consumption. Indeed,
one of the major compilation challenges posed by clustered
VLIW machines is the ability to minimize such data transfers
while taking full advantage of the (typically) large number of
FUs available in the clustered datapath, i.e., to achieve final
scheduling latencies that are close (in number of clock cycles)
to what would be obtained on a centralized machine with the
same number of FUs. Since the clock rate of a clustered VLIW
machine is likely to be significantly faster than that of a
centralized machine (with the same number of Fus)[1], this
would translate into significant performance gains.

It follows that high quality software pipelining algorithms
targeting VLIW clustered machines are very much needed --
particularly in the context of multimedia and digital signal
processing applications, in view of the large amounts of ILP
possible to extract from those applications. As alluded to above,
in order to produce good solutions for clustered VLIW
machines, software pipelining algorithms must carefully
consider the configuration of the target clustered datapath. That
is, the algorithm must consider the total number of clusters
instantiated the datapath, the number, and type of FUs
instantiated in each individual cluster, as well as associated
inter-cluster bus capacity and latency.

Functional
Unit

Functional
Unit

Functional
Unit

Register File

Cluster

Functional
Unit

Functional
Unit

Functional
Unit

Register File

Cluster

Inter-cluster Bus

Figure 1. Example of a datapath with two clusters
In this paper we describe a software pipelining framework
(CALiBeR) suitable for compilers targeting clustered embedded
VLIW processors. CALiBeR can handle arbitrary clustered
datapath configurations and, along with latency minimization,
can effectively handle code size constraints (retiming depth), as
well as minimization of register pressure (register file size
requirements). We argue that the powerful and unique
combination of optimization features provided by CALiBeR
allows embedded system designers to perform compiler assisted
exploration of "Pareto optimal” points with respect to

*This work is supported in part by an NSF ITR Grant ACI-0081791 and NSF
Grant CCR-9901255 and by Grant ATP-003658-0649 of the Texas Higher
Education Coordinating Board.

performance, code size, and register requirements, all important
figures of merit for embedded software.

CALiBeR targets inner loop bodies comprised of a single basic
block. A significant percentage of time critical code segments in
signal processing and multimedia applications are indeed single
basic block loops. We note, however, that a hierarchical
reduction technique, such as the one described in [2], can be
easily incorporated in our algorithm, making it general.

An extensive set of experiments, considering several
representative benchmark loop kernels and a wide variety of
clustered datapath configurations is presented in this paper,
demonstrating that the vast majority of individual solutions
generated by our algorithm compares favorably with those
produced by one of the best state-of-the-art-algorithms, with up
to 50% improvement in performance and up to 47%
improvement in register requirements. In addition, our
experiments show that our algorithm can be used to explore a
much larger space of (retiming) trade-offs than that possible to
explore by previous algorithms.

The organization of the paper is as follows. Section 2 gives a
brief background discussion on software pipelining and
introduces our notation. Section 3 defines the two primary
optimization problems addressed in this paper. Section 4
presents our proposed software pipelining algorithm. Section 5
reviews previous work. Section 6 discusses experimental results
and Section 7 presents conclusions.

2. Background

Loop body basic blocks are modeled using a retiming graph,
denoted GR(N,E,w). GR is a data dependence graph, where N
denotes the set of operations on the loop body, and E denotes
the set of data dependencies between those operations. Figures
2(a) and (b) show an example loop body with 6 simple
instructions (operations), and corresponding retiming graph,
respectively.

 0+ 2+

 3+

 1*

4+

 5* 2D

for i=1 to n do {
 0: t0[i]=a[i]+b[i];
 1: t1[i]=c[i]*const1;
 2: t2[i]=d[i]+e[i-2];
 3: t3[i]=t0[i]+c[i];
 4: t4[i]=t1[i]+t2[i];
 5: e[i]=t3[i]*t4[i];
}

(a) Loop body (b) GR

Figure 2
An operation may need to consume a data object that is
produced at a previous iteration of the loop. For example,
operation 2 in Figure 2(a) consumes the data object produced by
operation 5 two iterations ago. In order to represent the iteration
difference between the loop index at which a data object is
consumed and the loop index at which it is produced, an
iteration distance (delay) function d:ek Z+; ek E is defined.
This iteration difference is modeled by placing the number of
iteration delays ("D") on the associated edge of the retiming
graph, see e.g. edge (5,2) in Figure 2b.

