
A Trace Transformation Technique
for Communication Refinement

Paul Lieverse
Dept. of Information

Technology and Systems
Delft University of Technology

The Netherlands
p.lieverse@its.tudelft.nl

Pieter van der Wolf
Philips Research

Eindhoven, The Netherlands

Ed Deprettere
Leiden Institute of Advanced

Computer Science
Leiden University
The Netherlands

ABSTRACT
Models of computation like Kahn and dataflow process networks
provide convenient means for modeling signal processing applica-
tions. This is partly due to the abstract primitives that these models
offer for communication between concurrent processes. However,
when mapping an application model onto an architecture, these
primitives need to be mapped onto architecture level communica-
tion primitives. We present a trace transformation technique that
supports a system architect in performing this communication re-
finement. We discuss the implementation of this technique in a tool
for architecture exploration named SPADE and present examples.

1. INTRODUCTION
In the design of embedded signal processing systems, such as digi-
tal televisions, set-top boxes, and mobile devices, a key design step
is the definition of a hardware/software architecture that correctly
implements the required behavior of the system. In a structured
design methodology first the functional behavior of the system is
specified and validated using executable functional models. We
refer to such models as application models. Subsequently, a (het-
erogeneous) architecture is proposed onto which the functional be-
havior is to be mapped. In this stage a designer needs support for
architectural exploration and for validation of proposed architec-
tures given the specified functional behavior.

In this paper we focus on the mapping and exploration stage in
the design of embedded signal processing systems. In particu-
lar, we study the problems associated with the mapping of prim-
itives used for expressing communication behavior at the applica-
tion level onto primitives used to implement the communication
in architectures. In the next section we discuss the application–
architecture mapping in more detail and explain a number of fun-
damental problems associated with this mapping task. We have
solved these problems in the context of SPADE, a method and tool
for the modeling and exploration of embedded signal processing
systems [9]. We introduce the SPADE methodology in Section 3.
Our solution is based on trace transformation techniques, which
we present in Section 4. We present an example in Section 5 and
discuss related work in Section 6. We present conclusions in Sec-
tion 7.

2. PROBLEM DEFINITION
Different formalisms can be used for application modeling, each
having their strengths and weaknesses depending on the targeted
application domain and the kind of validation that needs to be per-
formed. Examples are FSM (finite state machine) models and data-
flow models. Such formalisms are often referred to as models of
computation. Models of computation well suited to the domain of
signal processing are Kahn process networks [6] and dataflow pro-
cess networks [8].

In the Kahn model, concurrent processes communicate via
unbounded FIFO channels. Each process performs sequential com-
putation on its private state space. The computation actions of a
process are interleaved with communication actions that read data
from input channels and write data to output channels. The Kahn
model fits nicely with signal processing applications as it conve-
niently models stream processing and as it guarantees that no data
is lost in communication. Kahn process networks are deterministic,
i.e., the stream of data that travels along each channel is determined
by the input data; it does not depend on the order in which the
processes are executed. As a result, application programmers can
easily combine processes into process networks. Dataflow process
networks are a special case of Kahn process networks.

The Kahn and dataflow process network models permit applica-
tions to be modeled relatively independent of a specific target ar-
chitecture. This enables reuse of application models and permits
companies to build libraries of reusable functional IP. In particular,
the primitives used for communication between processes abstract
from implementation aspects that need to be addressed later in the
design trajectory. For example, a read operation blocks until data
is available and then copies data from the FIFO buffer into the pri-
vate state space of the process. Similarly, a write operation copies
data from the private state space into a FIFO. The application pro-
grammer does not have to worry about such issues as synchroniza-
tion with other processes, physical locations of buffers, sharing of
interconnect or memory resources, etc. Besides promoting reuse,
this abstraction also helps application programmers to efficiently
perform the task at hand: functional modeling. However, when a
system architect departs from an application model to explore can-
didate architectures, he needs to take into account how the applica-
tion level primitives are implemented at the architecture level.

