
 1

Retargetable Compilation for Low Power

Wen-Tsong Shiue

Silicon Metrics Corporation
12710 Research Blvd. Suite 300

Austin, TX 78759
Phone: 1-(512)-651-1503

Email: shiue@siliconmetrics.com

ABSTRACT
Most research to date on energy minimization in DSP processors
has focuses on hardware solution. This paper examines the
software-based factors affecting performance and energy
consumption for architecture-aware compilation. In this paper, we
focus on providing support for one architectural feature of DSPs
that makes code generation difficult, namely the use of multiple
data memory banks. This feature increases memory bandwidth by
permitting multiple data memory accesses to occur in parallel
when the referenced variables belong to different data memory
banks and the registers involved conform to a strict set of
conditions. We present novel instruction scheduling algorithms
that attempt to maximize the performance, minimize the energy,
and therefore, maximize the benefit of this architectural feature.
Experimental results demonstrate that our algorithms generate high
performance, low energy codes for the DPS architectural features
with multiple data memory banks. Our algorithm led to
improvements in performance and energy consumption of 48.3%
and 66.6% respectively in our benchmark examples.

Keywords
Architecture-aware compiler design, high performance and
low power design, instruction scheduling, register
allocation.

1. INTRODUCTION
Currently, there is a high demand for DSP processors with low
power/energy in many areas such as telecommunications,
information technology and automotive industries. This demand
stems from the fact that low power consumption is important for
reliability and low cost production as well as device portability and
miniaturization.

In the last decade we have seen the proliferation of electronic
equipment like never before. As these systems are becoming
increasing portable, the minimization of power consumption has
become an important criterion in system design. In order to design
a system with low energy and high performance, it is important to
analyze all the components of the system platform. Since a large
portion of the functionality of today’s system is in the form of
software, it is important to estimate and minimize the software
component of the energy cost and maximizes the software
component of the performance cost [1][2].

Although dedicated hardware can provide significant speed and
power consumption advantages for signal processing applications,
extensive programmability is becoming an increasingly desirable
feature of implementation platforms for VLSI signal processing.
Increasingly shorter life cycles for consumer products have fueled
the trend toward tighter time-to-market windows, which in turn,

caused intense competition among DSP product vendors and
forced the rapid evolution of embedded technology. As a
consequence of these effects, designers are often forced to begin
architecture design and system implementation before the
specification of a product is fully completed. For example, a
portable communication product is often designed before the signal
transmission standards under which it will operate are finalized, or
before the full range of standards that will be supported by the
product is agree upon. In such an environment, late changes in the
design cycle are mandatory. The need to quickly make such late
changes requires the use of software.

Although the flexibility offered by software is critical in DSP
applications, the implementation of production quality DSP
software is an extremely complex task. The complexity arises from
the diversity of critical constraints that must be satisfied. Typically
these constraints involve stringent requirements on metrics such as
latency, throughput, power consumption, code size, and data
storage requirements [3].

DSPs are a special kind of processor that is primarily designed to
implement signal-processing algorithms efficiently. Code
generation for DSP is more involved than general-purpose
processors. This is because DSP processors have non-
homogeneous register sets, a number of specialized functional
units, restricted connectivity, limited addressing, and highly
irregular datapaths. It is a well-known fact that the quality of
compilers for embedded DSP systems are generally unacceptable
with respect to code density, performance, and power
consumption. This is because the compilation techniques for
general-purpose architectures being used do not adapt well to the
irregularity of DSP architectures.

We address the problem of code generation for DSP systems on a
chip. In such systems, the amount of silicon devoted to program
ROM is limited, so the application software must be sufficiently
dense. In addition, the software must be written to meet various
high-performance and low energy constraints. Unfortunately,
current compiler technologies are unable to generate high-quality
code for DSPs, whose architectures are highly irregular. Thus,
designers often resort to programming application software in
assembly – a labor-intensive task.

In this paper, we present a novel instruction scheduling for one
particular architectural feature, namely multiple data memory
banks. This feature, increases memory bandwidth by permitting
multiple data memory accesses to occur in parallel. This happens
when the referenced variables belong to different banks and the
register involved conforms to a strict set of conditions.
Furthermore, the instruction set architecture (ISA) of these DSPs
require the programmer to encode in a limited number of long
instruction words, all the data memory accesses that are to be
performed in parallel, thus assisting in the generation of dense
code.

