
Placement Driven Retiming with a
Coupled Edge Timing Model

Ingmar Neumann Wolfgang Kunz

University of Frankfurt/Main
Department of Computer Science

Electronic Design Automation Group
60054 Frankfurt/Main, Germany

Abstract
Retiming is a widely investigated technique for performance
optimization. It performs powerful modifications on a circuit
netlist. However, often it is not clear, whether the predicted
performance improvement will still be valid after placement
has been performed. This paper presents a new retiming
algorithm using a highly accurate timing model taking into
account the effect of retiming on capacitive loads of single
wires as well as fanout systems. We propose the integration
of retiming into a timing-driven standard cell placement
environment based on simulated annealing. Retiming is used
as an optimization technique throughout the whole placement
process. The experimental results show the benefit of the
proposed approach. In comparison with the conventional
design flow based on standard FEAS our approach achieved
an improvement in cycle time of up to 34% and 17% on the
average.

1 Introduction
Retiming, originally proposed by Leiserson and Saxe [1][2],
is a powerful and well-known technique for performance
optimization of digital circuits. It is based on relocating
registers while preserving the functionality of the circuit.
Many improvements and extensions to the original ideas have
been developed, like acceleration techniques [3] dramatically
speeding up execution time, concepts for integrating retiming
into logic synthesis [4], algorithms for retiming level clocked
circuits [5][6], algorithms taking register setup and hold times
into account [7][8], algorithms for retiming registers with
enable inputs [9] as well as algorithms that can improve
testability [10].

When optimizing large sequential circuits the use of retiming
is very attractive. Conventional state encoding techniques
suffer from the state explosion problem and usually fail for
circuits containing more than a couple of hundred registers.
Retiming on the other hand, does not require an explicit
representation of the state set. It operates directly on a netlist
description of the circuit and can handle circuits with
thousands of registers.

Nevertheless, retiming has encountered only limited
acceptance in industrial practice. This is mainly for two
reasons. Firstly, a retimed circuit is very hard to verify
against the original circuit. However, in recent years there
have been advances in the area of sequential equivalence
checking for retimed circuits [11], [12]. There is promise that
industrial tools capable of verifying retimed circuits will
become available within the next years. This paper deals with

a second problem affecting the acceptance of retiming in
practice. The choice of an accurate timing model in
combination with an appropriate retiming algorithm is a
delicate issue. With conventional timing models and retiming
techniques it often remains unclear whether the predicted
performance improvement will still be valid after placement
has been performed.

The original FEAS-algorithm developed by Leiserson and
Saxe finds a retiming for a circuit such that a given cycle time
is met if such a retiming exists. It is based on a simple timing
model assuming gate delays to be load independent.
Unfortunately, for CMOS technology this model is not
accurate enough as gate delays cannot be considered to be
load independent and retiming registers changes the loads of
the gates.

In [13]-[15], more sophisticated timing models are used. For
each edge multiple delay values are calculated covering the
two cases that this edge can contain none or at least one
register. This is already a strong improvement over previous
models. However, these models do not correctly describe
situations given at fanout trees, as shown in Fig. 1.

A

B
C A

B

Ca

b
circuit retiming graph

Figure 1: Retiming example

In real circuits, retiming gate C changes the load seen by gate
A and therefore also changes the delay of A. This however,
does not only affect the arrival time at gate C but also at gate
B. In practice, retiming of registers into fanout trees may
change the topology of the affected nets dramatically and can
change arrival times even on paths where no registers have
been moved. Ignoring this effect may lead to unpredictable
results.

The advent of deep-submicron technologies introduced
additional difficulties by increasing the influence of wire
length on the total delay. Loads resulting from wires are
affected by retiming even more than loads resulting from gate
inputs and, above all, are not known before placement.

An interesting approach for integrating retiming into the
design flow was presented in [16]. Retiming is coupled with
partitioning based floor planning allowing performance
optimization during an early physical design stage.

An approach to integrate retiming into detailed placement
was presented in [17]. After performing a conventional

placement and routing procedure an optimization loop
consisting of wire length estimation, retiming and register
insertion is entered. Even though this approach produces
promising results it does not fully exploit the potential of
coupling placement and retiming. Note that a timing-driven
placer aggressively tries to shorten wires on critical paths
while paying less attention to less critical wires. This can lead
to a balance of path lengths reducing the optimization
potential for retiming.

In order to take all of the above into account we propose a
more accurate timing model for retiming and describe a much
tighter coupling between retiming and detailed placement.
Our approach does not use retiming for a post-placement
optimization, but employs it as an optimization technique
throughout the whole placement process.