We illustrate this mapping problem by means of the following ex-
ample. Consider the application model shown in Figure 1. Now
suppose that this application is mapped onto an architecture con-
sisting of a CPU and a dedicated coprocessor, both connected to
a bus and shared memory, as depicted in Figure 2. Furthermore,
suppose that the coprocessor has a local memory. The producer
is mapped onto the CPU; the consumer onto the coprocessor. The
producer does its computation on its private state space which is
allocated in shared memory. The write call of the producer copies
the results of the computation from this private state space into a

producer consumer

while (1) {
compute();
write();

}

while (1) {
read();
compute();

}

Figure 1: Producer-consumer application.

CPU
(producer)

(CPU private
state space)

local memory
(coproc. priv.
state space)

(consumer)
coprocessor

shared memory

(shared buffer)

Figure 2: Shared memory architecture for the producer–
consumer application.

shared buffer, which is also allocated in shared memory. The con-
sumer then can read this data from the shared buffer into its private
state space, located in the local memory of the coprocessor, and do
the computation on the data in its private state space.

A different implementation would be to let the producer claim room
in the shared buffer before starting with the computation, so that
resulting data can be written to the shared buffer directly when it
becomes available during the computation. Figure 3 shows this
behavior. Note that we now have separated data transfer (store-

while (1) {
check_room();
compute();
store_data();
signal_data();

}

while (1) {
check_data();
load_data();
signal_room();
compute();

}

Figure 3: Behavior of producer-consumer application with a
different mapping onto the architecture of Figure 2.

data/load-data) and synchronization (check-room/check-data and
signal-data/signal-room) and made both these aspects of commu-
nication explicit. The read and write operations implicitly combine
these aspects. Also note that the change from the behavior of the
producer of Figure 1 to that of Figure 3 is more than a simple sub-
stitution of the write operation. For the producer this implementa-
tion avoids the copy operation from its private state space into the
shared buffer, thereby avoiding the extra CPU cycles, bus traffic,
and buffer space.

For an implementation in which we do not have a local memory
in the coprocessor, the consumer should also operate directly on
the data in the shared buffer. This behavior is shown in Figure 4.
It correctly models that the data in the shared buffer must remain
available until the computation has completed: signal room af-
ter compute . In a final implementation the transfer of data to
the coprocessor and the computation may be interleaved at a finer
grain. This is approximated by the coarse grain load data and
compute . The synchronization behavior, however, is modeled
correctly thereby allowing architecture exploration with reasonable
accuracy.

For reasons of efficiency and reuse, application developers should
not model their applications at the level of detail shown in Figure 4.
They should produce a more architecture independent specification
using read and write operations as shown in Figure 1. Architectural
exploration tools must then support a system architect in the evalu-
ation of candidate architectures starting from such abstract models.

while (1) {
check_room();
compute();
store_data();
signal_data();

}

while (1) {
check_data();
load_data();
compute();
signal_room();

}

Figure 4: Behavior of producer-consumer application when
mapped onto an alternative architecture.

Specifically, such tools must allow the system architect to model
the selected communication architecture and how the application
level communication operations are mapped onto the architecture
level communication operations. Performance analysis tools must
then provide accurate feedback on the performance of application-
architecture-mapping combinations.

3. SPADE
SPADE (System level Performance Analysis and Design space Ex-
ploration) [9] is a method and tool for architecture exploration of
heterogeneous signal processing systems. It is based on the Y-
chart [1][7] paradigm. Following the Y-chart, a clear distinction
is made between applications and architectures, which are related
via an explicit mapping step. SPADE provides techniques for mod-
eling applications and architectures, as well as for capturing the
mapping of application models onto architecture models. For ap-
plication modeling the Kahn process network model is used [4].
For architecture modeling a library of architecture building blocks
is provided, of which the timing behavior can be simulated using
a cycle-based simulator. SPADE employs a trace-driven simulation
technique to co-simulate an application model with an architecture
model in order to evaluate the performance of the combined sys-
tem. The workload of an application is captured in traces; each
process in the application generates a single trace. A trace con-
tains symbols, called trace operations, that represent the compu-
tation and communication operations that are performed by an ap-
plication when it is executed. For example, the producer behavior
given in Figure 1 would result in a trace consisting of an infinite
sequence of compute and write operations. Data dependent
behavior, which is the result of control structures in the application
code, is captured by the traces. The resources in an architecture
accept trace operations as the workload to be executed. The traces
drive the computation and communication activities in the archi-
tecture, for which the architecture model accounts time and reports
performance data. This is illustrated in Figure 5.

