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ABSTRACT 
Most research to date on energy minimization in DSP processors 
has focuses on hardware solution. This paper examines the 
software-based factors affecting performance and energy 
consumption for architecture-aware compilation. In this paper, we 
focus on providing support for one architectural feature of DSPs 
that makes code generation difficult, namely the use of multiple 
data memory banks. This feature increases memory bandwidth by 
permitting multiple data memory accesses to occur in parallel 
when the referenced variables belong to different data memory 
banks and the registers involved conform to a strict set of 
conditions. We present novel instruction scheduling algorithms 
that attempt to maximize the performance, minimize the energy, 
and therefore, maximize the benefit of this architectural feature. 
Experimental results demonstrate that our algorithms generate high 
performance, low energy codes for the DPS architectural features 
with multiple data memory banks. Our algorithm led to 
improvements in performance and energy consumption of 48.3% 
and 66.6% respectively in our benchmark examples.  

Keywords  
Architecture-aware compiler design, high performance and 
low power design, instruction scheduling, register 
allocation. 

 

1. INTRODUCTION 
Currently, there is a high demand for DSP processors with low 
power/energy in many areas such as telecommunications, 
information technology and automotive industries. This demand 
stems from the fact that low power consumption is important for 
reliability and low cost production as well as device portability and 
miniaturization. 

In the last decade we have seen the proliferation of electronic 
equipment like never before. As these systems are becoming 
increasing portable, the minimization of power consumption has 
become an important criterion in system design. In order to design 
a system with low energy and high performance, it is important to 
analyze all the components of the system platform. Since a large 
portion of the functionality of today’s system is in the form of 
software, it is important to estimate and minimize the software 
component of the energy cost and maximizes the software 
component of the performance cost [1][2].     

Although dedicated hardware can provide significant speed and 
power consumption advantages for signal processing applications, 
extensive programmability is becoming an increasingly desirable 
feature of implementation platforms for VLSI signal processing. 
Increasingly shorter life cycles for consumer products have fueled 
the trend toward tighter time-to-market windows, which in turn, 

caused intense competition among DSP product vendors and 
forced the rapid evolution of embedded technology. As a 
consequence of these effects, designers are often forced to begin 
architecture design and system implementation before the 
specification of a product is fully completed. For example, a 
portable communication product is often designed before the signal 
transmission standards under which it will operate are finalized, or 
before the full range of standards that will be supported by the 
product is agree upon. In such an environment, late changes in the 
design cycle are mandatory. The need to quickly make such late 
changes requires the use of software. 

Although the flexibility offered by software is critical in DSP 
applications, the implementation of production quality DSP 
software is an extremely complex task. The complexity arises from 
the diversity of critical constraints that must be satisfied. Typically 
these constraints involve stringent requirements on metrics such as 
latency, throughput, power consumption, code size, and data 
storage requirements [3].    

DSPs are a special kind of processor that is primarily designed to 
implement signal-processing algorithms efficiently. Code 
generation for DSP is more involved than general-purpose 
processors. This is because DSP processors have non-
homogeneous register sets, a number of specialized functional 
units, restricted connectivity, limited addressing, and highly 
irregular datapaths. It is a well-known fact that the quality of 
compilers for embedded DSP systems are generally unacceptable 
with respect to code density, performance, and power 
consumption. This is because the compilation techniques for 
general-purpose architectures being used do not adapt well to the 
irregularity of DSP architectures.  

We address the problem of code generation for DSP systems on a 
chip. In such systems, the amount of silicon devoted to program 
ROM is limited, so the application software must be sufficiently 
dense. In addition, the software must be written to meet various 
high-performance and low energy constraints. Unfortunately, 
current compiler technologies are unable to generate high-quality 
code for DSPs, whose architectures are highly irregular. Thus, 
designers often resort to programming application software in 
assembly – a labor-intensive task. 

In this paper, we present a novel instruction scheduling for one 
particular architectural feature, namely multiple data memory 
banks. This feature, increases memory bandwidth by permitting 
multiple data memory accesses to occur in parallel. This happens 
when the referenced variables belong to different banks and the 
register involved conforms to a strict set of conditions. 
Furthermore, the instruction set architecture (ISA) of these DSPs 
require the programmer to encode in a limited number of long 
instruction words, all the data memory accesses that are to be 
performed in parallel, thus assisting in the generation of dense 
code.  