Instruction scheduling techniques that use a listed-based method
has been around since the mid-1980s [4], and it is the most popular
method of scheduling basic blocks. Trace scheduling is an
optimization technique that selects a sequence of basic blocks as a
trace, and schedules the operations from the trace together [5].
Percolation scheduling [6] looks at the whole program and tries to
improve the parallelism of the code. The idea that register
allocation can be viewed as a graph-coloring problem has been
around since early 1970s, but Chaitin et. al. [7] were the first to
actually implement it in a compiler. Briggs [8] came up with some
modifications to Chaitin-style allocation, the most important idea
being the optimization of variable selection for register spilling.

Most of the previous work on reducing power and energy
consumption in DSP processors has focused on hardware solutions
to the problem. However, embedded systems designers frequently
have no control over the hardware aspects of the pre-designed
processors with which they work and so, software-based power
and/or energy minimization techniques play a useful role in
meeting design constraints. Recently, new research directions in
reducing power consumptions have begun to address the issues of
arranging software at instruction-level to help reduce power
consumption [10][11]. Previous improvements with software re-
arrangements include the value locality of registers [10] and the
swapping of operands for booth multiplier [11]. This new direction
brings an interesting issue in the compiler participation in software
re-arrangements for reducing power consumption for applications
and systems.

The rest of the paper is organized as follows. Section 2 describes
the DSP architectural features with multiple data memory banks.
Section 3 describes the novel algorithms of instruction scheduling
to reduce the number of cycles and the register pressure. Section 4
describes the examples that illustrate our algorithms. Section 5
describes the benchmark results. Section 6 concludes the paper.

2. DSP ARCHITECTURAL FEATURES
WITH MULTIPLE DATA MEMORY
BANKS

Our approach for increasing the packing efficiency has been tested
on DSP architectural features with multiple data memory banks,
which can be characterized as Dual-Load-Execute (DLE)
architectures. Examples of DLE processors include Analog
Devices’ ADSP21xx family, NEC’s u7701x family, Motorola,
56xxx family, and Fujitsu’s Elixir family. These processors
support parallel execution of an ALU operation and two data move
(data load or data store) operations in the same cycle.

2.1 DSP Architectures
The DSP architectural units of interest are the data arithmetic logic
unit (Data ALU), addressing generation unit (AGU) and X/Y data
memory banks [9]. The unit of Data ALU contains hardware
specialized for performing fast multiply-accumulate operations
(MAC). The data ALU consists of FOUR 24-bit input registers
named X0, X1, Y0, and Y1, and TWO 56-bit accumulators named
A and B. The resource operands for all ALU operations must be
input registers or accumulators, and the destination operand must
always be an accumulator. TWO 24-bit buses named XDB and
YDB permit two input registers or accumulators to be read or

written in conjunction with the execution of an ALU operation. As
a result, three operations may be executed simultaneously in one
instruction cycle. The Address Generation Unit (AGU) contains
TWO sets of 16-bit register files, one consisting of address
registers R0, R1, R2, and R3 and offset registers N0, N1, N2, and
N3, and the other consisting of address registers R4, R5, R6, and
R7 and offset registers N4, N5, N6, and N7. The unit of X/Y Data
Memory Banks contains two 512 words x 24 bits memory banks
which allow a total of two data memory accesses to occur in
parallel.

2.2 Instruction Set Architecture (ISA)
The ISA of above DSPs assists in the generation of dense, high-
bandwidth code by requiring the programmer to encode all
operations that are to execute in parallel during each instruction
cycle in either one or two 24-bit instruction words. Specifically, up
to two move operations and one Data ALU operation may be
encoded in these words. A move in this case refers to a memory
access (load or store), register transfer (moving of data from an
input registers to an accumulator, or vice versa), or immediate load
(loading of a 24-bit constant into an input register or accumulator).
However, due to the nature of the M56000 micro-architecture, only
the following pairs of move operations may be performed in
parallel: (i) two memory accesses, (ii) a memory access and
register transfer, and (iii) a register transfer and a load immediate.