trace

Application model

A B
C

Architecture model
X Y

trace trace

Figure 5: Trace-driven simulation: the execution of the archi-
tecture model is driven by traces from the execution of the ap-
plication model.

The traces that are generated by an application model consist of
three types of application level trace operations: read R, write W,
and execute E. The read R and write W operations represent the
use of Kahn communication primitives. The execute E operation
represents computation done in a process (the compute function
used above).

The architecture model accepts seven types of architecture level op-
erations: check-data cd , load-data ld , signal-room sd , check-room
cr , store-data st , signal-data sd , and execute E . The execute E

operation represents the computation done; during simulation it re-
sults in a computation delay specified by the system architect. The
load-data ld and store-data st operations represent the actual trans-
fer of data in the architecture. The other primitives are synchroniza-
tion primitives. The check-data cd and check-room cr operations
stall a process until data or room is available. The signal-room sr
and signal-data sd operations are their counterparts; they signal
the availability of room or data. These seven primitives allow the
implementation of different communication schemes, as was illus-
trated in Section 2.

Since we have a clear separation of the application models and the
architecture models, and are using trace-driven simulation, we can
easily insert a layer in between the application model and the archi-
tecture model that transforms the traces generated by the applica-
tion model into traces that are accepted by the architecture model.
This transformation takes place at the dashed line in the middle of
Figure 5. For more details on SPADE we refer the reader to [9].

4. TRACE TRANSFORMATION
In this section we explain the concept of trace transformations.
These transformations take as input a trace generated by an ap-
plication process. Such trace consists of the three application level
operations. As output a trace is generated that can be accepted by
an architecture model and which contains the architecture level op-
erations. So, a trace transformation provides the mapping of appli-
cation level communication primitives onto architecture level com-
munication primitives. In SPADE this transformation needs to be
done at runtime because of the co-simulation technique employed.

Both the input trace and the output trace are linear, i.e., the trace
operations are totally ordered. For the input trace this is due to the
sequentiality of each application process. For the output trace this
linearity is a property we enforce because the architecture models
we are using can accept only linear traces.

Transformation of individual operations in traces is straightforward.

In the remainder we denote a transformation using ’
Θ

=⇒’.

R Θ
=⇒ cd → ld → sr (TR 1)

W Θ
=⇒ cr → st → sd (TR 2)

E Θ
=⇒ E (TR 3)

So, a read operation R is substituted by a sequence of a check-data
operation cd , a load-data operation ld , and a signal-room operation
sr . Similarly, a write operation W is substituted by a sequence of
a check-room operation cr , a store-data operation st , and a signal-
data operation sd . An execute operation E is simply transformed
into an architecture level execute operation E .

For a linear trace, i.e., a sequence of individual trace operations,
we could simply apply the transformations for the individual oper-
ations.

R→ E→ W Θ
=⇒ cd → ld → sr → E → cr → st → sd

However, as we already observed in Section 2, Figure 3, we may
need to change the ordering of the operations dependent on the pro-
posed architecture and mapping. This could for example result in
the following transformation.

R→ E→ W Θ′
=⇒ cd → cr → ld → E → st → sr → sd

In this case, the computation operates on data in external buffers,
such as the shared buffer in shared memory in Section 2. This is
modeled by issuing a check-room before, and a signal-room after
the execute operation. Likewise, we can come up with many more
transformations, each having their own ordering of operations.