2 Retiming with Accurate Timing Model
A powerful and efficient retiming algorithm for cycle time
minimization is FEAS [1],[2]. The FEAS-algorithm has many
attractive properties and therefore we wish to adopt the
general FEAS strategy also in this work. However,
combining FEAS with an accurate timing model is a delicate
issue. The difficulty arises from the fact that FEAS is based
on an assumption called path delay monotonicity constraint
in [14]. It is assumed that for any path of the circuit the data
arrival time at a register can never grow if the register is
moved backwards in the circuit. The simple timing model of
the original FEAS always fulfills this assumption.
Unfortunately, this can change if more complex timing
models are used. If we consider the wire loads in gate netlists
being mapped to typical standard cell libraries, it turns out
that in practice the monotonicity assumption holds for two
terminal nets in the vast majority of the cases. However, the
problem occurs at the point where we model situations as
shown in Fig. 1 more realistically. In such cases, the
monotonicity assumption indeed may be violated. There is
also a second problem with multi-sink nets. Even if
monotonicity isn’t violated, the FEAS strategy of retiming a
critical vertex when its arrival time becomes too large will
often lead to suboptimal results. Note that shifting a register
into one branch of a multi terminal net will also affect the
data arrival time on paths leading through the other branches
of that net.

Trying to maintain the efficiency of FEAS on one hand and
using a realistic timing model on the other hand requires a
more sophisticated solution for retiming critical vertices.

Our new retiming algorithm follows the same strategy as the
well known FEAS-algorithm. We perform an alternating
sequence of running timing analysis and eliminating
constraint violations locally by retiming critical vertices.
However, because we use a more complex and accurate
timing model extensive modifications were necessary both of
the arrival time calculation and of the strategy of deciding
when to retime a vertex.

2.1 Timing Model
The circuit is mapped onto a weighted directed graph
G = (V, E). Each logic gate is mapped onto a vertex v, being

assigned a delay td(v) and a retiming value r(v) which initially
is 0 and can be incremented during retiming. The logic gate
corresponding to a vertex v is denoted by g(v) in the
following.

A net driven by gate g(u) with n driven gates, n ≥ 1, is
modeled as a bundle of edges ("branches")
B = {bi} = {(u, vi) ⊆ E, 1 ≤ i ≤ n}. Each edge e = (u, v) ∈ E is
assigned a weight w(e) denoting its initial number of
registers. The number of registers on e during or after
retiming is denoted by wr(e) = w(e) + r(v) - r(u).

Like in [2] G is extended by a hostnode representing the
environment of the circuit.

2.1.1 Single Sink Net Edges

For edges of bundles modeling nets with one single sink our
timing model is similar to the model proposed in [13]. Each
edge e = (u, v) is assigned three delay values as shown in
Fig. 2:

• tw: delay for a signal propagating from u to v in the case
that there is no register on e, i.e., wr(e) = 0

• ti: delay for a signal propagating from u to the data input
of a register on e if there is at least one register on e,
i.e., wr(e) > 0

• to: delay for a signal propagating from the output of a
register on e to v, if wr(e) > 0

u v

tw

u v

ti to

Figure 2: Timing model for single sink net edge

2.1.2 Multi Sink Net Edges

As already mentioned, a net is modeled by a bundle of edges
B = {bi} = {(u, vi) ⊆ E , 1 ≤ i ≤ n}.

In our model, the actual weight wr of an edge bi ∈ B has an
influence on the parameters ti, to, tw of other edges bj ∈ B,
j ≠ i. Therefore, we assign to each edge three tables. Each
table contains different values for ti, to or tw, respectively,
according to distinguishable register arrangements in B. This
allows us to model the fact that retiming one particular gate
will change the arrival time of other gates driven by the same
net.

We have developed two models differing in table size to be
described in the following sections.

2.1.2.1 Complex Model
Let us first consider the situation for the net at the inputs of
the registers. We distinguish for each branch b ∈ B, whether
wr(b) = 0 or wr(b) ≠ 0. By doing so we can model the fact
that driving different combinations of cells leads to different
sums of gate input capacitances and requires nets of different
topologies having different lengths. This leads to different
delay values for a signal starting at v implying different
values for tw and ti for every branch.

For B consisting of n branches we can distinguish 2n different
cases for the calculation of the load that g(u) has to drive. The
tw- and ti- tables consist of key-value pairs, where the key
denotes an identifier for a register arrangement and the value
denotes the corresponding tw- and ti-value, respectively. Since
tw is only defined for branches without registers and ti only
for branches with at least one register, this leads to 2n-1 entries
for the tw- and ti- tables of each branch.