 

Instruction scheduling techniques that use a listed-based method 
has been around since the mid-1980s [4], and it is the most popular 
method of scheduling basic blocks. Trace scheduling is an 
optimization technique that selects a sequence of basic blocks as a 
trace, and schedules the operations from the trace together [5]. 
Percolation scheduling [6] looks at the whole program and tries to 
improve the parallelism of the code. The idea that register 
allocation can be viewed as a graph-coloring problem has been 
around since early 1970s, but Chaitin et. al. [7] were the first to 
actually implement it in a compiler. Briggs [8] came up with some 
modifications to Chaitin-style allocation, the most important idea 
being the optimization of variable selection for register spilling.  

Most of the previous work on reducing power and energy 
consumption in DSP processors has focused on hardware solutions 
to the problem. However, embedded systems designers frequently 
have no control over the hardware aspects of the pre-designed 
processors with which they work and so, software-based power 
and/or energy minimization techniques play a useful role in 
meeting design constraints. Recently, new research directions in 
reducing power consumptions have begun to address the issues of 
arranging software at instruction-level to help reduce power 
consumption [10][11]. Previous improvements with software re-
arrangements include the value locality of registers [10] and the 
swapping of operands for booth multiplier [11]. This new direction 
brings an interesting issue in the compiler participation in software 
re-arrangements for reducing power consumption for applications 
and systems.    

The rest of the paper is organized as follows. Section 2 describes 
the DSP architectural features with multiple data memory banks. 
Section 3 describes the novel algorithms of instruction scheduling 
to reduce the number of cycles and the register pressure. Section 4 
describes the examples that illustrate our algorithms. Section 5 
describes the benchmark results. Section 6 concludes the paper. 

 

2. DSP ARCHITECTURAL FEATURES 
WITH MULTIPLE DATA MEMORY 
BANKS 

Our approach for increasing the packing efficiency has been tested 
on DSP architectural features with multiple data memory banks, 
which can be characterized as Dual-Load-Execute (DLE) 
architectures. Examples of DLE processors include Analog 
Devices’ ADSP21xx family, NEC’s u7701x family, Motorola, 
56xxx family, and Fujitsu’s Elixir family. These processors 
support parallel execution of an ALU operation and two data move 
(data load or data store) operations in the same cycle. 

 

2.1 DSP Architectures 
The DSP architectural units of interest are the data arithmetic logic 
unit (Data ALU), addressing generation unit (AGU) and X/Y data 
memory banks [9]. The unit of Data ALU contains hardware 
specialized for performing fast multiply-accumulate operations 
(MAC). The data ALU consists of FOUR 24-bit input registers 
named X0, X1, Y0, and Y1, and TWO 56-bit accumulators named 
A and B. The resource operands for all ALU operations must be 
input registers or accumulators, and the destination operand must 
always be an accumulator. TWO 24-bit buses named XDB and 
YDB permit two input registers or accumulators to be read or 

written in conjunction with the execution of an ALU operation. As 
a result, three operations may be executed simultaneously in one 
instruction cycle. The Address Generation Unit (AGU) contains 
TWO sets of 16-bit register files, one consisting of address 
registers R0, R1, R2, and R3 and offset registers N0, N1, N2, and 
N3, and the other consisting of address registers R4, R5, R6, and 
R7 and offset registers N4, N5, N6, and N7. The unit of X/Y Data 
Memory Banks contains two 512 words x 24 bits memory banks 
which allow a total of two data memory accesses to occur in 
parallel.   

 

2.2 Instruction Set Architecture (ISA) 
The ISA of above DSPs assists in the generation of dense, high-
bandwidth code by requiring the programmer to encode all 
operations that are to execute in parallel during each instruction 
cycle in either one or two 24-bit instruction words. Specifically, up 
to two move operations and one Data ALU operation may be 
encoded in these words. A move in this case refers to a memory 
access (load or store), register transfer (moving of data from an 
input registers to an accumulator, or vice versa), or immediate load 
(loading of a 24-bit constant into an input register or accumulator). 
However, due to the nature of the M56000 micro-architecture, only 
the following pairs of move operations may be performed in 
parallel: (i) two memory accesses, (ii) a memory access and 
register transfer, and (iii) a register transfer and a load immediate.  