Retiming is a loop transformation performed on the original
retiming graph, GR, aimed at pipelining several loop body
iterations within the same execution cycle. Formally, given a
retiming function r:ni Z; ni N, the set of delays, d(ek), on the

original retiming graph is transformed into a new set of delays,
dr (ek), given by ([3]):

dr(ek)=d(ek)+ r(ni)-r(nj) (1)

Consider, for example, the retiming graph shown in Figure 3a.
If the operations in the gray region are retimed by 1 iteration,
we obtain the retiming graph shown in Figure 3b. A scheduling
solution for the new retiming graph is also shown in the figure.
Note that this scheduling solution was generated assuming a
centralized datapath configuration with two single-cycle adders
and two-single-cycle multipliers.

A strongly connected component (SCC) of a graph is a
subgraph such that, for every pair of nodes ni, nj N, there
exists a path ni, nj and a path nj ni. The loop body in Figure
2b, for example, has one SCC, composed of nodes 2, 4 and 5
(marked in gray). SCC’s impose restrictions on the maximum
iteration distance (i.e., number of delays) that can exist between
any two nodes, since the total delay on a recurrence circuit
(cycle) does not change by retiming its individual nodes. For
example, nodes 2 and 4 of the SCC in Figure 2(b) can be at
most 2 iterations apart. Hence, the presence of strongly
connected components increases the complexity of the retiming
problem.

 0+

 2+ 3+ 1*

4+ 5*

 PS-0 PS-1

(b) Solution #1

 t

0

1
 1D

1D

1D

for i=2 to n do {
 0: t0[i]=a[i]+b[i];
 1: t1[i]=c[i]*const;
 2: t2[i]=d[i]+e[i-2];
 3: t3[i-1]=t0[i-1]+c[i-1];
 4: t4[i]=t1[i]+t2[i];
 5: e[i-1]=t3[i-1]*t4[i-1];
}

(c) Retimed loop body

 0: t0[1]=a[1]+b[1];
 1: t1[1]=c[1]*const;
 2: t2[1]=d[1]+e[-1];
 4: t4[1]=t1[1]+t2[1];

 3: t3[n]=t0[n]+c[n];
 5: e[n]=t3[n]*t4[n];

Prolog

 Epilog

 0+ 2+

 3+

 1*

4+

 5*
 2D

(a) GR

Figure 3
Initially, all nodes/operations in the retiming graph belong to
the same iteration, i.e., pipe-stage (PS). After retiming, several
iterations may be pipelined on the same execution cycle – for
example, operations from iteration “i” (i.e., pipe-stage-1 or PS-
1) and iteration “i-1” (PS-0) will execute simultaneously in the
pipelined loop shown in Figure 3(b). The total number of pipe
stages (i.e., iterations executing concurrently) on a software
pipelined loop body is denoted by P. The total number of
execution steps required by any such (balanced) pipe-stage
corresponds to the initiation interval (II) of the retimed loop
body [4]. That is, a new iteration is started/concluded every II
steps. For the example, in Figure 3(b) the initiation interval and
the total number of pipe stages are II=2 and P=2, respectively.
Naturally, the key objective of software pipelining/retiming is to
decrease II, thus increasing the execution throughput.
Due to the need to insert a prologue and an epilogue (to fill and
empty the pipe, respectively), after retiming the total code size
is equal to P (total number of pipe stages) times the size of the
original loop body. So, since the retiming solution shown in
Figure 3(b) has 2 pipe stages, the code size is doubled, as shown
in Figure 3(c).

 0+

 2+ 3+ 1*

4+ 5*

 PS-0 PS-1

(b) Solution #1

 t

0

1

2

 1D

1D

1D

 PS-0 PS-1

CLUSTER 1 CLUSTER 2BUS

 mw5

 mw4

 0+ 2+

 3+

 1*

4+

 5*
 2D

(a) GR

Figure 4
In what follows, we use again the same loop body, (repeated in
Figure 4a for clarity) to illustrate the fact that retiming solutions
derived ignoring the partitioning of a machine’s resources into
clusters, may be very sub-optimal. In Figure 4b we show a
minimum latency schedule for the previous retiming solution
(see Figure 3b) but now assuming a target datapath with two
clusters. Necessary data transfer operations from producer to
consumer "clusters" are symbolically denoted mv(producer-
operation-id). Note that in this example we assume that
each cluster has 1 adder and 1 multiplier unit, and thus the total
number of functional units is identical to that of the centralized
datapath considered in the example shown in Figure 3b.
Unfortunately, the initiation interval has increased by 50% (1
step), as compared to the schedule for the centralized machine.
In Figure 5b, however, we show an alternative retiming
function/solution that gives the optimum (minimum) initiation
interval (2 cycles), for the same clustered datapath
configuration. Naturally, the retiming solution in Figure 5b is
also optimal for the centralized machine, showing that the
complexity of software pipelining problem increases when
clustered machines are considered.