Consider the following parallel move specification that
simultaneously (i) loads a datum into X1 from the X memory bank
at the address stored in R0 and (ii) loads a datum into Y1 from the
Y memory bank at the address stored in R4. {MOVE X: (R0), X1
Y: (R4), Y1}.

3. INSTRUCTION SCHEDULING
Our instruction-scheduling algorithm based on list scheduling
directly supports packing, because the above DSP supports
simultaneous execution of multiple operations. Packing is efficient
in terms of performance, because it always leads to a reduction in
the cycle time of programs. Another important feature of packing
is that it also tends to reduce the amount of energy consumed
during program execution. In practice, packing has the potential to
reduce energy consumption by more than half.

3.1 Instruction Level Energy Model
The average power P consumed by a processor while running a
certain program is given by P = I*Vdd, where I is the average
current and Vdd is the supply voltage. The energy consumed by a
program, E, is given by E = P*T, where T is the execution time of
the program. This, in turn, is given by T = N*delta, where N is the
number of cycles and delta is the cycle period. Since a common
application DSP embedded system is often in the portable space
where power is stored in a battery, energy consumption is the focus
of our attention. Now, Vdd and delta are known and fixed.
Therefore, E is proportional to the product of I and N. Given the
number of execution cycles, N, for a program, we only need to
measure the average current, I, in order to calculate E. The product
of I and N is, therefore, the measure used to compare the energy
cost of programs in this analysis. The energy model as taken from

[2], is based on measuring the current consumed by individual
instructions using an oscilloscope and estimating the energy
consumed by a block of software through the calculation of a
weighed sum.

3.2 Reduce the Register Pressure during the
Scheduling Stage

List scheduling might give good results in terms of reducing the
number of cycles required for execution, but it cannot guarantee an
optimal scheduling of the code. If the required number of registers
is very high, then register spills may decrease the performance of
the final code. In addition to the notion of priority, our data
dependence graph (DDG) also includes the lifetime of each
variable so that register pressure can also be reduced in the
scheduling.

4. EXAMPLES AND ALGORITHMS
4.1 Example One
Consider the C and corresponding uncompacted symbolic
assembly code shown in Figure 1(a) and Figure 1(b). Figure 1(c)
shows the DDG with two weighting factors on each node. The first
weighting factor in the tuple is the value of depth, which is counted
from the bottom node for each branch. The node with a higher
value has higher priority. For instance, nodes V0 and V1 have the
highest priority to be selected in the ready set shown in Figure 3.

a=b+c;
d=(e+f)*a;

(a)

MOVE b, r0 -- V0
MOVE c, r1 -- V1
ADD r0,r1 -- V2
MOVE r1,a -- V3
MOVE e, r2 -- V4
MOVE f, r3 -- V5
ADD r2,r3 -- V6
MOVE r3,r4 -- V7
MOVE a, r5 -- V8
MPY r4,r5,r6 -- V9
MOVE r6,d -- V10

(b) (c)
Figure 1. (a) C code, (b) uncompacted assembly code, and (c)
DDG with tuple of (depth,lifetime) on the node.

Note that the boldface nodes in the ready set are ALU operations
such as ADD and MPY. One ALU can be executed with one or
two MOVE operation in the same cycle. Two ALU operation
nodes, though, cannot be allowed to execute in the same cycle. The
second weighting factor in the tuple is the lifetime of the register
variables. For instance, node V0 is dependent upon register r0 that
is alive during cycles 1 through 3 (see Figure 2); thus, the interval
live time is 3-1 = 2. In Figure 2, the initial code is executed in 11
cycles and the number of registers required is 2 using the lifetime

analysis. Next, we construct the ready set based on the as-soon-as-
possible (ASAP) scheduling scheme for each node. The total
cycles are now 6 cycles for the unscheduled nodes in ready set.