Fig. 3 shows an example with a bundle consisting of two
branches. We can distinguish four different register
arrangements leading to two different values for ti and tw for
each branch. For illustration, in this example, the timing
values are given two indices. The first index denotes the
branch number, the second index denotes its position in the
table.

b0

b1

b0

b1

b0

b1

b0

b1

tw1.0

tw0.0

tw1.1

tw0.1ti0.0

ti1.0 ti1.1

ti0.1

 arrangement: 1 2 3 4

Figure 3: Possible register arrangements for n = 2

For the register arrangements (arr.) in Fig. 3 the tables of
timing values are as follows:

at branch b0: at branch b1:

arr. tw arr. ti arr. tw arr. ti

1 tw0.0 2 ti0.0 1 tw1.0 3 ti1.0

3 tw0.1 4 ti0.1 2 tw1.1 4 ti1.1

For each branch we have a ti- and tw - delay table. Each table
row represents a delay value being valid for a particular
register arrangement. The second column contains the delay
values itself, and the first column contains the number of the
register arrangement for which the delay is valid.

Next, we consider the nets at the outputs of the registers and
analyze the different cases for the values of to. We make the
assumption that a bundle B is realized with a minimal number
of registers (register sharing) when the netlist is created from
the retiming graph, as shown in Fig. 4.

u

v1

v2

wr=2

retiming graph
v3

wr=1

wr=0

g(u)

 new circuit

g(v3) g(v2)

g(v1)

Figure 4: Creating circuit from retiming graph

We believe this assumption to be reasonable because in
typical standard cell libraries latch cells in general have a
much higher area requirement than simple logic cells.
Therefore, if the driving force of a register isn’t sufficient to
drive a long, widely spread net in most cases it will be more
effective to buffer the net and to replicate buffers rather than
to replicate area consuming registers.

Consequently, for the values to of a branch bi ∈ B we need to
distinguish for each branch bj ∈ B, i ≠ j, whether

wr(bi) = wr(bj) or wr(bi) ≠ wr(bj). This models the fact that
under the assumption described above two gates g(vi) and
g(vj) with wr(bi) = wr(bj) are driven by the same register. We
conclude that also for the tables for to we have to distinguish
2n-1 different cases leading to 2n-1 table entries.

2.1.2.2 Simple Model
The complex model permits an accurate modeling of the real
situation but has the drawback of an exponential table growth
making it impossible to use this model for large fanout
systems. Therefore, we developed a second model with linear
growth of the table size.

To reach linear growth, we assume that the values of ti and
the values of tw, respectively, of a particular branch bi ∈ B are
the same for all configurations containing the same number of
branches bj with wr(bj) > 0, bj ∈ B, i ≠ j.

In other words, for the calculation of the delay values of a
particular branch we only care about how many of the other
branches of the bundle carry at least one register and not in
which other branches these registers are located. This ignores
the differences in the input capacitances of different gate
types as well as in the wire loads for the different register
arrangements. However, this inaccuracy diminishes as the
number of branches in a net increases.

Similarly, for the to-values of bi we assume that they are the
same for all configurations containing the same number of
branches bj with wr(bj) = wr(bi), bj ∈ B, i ≠ j.

This limits the size of each table for each branch in a bundle
B to |B|. In our implementation we use the complex model for
bundles with at most four branches. For the circuits examined
in our experiments, it turned out that more than 90% of all
nets can be described using the complex model. For the few
larger nets with more than four sinks we use the simple
model.

2.2 Parameter Calculation
This section explains, how the values of ti, to, tw and td are
determined from a netlist with a given placement.

The delay td(v) of a vertex v denotes the load independent
delay of gate g(v). To calculate the edge delays ti, to, tw we
have to determine the loads seen by gates for different
register arrangements. A particular load consists of the input
capacitances of the driven gates and the capacitance of the net
connecting them. The net lengths are predicted for each
register arrangement using different methods for the simple
and the complex delay model.

2.2.1 Complex Model

In this model, we assume specific register positions for the
estimation of the length of the nets.

For the calculation of the ti and tw values in a branch bundle
B = {bi} = {(u, vi)}, 1≤ i ≤ n, the length l(w) of net w driven
by g(u) is required. To estimate l(w) we determine a
(minimum size) rectangle R0 containing g(u) and those gates
g(v) that are driven by g(u). If no register is present we use

the half perimeter of R0 as l(w). If registers are present we
determine a rectangle R1 containing the gates g(v) that are
driven by a register. If R0 and R1 overlap we assume the
register to be positioned inside R0 and we use the half
perimeter of R0 as l(w). If they don’t overlap we determine a
minimum size rectangle Rr which touches R0 and R1. The
center of Rr gives the assumed location for the register. As
l(w) we use the sum of the half perimeter of R0 and the
quarter perimeter of Rr. Fig. 5 shows the estimation of l(w)
for the register arrangements shown in Fig. 3.