 0+ 2+

 3+

 1*

4+

 5* 2D

(a) GR

 0+

 2+ 3+

 1* 4+

 5*

 PS-0 PS-1

(b) Solution #2

 t

0

1

 1D

1D

1D

 PS-0 PS-1

CLUSTER 1 CLUSTER 2

1D

BUS

 mw1

 mw1

Figure 5

3. Problem Definition

In this paper, we address two fundamental software pipelining
problems:
Problem 1: Given a retiming graph and a clustered datapath
configuration, find a retiming function that minimizes the
number of pipe stages (code size) and register requirements,
subject to constraints on the initiation interval (latency).

Problem 2: Given a retiming graph and a clustered datapath
configuration, find a retiming function that minimizes initiation
interval (latency) and register requirements, subject to
constraints on the number of pipe stages (code size).

Optimization problems 1 and 2 above are very hard. Moreover,
as alluded to above, retiming algorithms designed for
centralized machines fail when targeting clustered datapath
configurations, that is, produce suboptimal retiming solutions.
Software pipelining is thus a compelling example of the need to
develop performance enhancing transformations and other
compiler algorithms that are aware of specifics of the target

machine, particularly when such machine has a “non-standard”
architecture (e.g., is non-centralized).

4. CALiBeR

In this section we discuss the problem decomposition (phasing)
implemented in CALiBeR, the set of algorithms addressing
each resulting sub-problem, and the set of heuristics used to
orchestrate the global optimization process.

4.1 Overall Optimization Flow
CALiBeR’s execution flow is summarized in Figure 6. As it can
be seen, it starts with a preprocessing step, and then enters a
complex iterative phase (see back-edges in Figure 6). The high-
level optimizer module (shown on the right) keeps track of the
specific type of optimization problem being solved (Problem 1
or 2, see Section 3), and orchestrates the iterative optimization
flow accordingly.

 1

 2

 3

 4

 5

Figure 6. Main components of CALiBeR

CALiBeR is the evolution of a previous software pipelining
algorithm, RS-FDRA, which addressed the same two
optimization problems but in the context of centralized
machines only (see [5]). Phases/modules unique to CALiBeR
(that is, modules that were not present in the original RS-FDRA
framework) are highlighted in dark gray in Figure 6.
Phases/modules whose original algorithms required
modifications are highlighted in light gray. New
iteration/control edges are shown in bold. Note that contrasting
CALiBeR and RS-FDRA is informative, in that it highlights the
impact of clustering on the global optimization flow and on
overall problem complexity.

Similarly to RS-FDRA, CALiBeR has an initial preprocessing
step which computes lower bounds on latency and on number of
pipe stages for the problem instance, so as to improve search
efficiency - for a detailed description see [5].

Also similarly to RS-FDRA, CALiBeR’s outermost “iteration
loop” (represented by control arrows 1 and 3 in Figure 6) is
driven by carefully generated and ranked alternative retiming
functions/solutions for each of the strongly connected
components (SCCs) of the input loop body. Specifically, when
the region (in the search space) defined by one such unique
combination of SCC’s retiming functions fails to contain an
actual solution to the problem instance, a new set of unique
SCC’s retiming functions is considered (the combination with
the next best rank), and the search is resumed within the
corresponding new “region” of the overall space. Indeed, one of
the key strengths of CALiBeR (inherited from RS-FDRA) is its

aggressive (joint) exploration of both, the retiming space for the
loop body’s strongly connected components, and the retiming
space for the “feed-forward” part of the graph. Note that a
common approach followed by most state-of-the-art algorithms
is to schedule the SCCs of a graph prior to the rest of the graph,
in an attempt to handle the harder constraints posed by such
components, with a maximum degree of freedom.
Unfortunately, such greedy strategies fail to properly explore
the global retiming space, frequently leading to inferior
solutions [5][6]. The generation and ranking of alternative
retiming solutions for the SCCs is performed by CALiBeR’s
SCC Solution Manager module (see Figure 6). A detailed
description of the algorithms used to generate alternative
retiming functions for each SCC, as well as ranking heuristics
used to evaluate the potential of each such function (in terms of
leading to overall solutions with lower latency, number of pipe-
stages, and/or register requirements), can be found in [5][7].