Figure 4 shows the nodes have been scheduled based on our
algorithm to exploit the DSP architecture. The number of registers
is 3. Note that the number of cycles and the number of registers
have the tradeoff relationship. It is cost efficient to reduce the
cycles instead of increasing the number of registers. However, for
DSP processors, the number of registers are limited, so we need to
develop the best scheduling algorithm to minimize the number of
registers (i.e. reduce the register pressure) during the scheduling
process. Figure 5 shows that for the random choice, the number of
cycles is 7 and the number of registers is 4. This demonstrates that
the algorithm developed is very important at this stage.

Cycle Instruction
nodes

Registers
and data

Live time Analysis

1 V0 b,r0
2 V1 c,r1
3 V2 r0,r1
4 V3 r1,a
5 V4 e,r2
6 V5 f,r3
7 V6 r2,r3
8 V7 r3,r4
9 V8 a,r5
10 V9 r4,r5,r6
11 V10 r6,d

r0 r1 r2 r3 r4 r5 r6

Need 2 registers

Figure 2. Before scheduling. (Need 11 cycles and 2 registers)

Cycle Instruction nodes

1 V0, V1, V4, V5
2 V2, V6
3 V3, V7
4 V8
5 V9
6 V10

Figure 3. Unscheduled nodes in ready set. (Boldface nodes are
ALU operations).

We borrowed the energy model from [2] to count the energy
consumption. In Figure 4, total current, I, is 780mA and total
cycles, N, are 6. So, the energy cost is I*N = 780*6 = 4,680. In
Figure 5, the scheduling based on random choice has an energy
cost of I*N=850*7=5,950.

Before scheduling, in Figure 1, the total current is 1080mA and the
number of cycles is 11. So, the energy cost is I*N= 11,880. After
scheduling, Figure 4, based on our algorithm, the number of cycles
is reduced from 11 to 6 (45% reduction in cycles) and the energy
cost is reduced from 11,880 to 4,680 (60% reduction in energy
consumption). This demonstrates that our scheduling algorithm has
made a high performance, low energy code generation with
minimum register pressure for the DSP processors.

 V0 V1

 V2

 V3

 V8

 V9

 V10

 V4 V5

 V6

 V7

(1,0)

(2,1)

(3,1)

(3,2)

(4,1)

(5,2) (5,2) (6,2) (6,2)

(4,5)

(5,1)

Cycle Instruction nodes Live time Analysis

1 V0, V1
(b,r0) (c,r1)

2 V2, V4, V5
(r0,r1) (e,r2) (f,r3)

3 V3, V6
(r1,a) (r2,r3)

4 V7, V8
(r3,r4) (a,r5)

5 V9
(r4,r5,r6)

6 V10
(r6,d)

 r0 r1 r2 r3 r4 r5 r6

Need 3 registers

Final Code
MOVE b,r0 c,r1 -- 120mA
ADD r0,r1 e,r2 f,r3 -- 150mA
ADD r2,r3 r1,a -- 140mA
MOVE r3,r4 a,r5 -- 120mA
MPY r4,r5,r6 -- 160mA
MOVE r6,d -- 90mA

Figure 4. After scheduling based on our scheduling algorithm.
(Need 6 cycles and 3 registers).

Cycle Instruction nodes Live time Analysis

1 V0, V4
(b,r0) (e,r2)

2 V1, V5
(c,r1) (f,r3)

3 V2,
(r0,r1)

4 V3, V6
(r1,a) (r2,r3)

5 V8 V7
(a,r5) (r3,r4)

6 V9
(r4,r5,r6)

7 V10
(r6,d)

r0 r1 r2 r3 r4 r5 r6

Need 4 registers

Final Code
MOVE b,r0 e,r2 -- 120mA
MOVE c,r1 f,r3 -- 120mA
ADD r0,r1 -- 100mA
ADD r2,r3 r1,a -- 140mA
MOVE r3,r4 a,r5 -- 120mA
MPY r4,r5,r6 -- 160mA
MOVE r6,d -- 90mA

Figure 5. After scheduling based on RANDOM choice. (Need 7
cycles and 4 registers).