The expansion of the individual operations as given in (TR 1),
(TR 2), and (TR 3) is independent of the architecture. Also, there
are a number of dependencies between operations that always
should be retained, independent of the architecture. Therefore, we
split the trace transformation into two steps. The first step is in-
dependent of the architecture on which the trace is to be executed.
In this step the individual operations are expanded and dependen-
cies are added between the resulting architecture level operations.
We call this step trace expansion. The result of this step is a par-
tially ordered intermediate trace. Since we support only architec-
ture models that accept linear traces, the intermediate trace is lin-
earized in a second step. We call this step trace linearization. This
linearization is highly dependent on the architecture on which the
trace is to be executed. Future architecture models may be able
to accept partially ordered traces, thereby making the linearization
step no longer needed. In Sections 4.2 and 4.3 we describe the two
steps. First we give some definitions.

4.1 Definitions
Definition 1. A trace T = (O,R) consists of a set of trace op-

erations O = {oi}, with i being a unique index, and a transitively
closed ordering relation R ⊆ O2. The trace operations are par-
tially ordered by the relationR.

A trace is thus a partially ordered set (poset). We say that operation
oi precedes operation oj if and only if (oi, oj) ∈ R. A trace with
a total ordering is called a linear trace.

Definition 2. An application trace T APT is a linear trace that con-
sists of application level operations (read, write, execute).

Definition 3. An architecture trace T ART is a linear trace that
consists of architecture level operations (check-data, load-data,
signal-room, check-room, store-data, signal-data, execute).

We usually only consider the base of a trace.

Definition 4. For x, y ∈ O of a poset (O,R) we say that y
covers x in R if and only if (x, y) ∈ R and there is no element
z ∈ O such that both (x, z) and (z, y) ∈ R.

Definition 5. A base B(R) of an ordering relation R ⊆ O2 is
the set of all pairs (x, y) ∈ R for which y covers x inR.

Definition 6. The base B(T) of a trace T = (O,R) is defined
as the ordered pair (O,B(R)).

The base of a trace thus only contains the direct predecessor and
successor relations. We can obtain T from B(T) by taking the
transitive closure. It is easily shown that B(R) is unique.

Definition 7. A trace transformation Θ(T) is a mapping of one
trace into another. A transformation may change both the set of
operations O and the relationR, or only the relationR.

4.2 Trace Expansion
The first step in the transformation from an application trace T APT

into an architecture trace T ART is the expansion Θe of the applica-
tion operations into the more detailed architecture operations. As
we already discussed, this expansion is more complex than just re-
placing the application operations with a sequence of architecture
operations. Such a straightforward substitution would not allow for
moving the check-room and signal-room operations, as was shown
in Figures 3 and 4. Instead, in addition we do a transformation of
the dependencies such that we get a partially ordered intermediate
trace T IT.

To define the expansion, we use the following two guidelines.
• We retain the ordering that is present in the application trace.

This means that we take a pessimistic assumption on the depen-
dencies among the trace operations.
• We only want to give limited mobility to operations, i.e., we

want to make sure that each operation has a predecessor and
a successor such that the number of options where to put the
operation during linearization is limited.

We can use a set of transformation rules that describe the trans-
formation. The first three rules are the simple expansions of the
application operations into the architecture operations, which were
given above in (TR 1), (TR 2), and (TR 3).

For the transformations of the dependencies we define a rule for
each pair of operation types. These dependencies and their trans-
formation are indicated in the following rules by the bold printed
arrows.

Ei→→→→→→→→→Ej
Θe=⇒ E i→→→→→→→→→Ej (TR 4)

E→→→→→→→→→R
Θe=⇒ E→→→→→→→→→cd→ld→sr (TR 5)

E→→→→→→→→→W
Θe=⇒ E→→→→→→→→→st → sd

cr −→
(TR 6)

Here we see that the check-room operation has no dependency with
the preceding execute operation. This means that in the lineariza-
tion we can put the check-room either before or after this execute.
The same holds for the signal-room operation in the next rule.