The search for a solution within the region defined by one such
set of SCC’s retiming functions, is driven by CALiBeR’s
second (inner) iteration loop. This lower level iteration tackles
the need to aggressively explore different binding functions,
that is, alternative assignments of loop body operations to
machine clusters, in order to identify good software pipelining
solutions for clustered machines. The goal is to find binding
functions that minimize overall delay penalties resulting from:
(1) operation serialization due to cluster overloading; and (2)
required data transfers between clusters. As it can be seen in
Figure 6, CALiBeR derives first a binding function (that is, a
partition of the set of operations and corresponding assignment
to clusters), and only then tries to generate a final (global)
retiming solution for the problem instance. Indeed, we found
that distributing first the “load” (that is, the loop body
operations) among clusters and then trying to find a global
retiming function/solution that minimizes the cost function (that
is, initiation interval or number of pipe stages, depending on the
type of problem instance being solved), under such additional
(cluster related) resource constraints, was by far the most
effective strategy. Moreover, such problem phasing enables the
iterative search over binding functions to be effectively guided
by previously failed attempts (see Section 4.5).

Thus, after one such promising binding function is generated,
CALiBeR’s Retiming module searches a global retiming (i.e., a
software pipelining) solution that minimizes the cost function -
that is, initiation interval and register requirements (Problem 1)
or number of pipe stages and register requirements (Problem 2)
- while meeting the constraints defined so far. Such constraints
are: number of pipe stages (Problem 1) or initiation interval
(Problem 2); data dependencies; and resource availability (on
individual clusters), resulting from the current binding function.
We note that the retiming algorithm implemented in CALiBeR's
retiming module is very similar to that implemented in RS-
FDRA, with only a few modifications, resulting from the
organization/partitioning of resources into clusters, as well as
the need to take inter-cluster data transfer delays into
consideration. Details of the modified retiming algorithm are
given in Section 4.2.

When a global retiming solution is eventually found, the actual
data transfers are inserted in the graph and adequately

scheduled, thus generating the final VLIW code for the steady
state component of the retimed loop body. This last step is
performed by the Inter-cluster Communication module shown
in Figure 6. (See details in Section 4.4).

Due to space limitations, in what follows we provide additional
details on the specific algorithms and heuristics incorporated
and/or modified in CALiBeR, so as to properly handle clustered
machines, and remit interested readers to RS-FDRA [5] for
details on the remaining algorithms.

4.2 Retiming Module
CALiBeR employs a load balancing algorithm, which achieves
a high resource utilization by relying on the fundamental ideas
of Force Directed Scheduling [8]. An important feature of this
algorithm is that it can handle not only initiation interval
constraints but also constraints on the number of pipe stages, as
well as register pressure minimization. A detailed description of
an early version of the retiming algorithm, targeting only
centralized datapath configurations, can be found in [5]. In
order to be able to handle clustered datapath configurations, in
this version, the load distributions, indicating the profile of the
demand for each resource type, are computed for individual
clusters.

4.3 Graph Partitioning Module
The Graph Partitioning module implements the (fast)
partitioning algorithm reported in [9]. The first step of the fast
binding algorithm is to order the nodes in GR according to their
criticality. Then, in this order, operations are bound to the most
cost-effective clusters, using the following cost function:
cost(ni,c)= fucost(ni i,j+ buscost(ni (mv)+ trcost(ni (mv) (2)

Components fucost(ni,c), buscost(ni,c) and trcost(ni,c) represent a
functional unit serialization penalty, data transfer penalty and
bus serialization penalty, respectively. The functional unit cost,
fucost(ni,c), expresses an estimate of the increase in cluster c
overload (if any) when operation ni is assigned to it. Note that,
in our version of the algorithm, such load distributions are
determined on the folded (pipelined) graph. The functional unit
cost is weighted by the execution delay of the functional unit
under consideration (i,j). Similarly, the bus cost (buscost) and
data transfer cost (trcost) functions are weighted by the latency
of a move operation (mv).

In order to properly handle graphs with strongly connected
components, when computing the data transfer cost function the
algorithm implemented in CALiBeR also considers edges with
positive (non-zero) delays, since these data dependencies are
critical to ensure high quality software pipelining solutions.