R0

R0

R1

Rr

R0

R1

Rr

Rr

R1

R0

g(u)

g(u)

g(u)

g(u)

Figure 5: Estimation of length l(w) of a net w driven by
g(u) for different cases

For a particular tw and ti respectively we obtain

()

+⋅⋅= ∑

wtoconnectedportsinputs
inw ccplwlt α

and

() setup
wtoconnectedportsinputs

ini tccplwlt +

+⋅⋅= ∑α

where α denotes the driving force of g(u), cpl stands for the
capacitance per length, cin denotes the input capacitance of a
port and tsetup denotes the setup time of the register.

For the calculation of a to value of a branch for a particular
register arrangement the length l(w’) of net w’ driven by a
register is required. For the estimation of l(w’) we determine
a rectangle R0 containing all gates g(v) that are driven by this
register and a rectangle R1 containing g(u) and those gates
g(v) driven by g(u) or by other registers. If R0 and R1 overlap
we assume the register to be positioned inside R0 and we use
the half perimeter of R0 as l(w’). Otherwise, we determine a
minimum size rectangle Rr touching R0 and R1 and use the
center of Rr as assumed location for the register. l(w’) is
calculated using the sum of the half perimeter of R0 and the
quarter perimeter of Rr. For a particular to we obtain

 () reg
wtoconnectedportsinputs

inrego ccplwlt βα +

+⋅⋅= ∑'

where αreg denotes the driving force and βreg the load
independent clock to output delay of the register.

2.2.2 Simple Model

Because in the simple model we care only about how many
branches of a bundle B = {bi} = {(u, vi)}, 1≤ i ≤ n carry a
certain number of registers but not in which branches these
registers are located, we do not determine register positions
for the length estimation. Instead we use a simplified length
estimation method using the half perimeter of the rectangle R
containing g(u) and all g(vi) with (u, vi) ∈ B.

For the calculation of the ti- and tw- values of B the length
l(w) of net w driven by g(u) is required. Our estimation relies
on the observation that the net length grows with increasing
number of gates g(v) driven by g(u). The more gates g(v) are
driven by registers the fewer need to be driven by g(u). For a
register arrangement containing m branches bj with wr(bj) = 0,
0 ≤ m ≤ n, we estimate l(w) as follows:

()
1

1

2

)(perimeter

+
+

⋅=
n

mR
wl

We observed, that in most cases taking the square root gives
more realistic values than a linear model.

For the load capacitance seen by g(u) we obtain

()

<+⋅
=⋅

+=
nmccm

nmcm
cplwlc

regav

av
load *

where cav denotes the average input capacitance of all input
ports driven by g(u) when no registers occur on any branch,
i.e., wr(bi) = 0 for all bi ∈ B. For m < n, at least one gate g(v)
is driven by a register, so g(u) has to drive one register
additionally to the m logic gates, and we have to add the input
capacitance creg of the register. (Remember that we assume
register sharing as described in Section 2.1.2.1.)

For a particular tw and ti we obtain:

loadw ct ⋅= α and setuploadi tct +⋅= α

For determining a particular value of to the length l(w’) of net
w’ driven by the register is required. For a particular branch
bi ∈ B let m’ denote the number of branches bj ∈ B, j ≠ i,
showing the same register count as bi, i.e., wr(bi) = wr(bj). We
calculate l(w’) as follows:

()
1
1'

2
)perimeter(

'
+
+

⋅=
n
mR

wl

The load seen by the register is

() avload cmcplwlc ⋅+⋅= ''

and the corresponding value of to results to

regloadrego ct βα +⋅= .

Note that our algorithm can also be used in the case when no
placement is given, e.g. during logic synthesis. In that case,
wire capacitances are assumed to have zero value.

2.3 Algorithm
Like the FEAS-algorithm, we basically perform an alternating
sequence of calculating arrival times and retiming critical
vertices.

We have already explained, that retiming one particular end
vertex of a branch bundle has an influence on the delay of
paths leading through other end vertices of the same bundle.
We also showed, that our coupled edge timing model enables
us to take this effect into account. Now, we will explain how
to exploit the resulting optimization potential. For this
purpose, we have to extend the basic FEAS-strategy of
retiming critical vertices. To identify feasible register
arrangements in a branch bundle, we have to consider all end
vertices of the bundle at one glance and we have to consider
data arrival times at registers positioned on edges of that
bundle as well as data arrival times at registers positioned on
outgoing edges of end vertices of the bundle. The details are
given in the following subsections.