R→→→→→→→→→E
Θe=⇒ cd→ ld −→→→→→→→→→→E

sr
(TR 7)

Ri→→→→→→→→→Rj
Θe=⇒ cd i −→→→→→→→→→→cdj−→

cd i →ld i −→→→→→→→→→→ld j−→
cd i → ld i →sr i→→→→→→→→→sr j

(TR 8)

The strict ordering of the operations in (TR 8) is due to the assump-
tion we made that we retain all dependencies. So even if Ri and Rj
are reads from different ports which could have been performed in
parallel, we do not exploit this possible parallelism.

R→→→→→→→→→W
Θe=⇒ cd −→−→−→−→−→−→−→−→−→→ld −→→→→→→→→→→st → sd

cd → cr −→→sr −→−→−→−→−→−→−→−→−→
(TR 9)

In (TR 9) we have added the dependencies (cd , cr) and (sr , sd).
These dependencies limit the mobility of the check-room and
signal-room operations; without these dependencies we could move
all check-room operations to the beginning of the trace, and all
signal-room operations to the end of the trace.

W→→→→→→→→→E
Θe=⇒ cr →st→sd→→→→→→→→→E (TR 10)

W→→→→→→→→→R
Θe=⇒ cr →st→sd→→→→→→→→→cd→ld→ sr (TR 11)

Wi→→→→→→→→→Wj
Θe=⇒ cr i → st i →sd i→→→→→→→→→sdj

cr i →sti −→→→→→→→→→→stj−→

cr i −→→→→→→→→→→cr j−→
(TR 12)

These twelve rules can be applied to a base of an application trace.
However, that would not satisfy our second guideline of limited
mobility. For example, if we have a base of a trace

R→ E→ W (1)

and we use the expansion rules above, we get

cd → ld−−−−→
→ E → st → sd .

cr−−−→sr

Unlike the result of (TR 9), the check-room and signal-room oper-
ations are now no longer limited in their mobility. What we want
to get is

cd−−−−→
→ ld−−−−→

→ E → st → sd .

cr−−−→sr−−−→
(2)

The extra constraints (cd , cr) and (sr , sd) are exactly what rule
(TR 9) gives us if we would transform the dependency (R,W).
This dependency is present in the application trace, but not in the
base of this trace. Therefore, we introduce the extended base of a
trace.

Definition 8. For x, y ∈ O of a trace T = (O,R) we say that y
extendedly covers x if and only if (x, y) ∈ R and either
• there is no element z ∈ O such that both (x, z) and (z, y) ∈ R;

or
• x is a read operation or y is a write operation, or both, and there

is a sequence (q1, q2, . . . , qn), q1 = x, qn = y, (qk, qk+1) ∈
R for all 1 ≤ k < n, such that operations qi, 1 < i < n are all
execute operations and qk+1 covers qk .

Definition 9. The extended base Be(T) of a trace T = (O,R)
is defined as the pair (O,Be(R)). Here, Be(R) is the set of all
ordered pairs (x, y) ∈ R for which y extendedly covers x.

For the trace expansion transformation we now apply rules (TR 1)
through (TR 12) on the extended base of an application trace. For
example, the extended base of the trace of which the base was given
in (1) is

R −−
−−−−→
→ E→ W .

The expansion of this extended base using the twelve transforma-
tion rules was already given in (2).

4.3 Trace Linearization
The second step in the two step transformation is trace lineariza-
tion. This step takes the partially ordered intermediate trace T IT as
an input, and linearizes the ordering of the operations to obtain an
architecture trace T ART.

Unlike trace expansion, trace linearization is highly dependent on
the architecture. This is the step where we can distinguish between
different implementations at the architecture level of the applica-
tion level communication primitives.