4.2 Example Two
Again, consider the C and corresponding uncompacted symbolic
assembly code shown in Figure 6(a) and Figure 6(b). Figure 6(c)
shows the DDG with two weighting factors on each node.

v=a*b+c;
w=d*e+f;

(a)

MOVE a, r0 -- V0
MOVE b, r1 -- V1
MOVE c, r2 -- V2
MAC r0,r1,r2 -- V3
MOVE r2,v -- V4
MOVE d, r3 -- V5
MOVE e, r4 -- V6
MOVE f, r5 -- V7
MAC r3,r4,r5 -- V8
MOVE r5,w -- V9

(b) (c)
Figure 6. (a) C code, (b) uncompacted assembly code, and (c)
DDG with tuple of (depth,lifetime) on the node.

Cycle Instruction nodes Live time Analysis

1 V0, V5
(a,r0) (d,r3)

2 V1, V2,
(b,r1) (c,r2)

3 V3, V6 V7
(r0,r1,r2)(e,r4)(f,r5)

4 V4, V8
(r2,v) (r3,r4,r5)

5 V9
(r5,w)

r0 r1 r2 r3 r4 r5

Need 4 registers

Final Code
MOVE a,r0 d,r3 -- 120mA
MOVE b,r1 c,r2 -- 120mA
MAC r0,r1,r2 e,r4 f,r5 -- 180mA
MAC r3,r4,r5 r2,v -- 170mA
MOVE r5,w -- 90mA

Figure 7. After scheduling based on our scheduling algorithm.
(Need 5 cycles and 4 registers).

Our algorithm focuses on reducing the number of cycles and the
register pressure at the same cycle. This helps to do register
labeling in the next stage. Besides that, due to the code
compaction, the number of cycles is minimized and further results
in the reduction of the energy consumption.

Before scheduling, in Figure 6, the total current is 1040mA and the
number of cycles is 10, giving an energy cost of I*N= 10,400.
After scheduling, in Figure 7, based on our algorithm, the number
of cycles is reduced from 10 to 5 (50% reduction in cycles) and the
energy cost is reduced from 10,400 to 3,400 (67.3% reduction in
energy consumption). The number of registers is only 4. If random
choice, the number of cycles is increased from 5 to 6 and the
number of registers is increased from 4 to 6 (see Figure 8). This
implies that it degrades the performance and increases the energy
consumption. Furthermore, it needs more registers. In Figure 7,
total current, I, is 680mA and total cycles, N, are 5. So, the energy

 V0 V1

 V3

 V4

 V2

(3,2) (3,3) (3,2)

(1,0)

(2,1)

 V5 V6

 V8

 V9

 V7

(3,2) (3,3) (3,2)

(1,0)

(2,1)

cost is I*N = 680*5 = 3,400. In Figure 8, the scheduling based on
random choice has an energy cost of I*N=780*6=4,680.

Cycle

Instruction nodes Live time Analysis

1 V1, V2
(b,r1) (c,r2)

2 V6, V7,
(e,r4) (f,r5)

3 V0, V5
(a,r0) (d,r3)

4 V3
(r0,r1,r2)

5 V4, V8
(r2,v) (r3,r4,r5)

6 V9
(r5,w)

r0 r1 r2 r3 r4 r5

 Need 6 registers

Final Code
MOVE b,r1 c,r2 -- 120mA
MOVE e,r4 f,r5 -- 120mA
MOVE a,r0 d,r3 -- 120mA
MAC r0,r1,r2 -- 160mA
MAC r3,r4,r5 r2,v -- 170mA
MOVE r5,w -- 90mA

Figure 8. After scheduling based on RANDOM choice. (Need 6
cycles and 6 registers).

4.3 Our Algorithms
Our algorithm is based on the list scheduling but the priority
should be modified not only reduce the number of cycles (i.e.
improve the performance) but also minimize register pressure. The
following is our algorithm.

Algorithm
1. Construct the Data Dependence Graph (DDG).
2. Make the Tuple (P,L), where P is the depth value of the node,

and L is the lifetime of the node.
3. Find the initial ready set R (List Scheduling)
4. While ~isempty(R) do

• The node with larger value of P has the higher priority.
(reducing the number of cycles and energy cost)

• If tie in value of P:
• If there are pairs of nodes

• The pair of nodes having the same lifetime
value, L, has higher priority. (reducing the
register pressure)

• else
• the node with lower lifetime value has higher

priority. (reducing the register pressure)
• If tie in values of P and L

• The pair of nodes located in the same branch,
has the higher priority. (reducing the energy
cost). Note that the ALU nodes can be parallel
processed with the other one or two MOVEs

Before running the algorithm, we need to construct the data
dependence graph (DDG) with nodes and calculate the depth value
and lifetime value for each node. Next, the list scheduling starts to

come to play. Before that, we need to construct the initial ready set
R.