Consider the following parallel move specification that 
simultaneously (i) loads a datum into X1 from the X memory bank 
at the address stored in R0 and (ii) loads a datum into Y1 from the 
Y memory bank at the address stored in R4. {MOVE X: (R0), X1 
Y: (R4), Y1}. 

 

3. INSTRUCTION SCHEDULING 
Our instruction-scheduling algorithm based on list scheduling 
directly supports packing, because the above DSP supports 
simultaneous execution of multiple operations. Packing is efficient 
in terms of performance, because it always leads to a reduction in 
the cycle time of programs. Another important feature of packing 
is that it also tends to reduce the amount of energy consumed 
during program execution. In practice, packing has the potential to 
reduce energy consumption by more than half.  

 

3.1 Instruction Level Energy Model 
The average power P consumed by a processor while running a 
certain program is given by P = I*Vdd, where I is the average 
current and Vdd is the supply voltage. The energy consumed by a 
program, E, is given by E = P*T, where T is the execution time of 
the program. This, in turn, is given by T = N*delta, where N is the 
number of cycles and delta is the cycle period. Since a common 
application DSP embedded system is often in the portable space 
where power is stored in a battery, energy consumption is the focus 
of our attention. Now, Vdd and delta are known and fixed. 
Therefore, E is proportional to the product of I and N. Given the 
number of execution cycles, N, for a program, we only need to 
measure the average current, I, in order to calculate E. The product 
of I and N is, therefore, the measure used to compare the energy 
cost of programs in this analysis. The energy model as taken from 



 

[2], is based on measuring the current consumed by individual 
instructions using an oscilloscope and estimating the energy 
consumed by a block of software through the calculation of a 
weighed sum.    

 

3.2 Reduce the Register Pressure during the 
Scheduling Stage 

List scheduling might give good results in terms of reducing the 
number of cycles required for execution, but it cannot guarantee an 
optimal scheduling of the code. If the required number of registers 
is very high, then register spills may decrease the performance of 
the final code. In addition to the notion of priority, our data 
dependence graph (DDG) also includes the lifetime of each 
variable so that register pressure can also be reduced in the 
scheduling. 

 

4. EXAMPLES AND ALGORITHMS 
4.1 Example One  
Consider the C and corresponding uncompacted symbolic 
assembly code shown in Figure 1(a) and Figure 1(b). Figure 1(c) 
shows the DDG with two weighting factors on each node. The first 
weighting factor in the tuple is the value of depth, which is counted 
from the bottom node for each branch. The node with a higher 
value has higher priority. For instance, nodes V0 and V1 have the 
highest priority to be selected in the ready set shown in Figure 3.  

 

a=b+c; 
d=(e+f)*a; 

(a)  
 
MOVE  b, r0 -- V0 
MOVE  c, r1 -- V1 
ADD r0,r1 -- V2 
MOVE  r1,a -- V3 
MOVE  e, r2 -- V4 
MOVE  f, r3  -- V5 
ADD  r2,r3 -- V6 
MOVE  r3,r4 -- V7 
MOVE  a, r5 -- V8 
MPY r4,r5,r6 -- V9 
MOVE r6,d -- V10 

(b)                                   (c)  
Figure 1. (a) C code, (b) uncompacted assembly code, and (c) 
DDG with tuple of (depth,lifetime) on the node.  

 
Note that the boldface nodes in the ready set are ALU operations 
such as ADD and MPY. One ALU can be executed with one or 
two MOVE operation in the same cycle. Two ALU operation 
nodes, though, cannot be allowed to execute in the same cycle. The 
second weighting factor in the tuple is the lifetime of the register 
variables. For instance, node V0 is dependent upon register r0 that 
is alive during cycles 1 through 3 (see Figure 2); thus, the interval 
live time is 3-1 = 2. In Figure 2, the initial code is executed in 11 
cycles and the number of registers required is 2 using the lifetime 

analysis. Next, we construct the ready set based on the as-soon-as-
possible (ASAP) scheduling scheme for each node. The total 
cycles are now 6 cycles for the unscheduled nodes in ready set. 