So, how are we going to use these architecture characteristics to
find a linearization of the intermediate trace that matches the ar-
chitecture? From the transformation rules we can see that the only
freedom is in the placement of the signal-room and check-room op-
erations. However, although we enforced limited mobility of these
operations, the number of options to choose from can be vast for a
long trace. Consider for example the following intermediate trace.

→st i → sd i → E → stj → sdj

cr i −→−−−−−−−−−→ cr j −→

We can obtain four different architecture traces from this interme-
diate trace by linearization.

cr i → st i → sd i → E → crj → stj → sdj (3a)

cr i → st i → sd i → crj → E → stj → sdj (3b)

cr i → st i → crj → sd i → E → stj → sdj (3c)

cr i → crj → st i → sd i → E → stj → sdj (3d)

Each of these linearizations could be a valid representation of the
behavior at the architecture level. Given an architecture, a sys-
tem architect should be able to specify any of these linearizations.
Ideally, these specifications should have some clear relation to the
architecture, such that they can be easily derived from it, either au-
tomatically or manually by the system architect. For now the spec-
ifications are derived by hand, using constraints such as ’as soon
as possible but after operation X’ or ’as late as possible but before
operation Y’.

5. EXAMPLE
In this section we demonstrate the use of trace transformations.
We show the effect of having or not having local memory inside a
processor, and how the trace transformation technique easily deals
with these different architectures.

Consider a part of an application as shown in Figure 6. Process A

BA

while (1) {
read();
compute();
write();

}

while (1) {
read();
compute();

}

Figure 6: Part of application model.

reads data from its input FIFO, does some computation, and writes
data to its output FIFO. Process B reads data from this FIFO and
does some computation. The application traces of these processes
look as follows.

R→ E→ W→ R→ E→ W→ . . . (T APT
A)

R→ E→ R→ E→ . . . (T APT
B)

After the first step of the transformation, the trace expansion, we
get the following intermediate traces.

cd−−−−→
→ ld−−−−→

→ E → st → sd → cd−−−−→
→ ld−−−−→

→ E → st → sd → . . .

cr−−−→sr−−−→ cr−−−→sr−−−→ (T IT
A)

cd → ld−−−−→
→ E → cd → ld−−−−→

→ E → . . .

sr −−−−−−−−−−→ sr → . . .
(T IT
B)

Now suppose we have an architecture as depicted in Figure 7.
Processor X reads its input data from a shared buffer in shared

memory

Processor
X

local
memory

Processor
Y

one−placelocal
FIFO

busshared
memory

shared
buffer

Figure 7: Architecture for application of Figure 6.

memory. The communication between processor X and proces-
sor Y is mapped onto a one-place FIFO buffer. Both processors
have a local memory. Both can copy their input data to this local
memory before starting a computation. Processor X can also store
the results of a computation there before copying it to the FIFO
buffer. This means that we get the following specification for the
linearization.
• Processor X:

– signal-room sr as soon as possible
– check-room cr as late as possible

• Processor Y:
– signal-room sr as soon as possible

This results in the following architecture traces.

cd → ld → sr → E → cr → st → sd →
cd → ld → sr → E → cr → st → sd → . . . (T ART

A)

cd → ld → sr → E → cd → ld → sr → E → . . . (T ART
B)

The total transformation is thus no more than a straightforward sub-
stitution of the read R and write W by their expansions.

When we look at the timing behavior of this implementation we get
the following timelines. They are based on the following assump-
tions.
• The input data for processor X is available at cycles 0, 24, 48,

etc.
• The execution time of the computation of processor X is 10

cycles; the execution time of the computation of processor Y is
16 cycles.
• The transfer of a single token over the bus takes 8 cycles.
• The copying of data between the local memory and the one-

place FIFO takes place in zero time.

ld
cd sd

st
cr

cd ld E
sdsr
st
cr

cd

cd
sr
ld ld

sr

ld

cd

sr

EE

sr
E

Processor Y

0 568 18 24 32 42 48

0 18 4234 52

 Processor X

These timelines should be read as follows. At cycle 0 processor X
checks for data in its input buffer in shared memory. Then it starts
a load-data to fetch this data into its local memory; this takes 8 cy-
cles for the bus transfer. Immediately a signal-room is given, and
then the computation is started which takes 10 cycles. At cycle 18
a check-room on the one-place FIFO is done, data is copied into
this FIFO, and a signal-data is given. Then again a check-data is
started, which now stalls the process until new input data is avail-
able in cycle 24. The dashed arrows at the top indicate the arrival
of input data for processor X; the dashed arrows in between the
two timelines indicate the signal-data and signal-room operations
on the one place FIFO.