4.4 Inter-cluster Communication Module
In our framework, a data transfer (mv) is defined as the
broadcast of an operation result on the common inter-cluster
bus, in order to make it available to consumer operation(s) that
are not assigned to the same cluster. In our implementation,
each data object is transmitted only once and the life time of the
data object in the producer and consumer clusters is determined
accordingly. Given the retiming solution generated by the
Retiming module, the Inter-cluster Communication module
inserts and schedules the required data transfer operations,
starting from the most urgent ones, that is, the ones with the

shortest time-frame. The time frame of a mv starts when the
producer operation completes its execution and ends when the
earliest consumer operation (in the target cluster) starts
executing. After deciding the most urgent data transfer, a mv is
inserted to the least congested time step(s) in the time frame.
This process is repeated until all necessary data transfers are
inserted or no more data transfers can be performed, i.e., when
the number of simultaneous data transfers exceeds the bus
capacity. In this last case control is transferred to the High
Level Optimizer module. Otherwise, after all required data
transfers are scheduled, the solution is complete, and register
requirements are determined.

4.5 High Level Optimizer
As alluded to above, CALiBeR’s High Level Optimizer
orchestrates the phased/iterative optimization process outlined
in Section 4.1. In this section we provide additional details on
the strategy used to modify the partitioning/binding function in
case of failure to find a global retiming solution (see back edge
2 in Figure 6). Specifically, we discuss the heuristic used to
modify the set of binding-dependent resource constraints, as
well as the set of inter-cluster data transfer operations defined
for the current problem instance.

High Level Optimizer starts by initializing the parameters in
equation(2) with the values = =1.0, and =1.1, since those
were found to deliver the best final latency results (i.e., achieve
the best overall trade-off between delay penalties due to
operation serialization and due to data transfers)[9]. When the
data transfers required by the binding function cannot be
inserted in the code (that is, cannot be scheduled by the Inter-
cluster Communication module), parameters and are
increased (on a stepwise fashion), by the High Level Optimizer
module, so as to decrease the number of required inter-cluster
data transfers, and thus, hopefully converge towards a feasible
solution.

5. Previous Work

This section briefly surveys previous work in retiming and
software pipelining, starting with algorithms aiming at
centralized machines only. Examples of software pipelining
algorithms that are based on some variation of list scheduling
include [10], [2], [11] and [12]. In [13] a software pipelining
algorithm that can handle conditionals on the loop body is
proposed. The retiming algorithm proposed in [14] compacts a
given valid schedule by applying a phased iterative retiming and
scheduling. The method proposed in [15] uses a probabilistic
rejectionless algorithm, aiming at achieving high resource
utilization. Algorithms in [13], [14], and [15] are similar, in the
sense that when the running time is sufficiently large, they are
likely to converge to an optimum solution.

The group of algorithms surveyed in the sequel can also
minimize register pressure. Slack Scheduling [16] follows a bi-
directional scheduling strategy, i.e., using an heuristic priority
function schedules some operations early while delaying others,
in order to reduce register pressure. In [17], a Linear
Programming based approach is proposed to schedule loop
operations for minimum register requirements, for a given
modulo reservation table. Also, in [18], an exact methodology

to minimize register requirements for an optimum rate schedule
is presented. In [19], a set of low computational complexity
stage-scheduling heuristics are proposed, aiming at reducing the
register requirements of a given modulo schedule solution.
Swing Modulo Scheduling [20] schedules the operations of the
input graph using a predetermined heuristic order so as to
reduce register pressure. Finally, the software pipelining
algorithm proposed in [5], in addition to reducing register
pressure, can also handle code size constraints.

Next we briefly overview algorithms that target clustered
datapath configurations. In [21] an algorithm that jointly
performs cluster assignment and scheduling is proposed. This
algorithm can only handle feed-forward graphs. In [22] and
[23], the authors propose modulo scheduling (i.e., software
pipelining) algorithms that also perform cluster assignment. We
have selected the state-of-the-art algorithm given in [23] as our
reference/comparison algorithm, since it produces high quality
solutions. This algorithm first orders the nodes of the graph
using the ordering in [20]. Then it applies a simultaneous cluster
assignment and scheduling step.

6. Experimental Results

In this section we present two sets of experimental results
summarized in Tables 1 and 2. In the first set (Table 1) we
present the retiming solutions generated by CALiBeR when
solving Problem 1 and compare those results to ones produced
by a state-of-the-art software pipelining algorithm for clustered
VLIW processors [23]. Then, in order to analyze the effects of
clustering we contrast CALiBeR's results with those produced
by our previous software pipelining algorithm for centralized
machines, RS-FDRA [5]. Finally, in the second set (Table 2),
we present the experimental results obtained when CALiBeR is
solving Problem 2.