2.3.1 Arrival Time Calculation

Recall that our timing model from Section 2.1 assigns distinct
delays both to vertices and edges. Consequently, we can
associate different arrival times with a vertex and its outgoing
edge. First, for each edge, we determine ti, to, tw for the actual
situation. The arrival time tar(v) of a vertex v is calculated
from the delay values of the incoming edges ei = (ui ,v) and
the arrival time of the predecessor vertices ui of v as follows:

() () ()
() () ()

=+
>

+=
0

0
max)(

iriwiar

irio
dar ewetut

ewet
vtvt

For an edge e = (u ,v) we define an edge arrival time tear:

() ()
() ()

=++
>

+=
0)(

0
)(

ewvtvtt

ewt
utet

rtrdw

ri
arear

The parameter ttr(u) denotes the time to register for a vertex u
and is calculated as

() ()()jitr etut max= , ej = (u, vj)

using the ti values for the case that wr(ej) > 0. In other words,
for the case that there is a register on e, tear is the signal
arrival time at the input of that register. Otherwise, if no
register is present, tear is the latest arrival time at an assumed
(not necessarily yet present) register on an outgoing edge of
v. This model is motivated by the retiming procedure of the
following subsection. This procedure takes into account that a
previously critical end vertex v1 of a bundle may become
uncritical by retiming another end vertex v2 of the same
bundle. In this case, however, since this effect is of limited
strength, we assume that an immediate successor of v1

remains critical and needs to be retimed.

2.3.2 Retiming Critical Vertices

In contrary to the FEAS-algorithm which inspects each vertex
separately when deciding whether or not to retime it, we
consider all end vertices of a branch bundle

B = {bi} = {(u, vi)} at one glance. If tear(b) ≤ tmax holds for
each edge b ∈ B, then locally no timing constraint is violated.

If at least one edge violates the timing constraint, we try to
find a register arrangement on the edges b ∈ B that is
reachable by backward retiming some vertices vi. If an
appropriate arrangement is found all vertices are marked that
need to be retimed in order to achieve this arrangement. If
more than one arrangement is found we choose one
heuristically as shown in Fig. 6. If no arrangement is found,
then all vertices vi with wr(bi) = 0, bi = (u, vi), are marked.

analyze_nets(tmax) {
 for each branch bundle B = [bi] = [(u,vi)]
 if (tear(b) > tmax for any b ∈ B) {
 find reachable retimings of vertices vi that satisfy
 tear(b) < tmax for each b ∈ B;
 among the candidates requiring a minimum number of vi

 to be retimed, choose the one minimizing
 (tmax – max(tear(b)) and mark all vi that must be retimed;

 if (no candidate is found)
 mark all successors vi with wr(bi)==0;
 }
}

Figure 6: Algorithm analyze_nets()

The basic philosophy of our procedure is to exploit load
coupling between branches in order to extend the number of
feasible retimings in a fanout system. By exploring these
additional possibilities our approach may find a feasible
retiming where the conventional approach fails.

Our modified FEAS-algorithm using the coupled edge timing
model (FEAS_CTM) tries to find a retiming for a given cycle
time tmax, as shown in Fig. 7.

FEAS_CTM(tmax) {
 for (i = 0; i < |E|, i = i+1)
 calculate_arrivaltimes();
 if (checkcycletime(tmax) == true)
 return true;
 analyze_nets(tmax);
 for each (vertex v)
 if (v is marked)
 r(v) = r(v) + 1;
 return false;
}

Figure 7: Algorithm FEAS_CTM()

If no feasible retiming exists the original FEAS-algorithm
needs |V| iterations of its inner loop to detect that. Standard
FEAS tries to satisfy violated timing constraints locally by
retiming a critical vertex u. FEAS_CTM(), however, first
attempts to resolve the violation by retiming one or more
successors vi of u, while u itself eventually may be retimed
during a later iteration. Therefore FEAS_CTM() needs

Evu
Vu

i =∑
∈

)},{(

iterations to test if it can reach a feasible retiming.