We conclude from these timelines that the throughput of the sys-
tem is limited by the rate at which new data for processor X is
available; processor X has to wait upon each check-data before it
can continue.

Now consider an architecture in which both processors do not have
a local memory. This means that processor X directly operates
on the data in shared memory, and stores its results in the one-
place FIFO, and that processor Y operates on the data in the one-
place FIFO. The linearization for this architecture is specified as
follows.
• Processor X:

– signal-room sr as late as possible
– check-room cr as soon as possible

• Processor Y:
– signal-room sri as late as possible, but before the next check-

data cd i+1

This results in the following architecture traces.

cd → cr → ld → E → st → sr → sd →
cd → cr → ld → E → st → sr → sd → . . . (T ART

A
′)

cd → ld → E → sr → cd → ld → E → sr → . . . (T ART
B
′)

Again, we can construct timelines for both processors.

cd
ld

st
sr
sd
cd

cr

E
sr

cr

E

st

Eld
cr
cd

Processor Y

sr
sd

cd

cd
ld sr

ld E

0

0

8 18 24

18

34

34

42 52

52 68

68

Processor X

We observe that the throughput is no longer limited by the rate at
which the input data arrives. Because both processors need access
to the one-place FIFO during their computations, these are now
fully sequentialized. Processor X has to wait for the computation
of processor Y before it can continue with its next computation. As
a result, throughput has dropped from one computation every 24
cycles to one computation every 34 cycles.

6. RELATED WORK
In concurrency theory and process algebras the notions of traces
and partial orders are well known. For example, in [12] a model is
used for modeling concurrency that is closely related to our trace
model using partial orders. The labeled partial order defined in [12]
matches Definition 1. In [13] is discussed how action refinement
can be defined on event structures, which is another model resem-
bling our traces. Action refinement is closely related to trace ex-
pansion; main difference is that they allow only straightforward
substitution of a single action or operation by a (partially ordered)
set of actions. This would limit the resulting trace to orderings as
in (3a), whereas our trace transformation can also result in order-
ings such as in (3b), (3c), and (3d). A more powerful notion of
action refinement is introduced in [5] which is more like our trace
transformation, in the sense that in addition to the substitution of a
single action there is also a transformation of the dependencies.

In the ESPRIT/OMI COSY project applications are specified using
the same model as in SPADE. They have also defined a refinement
of the application level communication primitives read and write
into more detailed implementation primitives [2]. However, this
refinement does not allow for reordering of operations. This means
that they can only implement a behavior in which data is copied
from the private state space of a producer into a shared buffer, and
then from this shared buffer into the private state space of a con-
sumer.

The C-Heap framework [11] provides low-level communication
primitives to an application programmer. These primitives are very
much like the architecture level primitives we defined. A transfor-
mation from more abstract primitives such as read and write is thus
not needed. However, the application models are more tightly cou-
pled to a specific architecture and implementation. This reduces
reuse of functional IP and puts an extra burden on the application
programmer.

The handshake expansion and reshuffling used in the design of
asynchronous circuits [10][3] have resemblance with our transfor-
mation technique, but are based on static analysis whereas we use
a runtime transformation technique. In addition, we try to fit the
transformation to a proposed architecture, whereas they try to op-
timize the transformation and synthesize the architecture from the
obtained behavior.