Figure 4 shows the nodes have been scheduled based on our 
algorithm to exploit the DSP architecture. The number of registers 
is 3. Note that the number of cycles and the number of registers 
have the tradeoff relationship. It is cost efficient to reduce the 
cycles instead of increasing the number of registers. However, for 
DSP processors, the number of registers are limited, so we need to 
develop the best scheduling algorithm to minimize the number of 
registers (i.e. reduce the register pressure) during the scheduling 
process. Figure 5 shows that for the random choice, the number of 
cycles is 7 and the number of registers is 4. This demonstrates that 
the algorithm developed is very important at this stage. 

 

Cycle Instruction 
nodes 

Registers 
and data  

Live time Analysis  

1 V0 b,r0 
2 V1 c,r1 
3 V2 r0,r1 
4 V3 r1,a 
5 V4 e,r2 
6 V5 f,r3 
7 V6 r2,r3 
8 V7 r3,r4 
9 V8 a,r5 
10 V9 r4,r5,r6 
11 V10 r6,d 

r0  r1 r2  r3 r4 r5 r6 
 
 
 
 

Need 2 registers 

Figure 2. Before scheduling. (Need 11 cycles and 2 registers) 

 
Cycle Instruction nodes 

1 V0, V1, V4, V5 
2 V2, V6 
3 V3, V7 
4 V8 
5 V9 
6 V10 

Figure 3. Unscheduled nodes in ready set. (Boldface nodes are 
ALU operations).   

 
We borrowed the energy model from [2] to count the energy 
consumption. In Figure 4, total current, I, is 780mA and total 
cycles, N, are 6. So, the energy cost is I*N = 780*6 = 4,680.  In 
Figure 5, the scheduling based on random choice has an energy 
cost of I*N=850*7=5,950. 

Before scheduling, in Figure 1, the total current is 1080mA and the 
number of cycles is 11. So, the energy cost is I*N= 11,880. After 
scheduling, Figure 4, based on our algorithm, the number of cycles 
is reduced from 11 to 6 (45% reduction in cycles) and the energy 
cost is reduced from 11,880 to 4,680 (60% reduction in energy 
consumption). This demonstrates that our scheduling algorithm has 
made a high performance, low energy code generation with 
minimum register pressure for the DSP processors.   
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Cycle Instruction nodes Live time Analysis  

1 V0,       V1 
(b,r0)   (c,r1) 

2 V2,     V4,    V5 
(r0,r1) (e,r2) (f,r3) 

3 V3,      V6 
(r1,a)  (r2,r3) 

4 V7,      V8 
(r3,r4) (a,r5) 

5 V9 
(r4,r5,r6) 

6 V10 
(r6,d) 

   r0   r1  r2   r3   r4   r5   r6 
 
 

Need 3 registers 

Final Code 
MOVE              b,r0       c,r1            -- 120mA 
ADD r0,r1         e,r2       f,r3            -- 150mA 
ADD r2,r3         r1,a                         -- 140mA 
MOVE               r3,r4     a,r5            -- 120mA 
MPY r4,r5,r6                                    -- 160mA 
MOVE               r6,d                         -- 90mA 

Figure 4. After scheduling based on our scheduling algorithm. 
(Need 6 cycles and 3 registers). 

 
Cycle Instruction nodes Live time Analysis 

1 V0,      V4 
(b,r0) (e,r2) 

2 V1,      V5 
(c,r1) (f,r3) 

3 V2,       
(r0,r1)  

4 V3,      V6 
(r1,a) (r2,r3) 

5 V8       V7 
(a,r5) (r3,r4) 

6 V9 
(r4,r5,r6) 

7 V10 
(r6,d) 

r0   r1   r2   r3  r4     r5   r6 
 
 

Need 4 registers 

Final Code 
MOVE              b,r0       e,r2         -- 120mA 
MOVE              c,r1       f,r3          -- 120mA 
ADD r0,r1                                     -- 100mA 
ADD r2,r3         r1,a                      -- 140mA 
MOVE               r3,r4     a,r5         -- 120mA 
MPY r4,r5,r6                                 -- 160mA 
MOVE               r6,d                      --  90mA 

Figure 5. After scheduling based on RANDOM choice. (Need 7 
cycles and 4 registers). 