The new timing model allows a more precise representation
of a circuit than previous models and consequently allows to
find feasible solutions that cannot be detected using simpler
models. However, because of the coupling between the edges,
our heuristics for selecting vertices for retiming cannot

guarantee that local decisions will always lead to the global
optimum. Hence, compared to standard FEAS we loose an
attractive theoretical property: our algorithm does not
guarantee to find the optimum solution anymore. On the other
hand, it turns out beneficial to sacrifice this theoretical
property. Known approaches are only optimal within their
inexact timing model. In this work, we propose to replace the
accurate FEAS on an inaccurate timing model by an
inaccurate FEAS_CTM on a more accurate timing model. In
fact, it is possible to prove that our new approach always
achieves a smaller or at least the same cycle time compared to
the conventional FEAS. This is based on the following
observation:

If we compare FEAS_CTM to algorithms without edge
coupling, we see that FEAS_CTM attempts to remove a
constraint violation using a more conservative retiming. If we
consider the example shown in Figure 8, we see that without
edge coupling it would not be possible to detect that the
solution shown in the middle is feasible. Consequently, gate
A would be retimed instead of gate C. This solution however,
if needed, can still be produced also by FEAS_CTM in a later
step. Hence we don’t miss anything compared to the
conventional FEAS. If we examine all cases we note that
FEAS_CTM is always more conservative than FEAS and
explores a solution space that contains the solution space of
FEAS. Along these lines it is possible to prove that if FEAS
or the Bellman-Ford-algorithm using the Soyata-Friedman
model reach a particular cycle time FEAS_CTM at least
reaches the same cycle time.

A

critical

without
edge coupling

with edge
coupling

critical

critical C

B

D

C

B

D

A

B

A

C

D

Figure 8: Retiming with and without edge coupling

2.4 Overview
The core of our approach is a timing driven
simulated annealing-based standard cell placement algorithm
following the philosophy of common placement tools such as
[18]. Figure 9 gives an overview of the placement procedure
at a particular temperature level. First, a static timing analysis
is performed. For this analysis wire length estimations
obtained from the actual placement are used. If timing
constraints are already met we continue with the placement
process immediately. Theoretically it would be possible to
halt the placement process if timing constraints are already
met at the beginning. However, continuing with the
placement process in general makes sense because a further
reduction of total wire length often can lead to a more
compact solution. If timing constraints are not met at this
point a retiming based optimization step is performed.
Afterwards, the newly created registers are inserted into the
placement using a fast placement approach. Then, wire
lengths are re-estimated and the cycle time is calculated
again. If constraints are met now, or at least an improvement
has been achieved, the new configuration is accepted,

otherwise all modifications of the netlist structure and the
placement will be rejected. Afterwards, net weights are
recalculated and the placer begins another iteration.

timing analysis

retiming

placement step

net weighting

constraints met or improvement achieved?

reject
modifications
of netlist and

placement

register placement

decrease temperature

timing constraints met?

timing analysis

n

n y

y

 Figure 9: Placement at a particular temperature level

2.5 Aborting Retiming
In our experiments we observed that in those cases where
FEAS_CTM has been able to identify a feasible retiming it
always needed only a very small number of iterations (<<|E|)
of its inner loop. The same observation was made by Shenoy
and Rudell [3] for the original FEAS-algorithm. Therefore,
we limited the number of trials to |E|0.5 to save computation
time.

2.6 Register Placement
In general, a simulated annealing-based placer will be able to
find good positions for the newly created registers,
independent from their initial position. But this process will
take a lot of time if registers are inserted randomly, making it
impossible to verify immediately after register insertion
whether or not a cycle time improvement has been really
achieved.

Furthermore, it will save a lot of work for the placer, if those
registers are inserted at “reasonable” locations, especially at
low temperatures, when cells aren’t allowed to make large
jumps.

Therefore, we use a separate register insertion step to provide
the timing analyzer quickly with realistic assumptions about
the wire lengths after retiming has been performed. For each
new register a position is determined such that the sum of the
lengths of the nets connected to this register is minimized. In
many situations, the result will not be a particular vertex, but
a target area of rectangular shape. In the latter case, we look
for the most suitable cell gap inside this area and position the
register there. This helps to keep the modifications of the
original placement as small as possible. If the gap isn’t large
enough, neighbor cells are pushed aside first. By doing so it is
always guaranteed that no cell overlapping occurs. At this
point, no further work is done to reuse gaps left by deleted
registers. No work is done either to balance the total row
length, because these tasks are performed by the
simulated annealing placer later. An example of inserting a
single additional register is shown in Fig. 10.

new register

target
area for
center of
register

shifted

Figure 10: Single register placement example

3 Experimental Results
For the evaluation of the benefit of our new timing model and
a tight integration of timing-driven placement and retiming a
comparison of three different design flows is of interest:

• A conventional design flow consisting of retiming a logic
netlist, followed by timing-driven placement

• A design flow as in [17] consisting of timing-driven
placement, followed by retiming using the delay values
calculated from the final placement. After performing a
register insertion step as described Section 2.6, additionally
some placement steps at very low temperatures are
performed to achieve uniform row lengths again.

• A tight integration of retiming and placement as described
in this paper.