Our algorithm considering the first priority is the value of depth,
the first weighting factor in tuple. If there are nodes in the same
cycle of ready set, the node with higher depth value has higher
priority. This ensures that the number of cycles is minimized.
Remind that the number of cycles is the function of the energy
cost. This helps reduce energy cost a lot.

Besides that the concept of reducing the number of cycle, the other
important issue is how to reduce the number of registers. This is
because the number of registers in DSP processor is limited.
Hence, the next priority is to consider the second weighting factor
in tuple. If the nodes have the same depth values, the pair of nodes
having the same lifetime has higher priority. Otherwise, the node
with lower lifetime value has higher priority. This is to reduce the
number of overlap lifetimes among the nodes and hence reduce the
number of registers.

If the nodes have the same depth values and the same lifetime
values, the nodes in the same tree have the higher priority. This is
to increase the chance of locating the ALU nodes with the MOVE
nodes in the same cycle. Note that the ALU nodes can be parallel
processed with the other one or two MOVEs. This helps reduce the
value of current. For example, ADD with 2 parallel MOVEs only
consumes the current of 150mA but the ADD with 2 serial
MOVEs consumes the current of 280mA.

5. BENCHMARK RESULTS
In our benchmark results, the performance is improved in average
48.3% and the energy consumption is saved in average 66.6% (see
Figure 9). Figure 9 shows the unscheduled assembly codes,
scheduled assembly codes, and the total required current, the
number of cycles, and the energy cost for both codes.

Example 1: {a=b+c; d=(e+f)*a;}

Unscheduled Assembly Codes Scheduled Assembly Codes
MOVE b, r0 -- 90mA
MOVE c, r1 -- 90mA
ADD r0,r1 -- 100mA
MOVE r1,a -- 90mA
MOVE e, r2 -- 90mA
MOVE f, r3 -- 90mA
ADD r2,r3 -- 100mA
MOVE r3,r4 -- 90mA
MOVE a, r5 -- 90mA
MPY r4,r5,r6 --160mA
MOVE r6,d -- 90mA

Total Current: 1,080mA
Total Cycles: 11 cycles
Energy Cost: 11,880

MOVE b,r0 c,r1 -- 120mA
ADD r0,r1 e,r2 f,r3 -- 150mA
ADD r2,r3 r1,a -- 140mA
MOVE r3,r4 a,r5 -- 120mA
MPY r4,r5,r6 -- 160mA
MOVE r6,d -- 90mA

Total Current: 780mA
Total Cycles: 6 cycles
Energy Cost: 4,680

Example 2: {v=a*b+c; w=d*e+f;}
Unscheduled Assembly Codes Scheduled Assembly Codes

MOVE a, r0 --90mA
MOVE b, r1 --90mA
MOVE c, r2 --90mA
MAC r0,r1,r2 --160mA

MOVE a,r0 d,r3-- 120mA
MOVE b,r1 c,r2-- 120mA
MAC r0,r1,r2 e,r4 f,r5 --180mA
MAC r3,r4,r5 r2,v -- 170mA

MOVE r2,v --90mA
MOVE d, r3 --90mA
MOVE e, r4 --90mA
MOVE f, r5 --90mA
MAC r3,r4,r5 --160mA
MOVE r5,w --90mA

Total Current: 1,040mA
Total Cycles: 10 cycles
Energy Cost: 10,400

MOVE r5,w -- 90mA

Total Current: 680mA
Total Cycles: 5 cycles
Energy Cost: 10,400

Example 3: {a=b+c; f=d+e;}
Unscheduled Assembly Codes Scheduled Assembly Codes

MOVE a, r0 -- 90mA
MOVE b, r1 -- 90mA
ADD r0,r1 -- 100mA
MOVE r1,c -- 90mA
MOVE d, r2 -- 90mA
MOVE e, r3 -- 90mA
ADD r2,r3 -- 100mA
MOVE r3,f -- 90mA