[23] was chosen to be the comparison algorithm for CALiBeR
because it is one of the best state-of-the-art software pipelining
algorithms targeting clustered datapath configurations. Our
implementation of the basic algorithm reported in [23] does not
consider the loop unrolling optimization merged with software
pipelining implemented in [23]1. Furthermore, in order to
compare fairly the initiation interval and number of pipe stages
achieved by [23] vs. CALiBeR, we relaxed the register file size
constraint considered in [23].

Each entry in Table 1 represents a different experiment. Column
1 specifies the benchmark considered in the particular
experiment. Columns 2 through 5 specify the clustered VLIW
datapath configuration considered in the experiment. The
functional unit types are coded as follows: a=ALU,
m=multiplier, x=load/store. The following four columns
(labeled II, P, R, B) show the initiation interval, number of pipe
stages, minimum register requirements (maximum number of
simultaneously alive data objects on any cluster), and number of
required buses for CALiBeR and [23].

1 On the descriptive statistics presented later, we assumed the
following ordering in metric’s criticality: initiation interval, number of
pipe stages, register and bus requirements. Thus, for example, we only
count a solution as optimal with respect to number of pipe stages if it is
also optimal with respect to initiation interval.

Table 1. Experimental Results (Problem 1)

Clustered Datapath Description CALiBeR [23] RS-FDRABenchmark
Description C1 C2 C3 C4 II P R B II P R B

Centralized
Datapath Desc. II P R

1a1m 1a1m 4 2 4 1 4 3 5 1 2a2m 3 2 4
2a2m 2a2m 3 2 4 1 3 3 5 1 4a4m 3 2 4

2 Cascaded
Biquad Filter

(8 Nodes) 2a2m 1a1m 3 2 4 1 3 3 5 1 3a3m 3 2 4
1a1m 1a1m 5 2 3 1 5 3 3 1 2a2m 4 2 4
1a1m 1a1m 1a1m 5 2 3 1 5 3 3 1 3a3m 4 2 5
2a2m 1a1m 4 2 4 1 4 3 5 1 3a3m 4 2 5

Livermore
Kernel 23

(11 Nodes)
2a1m 2a1m 4 3 4 1 4 3 4 1 4a2m 4 2 4
1a1m 1a1m 4 3 5 1 4 3 6 2 2a2m 4 3 10
2a2m 2a2m 2 6 8 1 2 7 9 3 4a4m 2 5 13

Lattice Filter
(16 Nodes)

2a2m 1a1m 3 4 7 1 3 5 9 2 3a3m 3 3 9
1a1m 1a1m 4 3 6 1 4 5 9 1 2a2m 4 3 10
1a1m 1a1m 1a1m 3 5 5 1 3 5 5 1 3a3m 3 4 12
1a1m 1a1m 1a1m 1a1m 3 5 5 1 3 6 5 2 4a4m 2 5 13

2 Cascaded
FIR Filter

(18 Nodes)
2a2m 2a2m 2 6 7 1 4 4 13 1 4a4m 2 5 13
1a1m1x 1a1m1x 5 3 7 2 5 5 9 1 2a2m2x 5 2 10
1a1m1x 1a1m1x 1a1m1x 4 4 6 2 4 5 6 1 3a3m3x 4 3 11

Avenhous
Filter

(20 nodes) 2a2m1x 2a2m1x 3 4 7 2 3 5 11 1 4a4m2x 3 3 12
1a1m1x 1a1m1x 5 3 8 1 5 3 4 1 2a2m2x 5 3 10
2a2m2x 2a2m2x 3 3 6 2 3 4 6 1 4a4m4x 3 3 13
3a3m3x 3a3m3x 2 5 14 2 2 4 7 1 6a6m6x 2 4 18

Spec2000f
Swim (200)
(26 Nodes)

1a1m1x 1a1m1x 1a1m1x 3 4 7 2 3 5 4 3 3a3m3x 3 4 16
2a2m 2a2m 4 5 12 1 4 7 14 1 4a4m 4 5 18
2a2m 2a2m 2a2m 4 5 9 1 4 6 11 1 6a6m 3 6 20

4 Cascaded
FIR Filter

(32 Nodes) 3a3m 3a3m 3 6 12 1 3 8 14 1 6a6m 3 6 20
1a1m 1a1m 8 3 9 2 8 5 13 1 2a2m 8 2 15
2a2m 2a2m 4 4 10 1 5 5 15 2 4a4m 4 3 16

4 Cascaded
Biquad Filter
(32 Nodes) 4a4m 4a4m 3 5 14 1 4 4 20 1 8a8m 3 5 20

2a2m2x 2a2m2x 4 4 14 2 4 4 9 2 4a4m4x 4 2 10
3a3m2x 3a3m2x 3 5 17 3 3 4 9 2 6a6m4x 3 4 16