For our experiments we mapped the larger circuits of the
ISCAS-89 benchmark set onto a 0.18 µm standard cell
library. The results are shown in Table 1. Column 2 contains
the achieved cycle time for a timing-driven placement
approach without any application of retiming. Then, for each
of the previously described design flows using retiming, the
achieved cycle time (c.t.) in nanoseconds and the final
number of registers (#FF) are shown. Columns 3 and 4
contain results for pre-placement retiming, columns 5 and 6
contain results for post-placement retiming, and columns 7
and 8 show the results for the approach presented in this
paper. The wire length values used for cycle time calculation
have been estimated using the half perimeter bounding box
method commonly used in placement tools.

none pre-
placement

post-
placement

tight
integrationcircuit

c.t. c.t. #FF c.t. #FF c.t. #FF
S1423 12.4 10.6 113 10.3 111 9.48 111
S1488 4.39 4.15 42 3.83 21 3.25 13
S1494 4.46 3.77 39 4.01 22 3.18 12
S5387 3.95 4.12 319 3.94 164 3.90 164
S9234 10.2 7.29 447 7.24 228 6.40 451
S9234.1 10.3 8.04 425 7.70 211 7.31 438
S13207 10.0 8.42 862 9.81 669 7.39 872
S13207.1 10.5 9.68 640 9.38 641 9.35 641
S15850 15.3 11.3 960 14.5 597 8.21 1088
S15850.1 14.8 12.8 587 11.4 586 10.7 605
S35932 10.6 10.4 1728 10.6 1728 8.34 2659
S38584 17.0 17.6 3205 16.2 1452 14.6 1452
S38584.1 14.1 15.3 3413 13.4 1426 12.9 1428
S38417 15.2 12.1 2213 10.7 2193 10.4 2171

Table 1: Cycle time and register counts for FEAS_CTM

For comparison, the results obtained by using a standard
FEAS algorithm are shown in Table 2.

pre-
placement

Post-
placement

tight
integrationcircuit

c.t. #FF c.t. #FF c.t. #FF
S1423 10.6 113 10.7 112 10.6 114
S1488 4.53 7 4.39 6 4.30 6
S1494 4.53 7 4.46 6 4.45 6
S5387 4.37 325 3.95 179 3.85 348
S9234 7.31 268 7.08 249 6.26 462
S9234.1 7.34 269 7.66 242 7.36 553
S13207 9.31 950 10.0 669 8.30 943
S13207.1 9.79 640 9.38 641 9.18 641
S15850 12.5 962 15.3 597 12.6 3355
S15850.1 13.4 586 11.4 610 10.3 659
S35932 10.4 2826 10.5 2193 8.98 2841
S38584 19.0 3379 17.0 1452 16.2 3330
S38584.1 13.0 1428 13.4 1428 12.8 1429
S38417 12.5 2006 10.7 2193 10.2 2479

Table 2: Results for standard FEAS

The experimental results show that in most cases the use of
retiming only before placement achieved the smallest
performance improvement of all strategies. In a few cases
cycle time was even larger after placement. If retiming was
applied after placement we achieved somewhat better results,
and in no case there was an increase of cycle time. However,
this approach was outperformed by our new approach using
tight integration, which produced equal or better results for
each benchmark. Using standard FEAS instead of
FEAS_CTM produced similar results but clearly achieved
smaller improvements. Table 3 gives a summarizing
overview of the approaches by comparing the achieved
improvements in cycle time. We note that both, the coupled
edge time model and the integration of retiming into
placement substantially contribute to the quality of our
results.

pre-placement
retiming

post-placement
retiming

tight
integration

FEAS FEAS
CTM

FEAS FEAS
CTM

FEAS FEAS
CTM

min -11.8% -8.5% 0% 0.25% 0.02% 1.2%
max 28.7% 28.5% 31.2% 29.6% 38.6% 46.3%
average 6.7% 11.0% 9.98% 12.2% 15.9% 23.7%

Table 3: Achieved cycle time improvements

Table 4 contains the CPU run times in seconds on a Sun Ultra
Sparc 5 Workstation for a conventional timing-driven
placement without retiming and for a tight integration of
placement and retiming with FEAS_CTM. The results show
that the increase in run time caused by integrating retiming is
moderate. Despite the fact, that retiming is performed
numerous times, the overall run time of our approach is still
dominated by the simulated annealing-based placer core.

circuit placem.
only

tight
integration

circuit placem.
only

Tight
integration

S1423 100 162 S13207.1 5747 7841
S1488 115 174 S15850 7073 12134
S1494 115 211 S15850.1 7665 8233
S5387 1066 1536 S35932 29107 40948
S9234 3227 3854 S38584 22249 26253
S9234.1 3148 4234 S38584.1 21518 30393
S13207 5464 8265 S38417 37614 43566

Table 4: CPU runtimes

Finally, we observe that it is indeed of great interest to
investigate accurate timing models for retiming as well as the
integration of retiming into placement. In comparison with
the conventional design flow (pre-placement standard FEAS,
followed by timing driven placement) our new approach
(tight coupling of FEAS_CTM and placement) achieved an
improvement in cycle time of up to 34% and 17% on the
average.