 
 
4.2 Example Two  
Again, consider the C and corresponding uncompacted symbolic 
assembly code shown in Figure 6(a) and Figure 6(b). Figure 6(c) 
shows the DDG with two weighting factors on each node.  

 
v=a*b+c; 
w=d*e+f; 

(a)  
 
MOVE  a, r0 -- V0 
MOVE  b, r1 -- V1 
MOVE   c, r2 -- V2 
MAC  r0,r1,r2 -- V3 
MOVE  r2,v -- V4 
MOVE  d, r3 -- V5 
MOVE  e, r4 -- V6 
MOVE   f, r5 -- V7 
MAC  r3,r4,r5 -- V8 
MOVE  r5,w -- V9 

(b)                             (c)  
Figure 6. (a) C code, (b) uncompacted assembly code, and (c) 
DDG with tuple of (depth,lifetime) on the node.  

 
Cycle Instruction nodes Live time Analysis 

1 V0,       V5 
(a,r0)   (d,r3) 

2 V1,     V2,     
(b,r1) (c,r2)  

3 V3,      V6     V7 
(r0,r1,r2)(e,r4)(f,r5) 

4 V4,      V8 
(r2,v) (r3,r4,r5) 

5 V9 
(r5,w) 

r0   r1  r2   r3  r4   r5  
 
 

Need 4 registers 

Final Code 
MOVE              a,r0       d,r3            -- 120mA 
MOVE              b,r1       c,r2            -- 120mA 
MAC r0,r1,r2    e,r4       f,r5            -- 180mA 
MAC r3,r4,r5    r2,v                         -- 170mA 
MOVE               r5,w                        --   90mA 

Figure 7. After scheduling based on our scheduling algorithm. 
(Need 5 cycles and 4 registers). 

 
Our algorithm focuses on reducing the number of cycles and the 
register pressure at the same cycle. This helps to do register 
labeling in the next stage. Besides that, due to the code 
compaction, the number of cycles is minimized and further results 
in the reduction of the energy consumption.  

Before scheduling, in Figure 6, the total current is 1040mA and the 
number of cycles is 10, giving an energy cost of I*N= 10,400. 
After scheduling, in Figure 7, based on our algorithm, the number 
of cycles is reduced from 10 to 5 (50% reduction in cycles) and the 
energy cost is reduced from 10,400 to 3,400 (67.3% reduction in 
energy consumption). The number of registers is only 4. If random 
choice, the number of cycles is increased from 5 to 6 and the 
number of registers is increased from 4 to 6 (see Figure 8). This 
implies that it degrades the performance and increases the energy 
consumption. Furthermore, it needs more registers. In Figure 7, 
total current, I, is 680mA and total cycles, N, are 5. So, the energy 
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  V3 

  V4 

  V2 

(3,2) (3,3) (3,2) 

(1,0) 

(2,1) 

  V5   V6 

  V8 

  V9 

  V7 

(3,2) (3,3) (3,2) 

(1,0) 

(2,1) 



 

cost is I*N = 680*5 = 3,400.  In Figure 8, the scheduling based on 
random choice has an energy cost of I*N=780*6=4,680. 

 
Cycle 

Instruction nodes Live time Analysis 

1 V1,     V2 
(b,r1) (c,r2) 

2 V6,     V7,     
(e,r4) (f,r5)  

3 V0,     V5 
(a,r0) (d,r3) 

4 V3 
(r0,r1,r2) 

5 V4,      V8 
(r2,v) (r3,r4,r5) 

6 V9 
(r5,w) 

r0   r1  r2   r3  r4   r5  
 
 

            Need 6 registers 

Final Code 
MOVE              b,r1       c,r2            -- 120mA 
MOVE              e,r4       f,r5             -- 120mA 
MOVE              a,r0       d,r3            -- 120mA 
MAC r0,r1,r2                                   -- 160mA 
MAC r3,r4,r5    r2,v                         -- 170mA 
MOVE               r5,w                        --   90mA 

Figure 8. After scheduling based on RANDOM choice. (Need 6 
cycles and 6 registers). 