AR Filter
(34 Nodes)

3a4m2x 3a4m2x 2 7 17 2 3 4 13 1 6a8m4x 2 4 22
2a1m 2a1m 9 2 9 2 9 3 11 2 4a2m 9 2 12
3a1m 3a1m 3a1m 7 2 9 2 7 2 17 2 9a3m 4 3 19

DCT-DIT
(48 Nodes)

3a1m 3a1m 3a1m 4 4 10 5 5 3 15 5 9a3m 4 3 19

Table 2. Sample of Experimental Results (Problem 2)

Datapath Description CALiBeR [23] RS-FDRABenchmark
Description P’ C1 C2 II P R B II P R B

Centralized Datapath
Description II P R

4 2a2m 2a2m 4 4 10 1 5 5 15 2 4a4m 4 3 16
3 2a2m 2a2m 5 3 11 2 4a4m 4 3 16
2 2a2m 2a2m 7 2 10 3 4a4m 6 2 15
5 4a4m 4a4m 3 5 14 1 4 4 20 1 8a8m 3 5 20
3 4a4m 4a4m 4 3 16 1 8a8m 4 3 18

4 Cascaded
Biquad Filter
(32 Nodes)

2 4a4m 4a4m 6 2 15 1 8a8m 5 2 16
6 3a3m 3a3m 3 6 12 1 3 8 14 1 6a6m 3 6 20
5 3a3m 3a3m 4 5 14 1 6a6m 4 5 20
4 3a3m 3a3m 5 4 14 1 6a6m 5 4 21

4 Cascadded
FIR Filter

(32 Nodes)
3 3a3m 3a3m 6 3 16 1 6a6m 6 3 19

In all of the experiments our algorithm found a minimum
latency (that is, initiation interval) solution, while the
comparison algorithm generated minimum latency solutions
only in 85% of the cases. In 93% of the cases CALiBeR obtains
minimum code size solution for equal or shorter latency, while
[23] achieve it only in 24% of the cases. In 87% of the cases our
algorithm was able to generate a solution with minimum register
file size requirements (for the clusters) whereas the comparison

algorithm obtains it only in 18% of the cases. Overall, we
achieved up to 50% improvement in initiation interval and up to
47% improvement in register requirements as compared to [23].

In order to assess the penalties incurred by clustering, in the last
three columns we provide the experimental results of RS-FDRA
[5] for an equivalent centralized datapath configuration (see
column 13 in Table 1). In 81% of the cases CALiBeR obtained

a retiming solution for the with the same initiation interval as
RS-FDRA working with a centralized machine. In 36% of these
cases, CALiBeR obtained also the same code size solution.
These results are encouraging, in that they show that the "so
called" clustering penalties can be often avoided, while
enjoying the benefits of the faster clock rates of clustered
machines. Note also that, for the same initiation interval,
CALiBeR generated solutions that require cluster register files
in average 38% smaller (up to 58% smaller) than their
monolithic counterparts for the centralized machines. This
provides additional empirical evidence in support of the use of
clustered machines, even when complex loop optimizations
such as software pipelining are considered.

The high quality results consistently produced by CALiBeR
rely on the sophisticated iterative optimization process
discussed in Section 4. In contrast, [23], is essentially a greedy
algorithm driven by a set of effective heuristics. Thus, for our
benchmarks, the execution time of [23] was always under 1
second, while the execution time of CALiBeR varied from a
few seconds to a few hundred seconds.

Table 2 presents experimental results obtained when CALiBeR
is solving Problem-2, i.e., minimization of latency and register
requirements, under resource and code size (maximum number
of pipe stages) constraints. This set of experimental results
demonstrates that CALiBeR is capable of exploring a much
larger set of pareto optimal points (trade-offs), as compared to
previous algorithms, e.g., [23]. Specifically, by varying the
constraint on the number of pipe stages (P’), we were able to
generate several "Pareto optimal” latency/number of pipe stages
points. In contrast, the comparison algorithm can only generate
a minimum latency solution.

7. Conclusions

This paper proposes a software pipelining algorithm suitable for
compilers targeting clustered embedded VLIW processors. The
proposed algorithm can handle arbitrary clustered datapath
configurations and, along with latency minimization, can
effectively handle code size constraints (retiming depth), as
well as minimization of register pressure (register file size
requirements). Our experimental results demonstrate that the
extended set of optimization goals and constraints is supported
by CALiBeR without compromising the quality of the
individual “point solutions”.