4 Conclusion
A new retiming algorithm has been developed using a highly
accurate timing model. This allows us to model timing at
fanout trees correctly. In general, our approach pursues the
same basic retiming strategy as the conventional FEAS-
algorithm leading to low complexity of the overall procedure.
However, a more detailed local analysis at fanout systems
improves the accuracy of the timing data being available and
makes it possible to identify better register locations than in
previous approaches. Furthermore, we present an approach
for integrating retiming into the physical design process.
Instead of using retiming as a pre- or a post-placement
optimization method, it is applied as a cycle time
improvement technique throughout the whole placement
process. The experimental results show that our integrated
approach exploits the optimization potential of retiming and
placement significantly better than applying retiming only
before or after placement.

5 References
[1] Leiserson C., Saxe B., “Optimizing Synchronous

Systems”, Journal of VLSI and Computers Systems, pp.
41-67, 1983.

[2] Leiserson C., Saxe B., “Retiming Synchronous
Circuitry”, pp.5-35, Algorithmica 6(1) 1991.

[3] Shenoy N., Rudell R., “Efficient Implementation of
Retiming”, Proc. ICCAD-94, pp. 226-233, 1994

[4] Malik S. et al., “Retiming and Resynthesis: Optimizing
Sequential Networks with Combinational Techniques”,
IEEE Transactions on CAD, vol. 10, no. 1, pp. 74-84,
1991

[5] Lockyear B., Ebeling C., “Optimal retiming of level-
clocked circuits using symmetric clock schedules”, IEEE
Transactions on CAD, vol. 13, no. 9, pp. 1097-1109
1994.

[6] Ishii A., Leiserson C., Papaefthymiou M., “Optimizing
two-phase, level-clocked circuitry”, Advanced Research
in VLSI and Parallel Systems, Proc. of the 1992
Brown/MIT Conference, pp. 246-264, 1992

[7] Papaefthymiou M., “Asymptotically Efficient Retiming
Under Setup and Hold Constraints”, Proc. ICCAD-98
pp.288-295, 1998

[8] Sundararajan V., Sapatnekar S., Parhi K., “MARSH:
Min-Area Retiming with Setup and Hold Constraints”,
Proc. ICCAD-99, pp. 2-13, 1999

[9] Eckl K., Madre J., Zepter P., Legl C., “A Practical
Approach to Multiple-Class Retiming”, Proc. DAC-99,
pp. 237-242, 1999

[10] El-Maleh A., Marchok T., Rajski J., Maly W., “Behavior
and Testability Preservation Under the Retiming
Transformation”, IEEE Transactions on CAD, vol. 16.,
no. 5, pp. 528-542, 1997

[11] Stoffel D., Kunz W., "Record & Play: A Structural
Fixed Point Iteration for Sequential Circuit
Verification", Proc. ICCAD-97, pp. 394-399, 1997.

[12] van Eijk C., “Sequential Equivalence Checking without
State Space Traversal, Proc. DATE-98 pp. 618-623,
1998

[13] Soyata T., Friedman E., “Retiming with Non-Zero Clock
Skew, Variable Register, and Interconnect Delay”, Proc.
ICCAD-94, pp. 234-241, 1994

[14] Soyata T., Friedman E., Mulligan J., “Incorporating
Interconnect, Register, and Clock Distribution Delays
into the Retiming Process”, IEEE Transactions on CAD,
vol. 16, no. 1, pp.105-120, 1997

[15] Lalgudi K., Papaefthymiou M., “DELAY: An Efficient
Tool for Retiming with Realistic Delay Modeling”, Proc.
DAC-95, pp. 304-309, 1995

[16] Cong J., Lim S.K., “Physical Planning with Retiming”,
Proc. ICCAD-2000, pp. 2-7, 2000

[17] Tien T. et al., “Integrating Logic Retiming and Register
Placement”, Proc. ICCAD-98, pp. 136-139, 1998

[18] Sechen C., “VLSI Placement and Global Routing using
Simulated Annealing”, Kluwer Academic Publishers,
1988

	Main
	ICCAD01
	Front Matter
	Table of Contents
	Author Index