 
4.3 Our Algorithms  
Our algorithm is based on the list scheduling but the priority 
should be modified not only reduce the number of cycles (i.e. 
improve the performance) but also minimize register pressure. The 
following is our algorithm.  
 
Algorithm 
1. Construct the Data Dependence Graph (DDG). 
2. Make the Tuple (P,L), where P is the depth value of the node, 

and L is the lifetime of the node. 
3. Find the initial ready set R (List Scheduling) 
4. While ~isempty(R) do 

• The node with larger value of P has the higher priority. 
(reducing the number of cycles and energy cost) 

• If tie in value of P: 
• If there are pairs of nodes  

• The pair of nodes having the same lifetime 
value, L, has higher priority. (reducing the 
register pressure) 

• else  
• the node with lower lifetime value has higher 

priority. (reducing the register pressure) 
• If tie in values of P and L 

• The pair of nodes located in the same branch, 
has the higher priority. (reducing the energy 
cost). Note that the ALU nodes can be parallel 
processed with the other one or two MOVEs 

 
Before running the algorithm, we need to construct the data 
dependence graph (DDG) with nodes and calculate the depth value 
and lifetime value for each node. Next, the list scheduling starts to 

come to play. Before that, we need to construct the initial ready set 
R. 

Our algorithm considering the first priority is the value of depth, 
the first weighting factor in tuple. If there are nodes in the same 
cycle of ready set, the node with higher depth value has higher 
priority. This ensures that the number of cycles is minimized. 
Remind that the number of cycles is the function of the energy 
cost. This helps reduce energy cost a lot.  

Besides that the concept of reducing the number of cycle, the other 
important issue is how to reduce the number of registers. This is 
because the number of registers in DSP processor is limited. 
Hence, the next priority is to consider the second weighting factor 
in tuple. If the nodes have the same depth values, the pair of nodes 
having the same lifetime has higher priority. Otherwise, the node 
with lower lifetime value has higher priority. This is to reduce the 
number of overlap lifetimes among the nodes and hence reduce the 
number of registers.  

If the nodes have the same depth values and the same lifetime 
values, the nodes in the same tree have the higher priority. This is 
to increase the chance of locating the ALU nodes with the MOVE 
nodes in the same cycle. Note that the ALU nodes can be parallel 
processed with the other one or two MOVEs. This helps reduce the 
value of current. For example, ADD with 2 parallel MOVEs only 
consumes the current of 150mA but the ADD with 2 serial 
MOVEs consumes the current of 280mA.    

 

5. BENCHMARK RESULTS  
In our benchmark results, the performance is improved in average 
48.3% and the energy  consumption is saved in average 66.6% (see 
Figure 9). Figure 9 shows the unscheduled assembly codes, 
scheduled assembly codes, and the total required current, the 
number of cycles, and the energy cost for both codes.    

 
Example 1: {a=b+c; d=(e+f)*a;} 

Unscheduled Assembly Codes Scheduled Assembly Codes 
MOVE  b, r0       -- 90mA 
MOVE  c, r1       -- 90mA 
ADD r0,r1      -- 100mA 
MOVE  r1,a        -- 90mA 
MOVE  e, r2       -- 90mA 
MOVE  f, r3       -- 90mA 
ADD  r2,r3      -- 100mA 
MOVE  r3,r4      -- 90mA 
MOVE  a, r5       -- 90mA 
MPY r4,r5,r6  --160mA 
MOVE r6,d       -- 90mA 
 
Total Current: 1,080mA 
Total Cycles: 11 cycles 
Energy Cost: 11,880 

MOVE       b,r0   c,r1   -- 120mA 
ADD r0,r1 e,r2   f,r3    -- 150mA 
ADD r2,r3  r1,a            -- 140mA 
MOVE       r3,r4  a,r5   -- 120mA 
MPY r4,r5,r6                -- 160mA 
MOVE       r6,d             -- 90mA 
 