References
[1] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi,
J.Owens, “Register organization for media processing”, in
proceedings of the 26th International Symposium on High-
Performance Computer Architecture.
[2] M. Lam, “A systolic array optimizing compiler”, Ph.D.
Thesis, Carnegie Mellon University, 1987.
[3] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous
Circuitry”, Algorithmica, pp. 5-35, 1991.
[4] B.R. Rau," Iterative modulo scheduling an algorithm for
software pipelining loops”, MICRO-27, 1994.
[5] C. Akturan, M. F. Jacome, "RS-FDRA: A Register Sensitive
Software Pipelining Algorithm for Embedded VLIW

Processors", in proceedings of 9th International Symposium on
Hardware/Software Codesign, April 2001.
[6] C. Akturan, M. F. Jacome, "FDRA: A Software Pipelining
Algorithm for Embedded VLIW Processors", in proceedings of
International Symposium on System Synthesis, Sept. 2000.
[7] T. C. Denk, K. K. Parhi, “Exhaustive Scheduling and
Retiming of Digital Signal Processing Systems”, in IEEE
Transactions on Circuits and Systems-II: Analog and Digital
Signal Processing, pp. 821-837, Vol. 45, No. 7, July 1998.
[8] P. G. Paulin, J. P. Knight, “Force Directed Scheduling for
the Behavioral Synthesis of ASIC’s”, IEEE Transactions on
Computer-Aided Design, Vol. 8, No. 6, June 1989.
[9] V. Lapinskii, M. F. Jacome, G. de Veciana, "High Quality
Operation Binding for Clustered VLIW Datapaths," in proc. of
IEEE/ACM Design Automation Conference, June 2001.
[10] C. Wang, K. K. Parhi, “High Level DSP Synthesis Using
MARS Design System”, proceedings of the International
Symposium on Circuits and Systems, pp. 164-167, 1992.
[11] T. Lee, A. C. Wu, D. D. Gajski, Y. Lin, “An effective
methodology for functional pipelining”, in proc. of the Intl.
Conference on Computer Aided Design, pp.230-233, Dec.1992.
[12] G. Goossens, J. Vandewalle, H. De Man, “Loop
optimization in register-transfer scheduling for DSP-systems”,
in proc. of the ACM/IEEE Design Automation Conf., 1989.
[13] A. Aiken, A. Nicolau, S. Novack, “Resource-Constrained
Software Pipelining”, IEEE Transactions on Parallel and
Distributed Systems Vol.6, No. 12, December 1995.
[14] L. Chao, A. LaPaugh, E.H. Sha, “Rotation Scheduling: A
loop Pipelining Algorithm”, IEEE Transactions on Computer
Aided Design”, Vol. 16, No. 3, pp. 229-239, March 1997.
[15] M. Potkonjak, J. Rabaey, “Retiming For Scheduling”,
VLSI Signal Processing IV, pp. 23-32, November 1990.
[16] R. A. Huff, “Lifetime-Sensitive Modulo Scheduling”, in
proceedings of the ACM SIGPLAN Conference on
Programming Language, Design and Implementation, 1993.
[17] A. E. Eichenberger, E.S. Davidson, S.G. Abraham,
“Minimizing Register Requirements of a Modulo Schedule via
Optimum Stage Scheduling”, International Journal of Parallel
Programming, February 1996.
[18] R. Govindarajan, E.R. Altman, G. R. Gao, “Minimizing
Register Requirements under Resource-Constrained Rate–
Optimal Software Pipelining”, MICRO-27, 1994.
[19] A. E. Eichenberger, E.S. Davidson, “Stage Scheduling: A
Technique to Reduce the Register Requirements of a Modulo
Schedule”, MICRO-28, November 1995.
[20] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero, “Swing
Modulo Scheduling: A Lifetime Sensitive Approach”, in
proceedings of International Conference on Parallel
Architectures and Compilation Techniques, October 1996.
[21] E. Ozer, S. Banerjia, T. Conte, “Unified Assign and
Schedule: A New Approach to Scheduling for Clustered
Register File Microarchitectures”, MICRO-31, November 1998.
[22] M. M. Fernandes, J. Llosa, N. Topham, Distributed
Modulo Scheduling”, in proc. of International Symposium on
High Performance Computer Architecture, January 1999.
[23] J. Sanchez, A. Gonzalez, “Instruction Scheduling for
Clustered VLIW Architectures”, in proceedings of the 13th

International Symposium on System Synthesis, Sept. 2000.

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