7. CONCLUSIONS AND FUTURE WORK
We presented a new trace transformation technique for communica-
tion refinement in architecture exploration. This technique supports
the system architect in mapping application level communication
primitives to architecture level primitives. We illustrated how the
technique can perform different mappings for different architec-
tures. Our examples demonstrate that an architecture exploration
tool that supports this technique can be used to evaluate alternative
architectures starting from abstract application models.

We are currently extending the presented techniques to also support
grain refinements in the mapping step. This will support system
architects in exploring architectures in which synchronization and
data transfer are performed at finer grains than the communication
specified in the application model, or in which synchronization is
performed at a different grain than the data transfers. We plan to
further automate the communication refinement by automatically
inferring the refinement directives from the definition of the archi-
tecture under consideration.

8. REFERENCES
[1] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara,

A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki, and
A. Sangiovanni-Vincentelli. Hardware-Software Co-design of
Embedded Systems – The POLIS approach. Kluwer Academic
Publishers, 1997.

[2] J.-Y. Brunel, E. de Kock, W. Kruijtzer, H. Kenter, and W. Smits.
Communication refinement in video systems on chip. In Proc. 7th
Int. Workshop on Hardware/Software Codesign (CODES’99), pages
142–146, Rome, Italy, May 3–5 1999.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Automatic handshake expansion and reshuffling using
concurrency reduction. In Proc. 19th Int. Conf. on Application and
Theory of Petri Nets, pages 86–110, Lisbon, Portugal, June 1998.

[4] E. de Kock, G. Essink, W. Smits, P. van der Wolf, J.-Y. Brunel,
W. Kruijtzer, P. Lieverse, and K. Vissers. YAPI: Application
modeling for signal processing systems. In Proc. 37th Design
Automation Conference (DAC’2000), pages 402–405, Los Angeles,
CA, June 5–9 2000.

[5] W. Janssen, M. Poel, and J. Zwiers. Action systems and action
refinement in the development of parallel systems; an algebraic
approach. In J. Baeten and J. Groote, editors, Proc. 2nd Int. Conf. on
Concurrency Theory (CONCUR’91), LNCS 527, pages 298–316,
Amsterdam, The Netherlands, Aug. 1991.

[6] G. Kahn. The semantics of a simple language for parallel
programming. In Proc. of the IFIP Congress 74. North-Holland
Publishing Co., 1974.

[7] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An
approach for quantitative analysis of application-specific dataflow
architectures. In Proc. IEEE Int. Conf. on Application-Specific
Systems, Architectures, and Processors (ASAP’97), July 14–16 1997.

[8] E. Lee and T. Parks. Dataflow process networks. Proc. of the IEEE,
83(5):773–801, May 1995.

[9] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers. A
methodology for architecture exploration of heterogeneous signal
processing systems. In Proc. 1999 IEEE Workshop on Signal
Processing Systems (SiPS’99), pages 181–190, Taipei, Taiwan,
Oct. 20–22 1999.

[10] A. J. Martin. Synthesis of asynchronous VLSI circuits. In
J. Staunstrup, editor, Formal Methods for VLSI Design; IFIP WG
10.5 Lecture Notes, chapter 6, pages 237–283. North-Holland, 1990.

[11] A. Nieuwland and P. Lippens. A heterogeneous HW-SW architecture
for hand-held multi-media terminals. In Proc. 1998 IEEE Workshop
on Signal Processing Systems (SiPS’98), pages 113–122, Cambridge,
MA, Oct. 8–10 1998.

[12] V. Pratt. Modeling concurrency with partial orders. Int. Journal of
Parallel Programming, 15(1):33–71, Feb. 1986.

[13] R. van Glabbeek and U. Goltz. Equivalences and refinement. In
I. Guessarian, editor, Semantics of Systems of Concurrent Processes,
Proc. LITP Spring School on Theoretical Computer Science, LNCS
469, pages 309–333, La Roche Posay, France, Apr. 23–27 1990.
Springer.

	Main Page
	CODES'01
	Front Matter
	Table of Contents
	Author Index