 
 
 
 
 
Total Current: 780mA 
Total Cycles: 6 cycles 
Energy Cost: 4,680 
 

Example 2: {v=a*b+c; w=d*e+f;} 
Unscheduled Assembly Codes Scheduled Assembly Codes 

MOVE  a, r0 --90mA 
MOVE  b, r1 --90mA 
MOVE   c, r2 --90mA 
MAC  r0,r1,r2 --160mA 

MOVE           a,r0  d,r3-- 120mA 
MOVE           b,r1  c,r2-- 120mA 
MAC r0,r1,r2  e,r4  f,r5 --180mA 
MAC r3,r4,r5  r2,v       -- 170mA 



 

MOVE  r2,v --90mA 
MOVE  d, r3 --90mA 
MOVE  e, r4 --90mA 
MOVE   f, r5 --90mA 
MAC  r3,r4,r5 --160mA 
MOVE  r5,w --90mA 
 
Total Current: 1,040mA 
Total Cycles: 10 cycles 
Energy Cost: 10,400 

MOVE        r5,w          --   90mA 
 
 
 
 
 
 
Total Current: 680mA 
Total Cycles: 5 cycles 
Energy Cost: 10,400 
 

Example 3: {a=b+c; f=d+e;} 
Unscheduled Assembly Codes Scheduled Assembly Codes 

MOVE  a, r0       -- 90mA 
MOVE  b, r1       -- 90mA 
ADD r0,r1      -- 100mA 
MOVE  r1,c        -- 90mA 
MOVE  d, r2       -- 90mA 
MOVE  e, r3       -- 90mA 
ADD  r2,r3      -- 100mA 
MOVE  r3,f        -- 90mA 
 
Total Current: 740mA 
Total Cycles: 8 cycles 
Energy Cost: 5,920 

MOVE       a,r0   b,r1   -- 120mA 
ADD r0,r1 d,r2   e,r3   -- 150mA 
ADD r2,r3  r1,c            -- 140mA 
MOVE       r3,f             --   90mA 
 
 
 
 
 
Total Current: 500mA 
Total Cycles: 4 cycles 
Energy Cost: 2,000 

 
Performance Energy Cost  Bench-

mark Before After Improve Before After Savings 

Ex 1. 11 
cycles 

6 
cycles 45% 11,880 4,680 66.2% 

Ex 2. 10 
cycles 

5 
cycles 50% 10,400 3,400 67.3% 

Ex 3. 8 
cycles 

4 
cycles 

50% 5,920 2,000 66.2% 

Figure 9. Benchmark Results. 

 

6. CONCLUSION  
In recent years, power/energy consumption has become one of the 
primary constraints in the design of embedded applications. 
Current compiler technology is unable to take advantage of the 
potential increase in parallelism offered by multiple data memory 
banks. Consequently, compiler-generated code is far inferior to 
hand-written code. While optimizing compilers have proved 
effective for general purpose processors such as PowerPC CPU 
(RISC), Intel CPU, AMD CPU, and 680x0 CPU (CISC), and Intel 
CPU (EPIC), the irregular datapaths and small number of registers 
found in embedded processors, especially fixed-point DSPs with 
multiple data memory banks, remain a challenge to compilers.    

In this paper, we have developed a high performance, low energy 
compiler design for DSPs. Such a compiler should not compromise 
on performance or code size when reducing energy consumption. 
Our benchmark shows that the performance is improved in average 
48.3% and the energy consumption is saved in average 66.6%.  

We assume that instruction selection is performed by another 
compiler and a sequence of instructions (unpacked) is given to our 
procedure. In the future work, we will develop an algorithm 
consisting of instruction scheduling, register allocation and 
memory assignment. This involves building a re-targetable 
compiler and simulator tool-kit which is extensible; developing 
program transformations for automatically exploiting all of the 

useful parallelisms in a given program, developing “architecture-
aware” and “memory aware” optimizations for compiling, and 
finally exploring the interaction between compilers and 
architectures.  
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