Total Current: 740mA
Total Cycles: 8 cycles
Energy Cost: 5,920

MOVE a,r0 b,r1 -- 120mA
ADD r0,r1 d,r2 e,r3 -- 150mA
ADD r2,r3 r1,c -- 140mA
MOVE r3,f -- 90mA

Total Current: 500mA
Total Cycles: 4 cycles
Energy Cost: 2,000

Performance Energy Cost Bench-

mark Before After Improve Before After Savings

Ex 1. 11
cycles

6
cycles 45% 11,880 4,680 66.2%

Ex 2. 10
cycles

5
cycles 50% 10,400 3,400 67.3%

Ex 3. 8
cycles

4
cycles

50% 5,920 2,000 66.2%

Figure 9. Benchmark Results.

6. CONCLUSION
In recent years, power/energy consumption has become one of the
primary constraints in the design of embedded applications.
Current compiler technology is unable to take advantage of the
potential increase in parallelism offered by multiple data memory
banks. Consequently, compiler-generated code is far inferior to
hand-written code. While optimizing compilers have proved
effective for general purpose processors such as PowerPC CPU
(RISC), Intel CPU, AMD CPU, and 680x0 CPU (CISC), and Intel
CPU (EPIC), the irregular datapaths and small number of registers
found in embedded processors, especially fixed-point DSPs with
multiple data memory banks, remain a challenge to compilers.

In this paper, we have developed a high performance, low energy
compiler design for DSPs. Such a compiler should not compromise
on performance or code size when reducing energy consumption.
Our benchmark shows that the performance is improved in average
48.3% and the energy consumption is saved in average 66.6%.

We assume that instruction selection is performed by another
compiler and a sequence of instructions (unpacked) is given to our
procedure. In the future work, we will develop an algorithm
consisting of instruction scheduling, register allocation and
memory assignment. This involves building a re-targetable
compiler and simulator tool-kit which is extensible; developing
program transformations for automatically exploiting all of the

useful parallelisms in a given program, developing “architecture-
aware” and “memory aware” optimizations for compiling, and
finally exploring the interaction between compilers and
architectures.

7. REFERENCES

[1] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, Spec C:

specification language and methodology, in Kluwer
Academic Publishers (March 2000).

[2] Sathishkumar Udayanarayanan, Energy -efficient code
generation for DSP56000 family, MS. Thesis in Arizona State
University (Aug. 2000).

[3] S. S. Bhattacharyya, R. Leupers, and P. Marwedel, Software
synthesis and code generation for signal processing systems,
IEEE Trans. On Circuit and Systems II: Analog and Digital
Signal Processing.

[4] P. A. Gibbons and S. S. Muchnick, Efficient instruction
scheduling for a pipelined processor, in Proc. of the
SIGPLAN Symposium on Compiler Construction (July
1986), pp. 11-16.

[5] J. R. Ellis, Building: a compiler for VLIW architectures, The
MIT Press (1985).

[6] A. Nicolau, A fine-grain parallelizing compiler, Technical
Report (Dec. 1986), Department of Computer Science,
Cornell University.

[7] Gregory J. Chaitin et. al., Register allocation via coloring,
Computer language (Jan. 1981), 6(1): pp. 47-57.

[8] P. Briggs, K. D. Cooper, and L. Torczon, Improvement to
graph coloring register allocation, ACM Trans. On
Programming Languages and Systems (May 1994), 12(4): pp.
501-536.

[9] A. Sudarsanam and S. Malik, Simultaneous reference
allocation in code generation for dual data memory bank
ASIPs, IEEE International Conference on Computer-Aided
Design (Nov. 1995), San Jose, CA.

[10] J.-M.Chang and M. Pedram, Register allocation and binding
for low power, IEEE/ACM Design Automation Conference
(June 1995), San Francisco, CA.

[11] M. T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, Power
analysis and minimization technique for embedded DSP
software, IEEE Transactions on VLSI Systems (March 1997)
, vol. 5, no. 1, pp. 123-133.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

