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Abstract 
Asynchronous, self-timed, logic is often eschewed 
in digital design because of its ad-hoc 
methodologies and lack of available design tools.  
This paper describes a complete High Level 
Design flow for asynchronous circuits based on 
Register Transfer Level (RTL) VHDL using 
commercial simulation and synthesis tools.  
Contrary to previous asynchronous approaches, 
the proposed RTL methodology closely resembles 
familiar synchronous design styles.  
 

1.0   Introduction 
In 1997, the Semiconductor Industry Association 
(SIA) identified a major design crisis approaching in 
its “National Technology Road Map for 
Semiconductors” [Sia97].  Specifically, they 
mentioned the drastic increase of clock frequency and 
the exponential increase of circuit complexity, and 
concluded that a novel asynchronous approach could 
be required to solve some of the industry’s future 
problems.  Additionally, the trend towards Systems-
On-Chip (SOC) technology may very well encourage 
the use of asynchronous design in the electronics 
industry.  The prime goal of SOC technology is to 
create truly reusable Intellectual Property (IP) blocks 
that can be built quickly and are guaranteed to work 
the first time.  Together with high quality IP pieces, 
an overall design methodology should provide a 
simple means for IP assembly, based on plug and 
play principles.  Clock free, asynchronous circuits 
constitute an attractive SOC approach.  From the 
system’s architecture point of view, it is much easier 
to build SOCs using asynchronous rather than 
synchronous blocks where multiple clock domains 
need to be interfaced. 
 
As it turns out, several promising asynchronous 
design methodologies have been proposed over the 
past ten years.  Excellent overviews of the state-of-
the-art can be found in [Berkel99], [Hauck95] and 
[Nanya93].  However, most of these asynchronous 
design methodologies lack easily accessible, standard 
High Level Design tools based on conventional 
Hardware Description Languages. 
 

This paper introduces a complete High Level Design 
methodology for asynchronous, self-timed circuits 
based on a Register Transfer Level (RTL) description 
in VHDL1 as illustrated in figure 1.  The paper is 
organized as follows.  We start with a description of 
an asynchronous design methodology called NULL 
Convention Logic (NCL) and its relation to other 
delay-insensitive techniques.  Next, we describe an 
RTL simulation environment implemented with off-
the-shelf IEEE 1076/1164 compliant VHDL 
simulators.  We continue with an explanation of how 
this HDL description is used with a commercial 
Logic Synthesis tool such as Design Compiler to 
synthesize an optimized, asynchronous netlist ready 
for Place and Route.  The result section compares 
several manual designs with synthesized results, as 
well as synthesized asynchronous designs with 
synthesized synchronous designs.   
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and are processed by the gates to perform the desired 
data transformation. NULL wavefronts do not 
contain any computational information and are used 
to separate successive DATA wavefronts.  The 
wavefront flow and interaction is managed through 
an asynchronous acknowledge / request signaling 
protocol. This request-acknowledgement protocol is 
illustrated in figure 2.  When the outputs of the circuit 
are all DATA, the completion detection circuit 
signals a request for NULL to the inputs.  When all 
outputs of the circuit are at NULL, a request for new 
DATA is issued by the same completion detection 
circuitry. 
 
 

The representation of NCL gates in a three-level 
logic is called 3NCL.  Although 3NCL is a 
convenient mathematical abstraction, it has no 
efficient physical implementation due to the binary 
nature of signals used in design practice.  For 
physical implementation each signal a in 3NCL is 
represented by two wires a.rail1 and a.rail0 in a 
circuit under the following encoding of 3NCL 
symbolic values:  
 

a=’1’ ⇔ a.rail1=’1’, a.rail0=’0’;  
a=’0’ ⇔ a.rail1=’0’, a.rail0=’1’;  
a=’N’ ⇔ a.rail1=’0’, a.rail0=’0’.   

 

 

 
 
 
 
 
 
 
 
 
 
 
In NCL, this behavior is pushed down to the level of 
each particular gate of a circuit.  If the current ouput 
of a gate is NULL then the gate keeps its output at 
NULL as long as NULL is present at any one of its 
inputs.  When all gate inputs receive DATA, the 
output of the gate changes to DATA.  The output 
then maintains DATA until all inputs receive NULL 
before changing to NULL. 
 
This behavior is naturally expressed in a multi-valued 
logic with ‘1’ and ‘0’ as DATA values and ‘N’ for 
NULL.  The behavior of a 2-input gate in NCL is 
shown in figure 3.  Notice how the NCL gate 
switches differently depending on the current value 
of the output. This sequential behavior of the gates is 
referred to as hysteresis. 
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Figure 3. Symbolic tables for 2-input NCL gates. 

 
 

The combination of values a.rail1 = ’1’, 
a.rail0 = ’1’ is not used.  This encoding is 
known as a dual-rail encoding [Sims58]. 
 
Implementation of 3NCL logic through a dual-rail 
encoding, called 2NCL, gives a physical 
representation of NCL.  Sequential behavior of a gate 
in 2NCL is ensured through a feedback from the 
gate’s output to its inputs, which allows 
representation of the gate’s behavior by the logic 
equation   
 

g = S + g R 
 
where S and R are the set and reset functions of the 
gate. A general view on semi-static CMOS 
implementations of gates in 2NCL is shown in figure 
4a.   
 
A refined picture of a gate’s structure is obtained 
through consideration of specific properties of dual-
rail circuits under two-phase (set and reset) operation.  
These properties are: 
 
1.0   In a dual-rail circuit a transition from NULL 
to DATA is monotonic; and 
2.0   The transition of primary inputs of a 
combinational circuit from DATA to NULL results in 
the setting of all gates in a circuit into the NULL state 
 
From (1) it follows that a set function S of a gate 
must be positive unate [Brayton90].  Set conditions 
for NCL gates are conveniently specified with 
threshold functions, a particular subclass of unate 
functions.  A threshold function S is one that can be 
defined by a system of inequalities: S(x1,…,xn) = 1 iff 
w1x1 + w2x2 + … + wnxn  ≥  m, where wi are the 
weights, m is the threshold value and “+” is an 
arithmetic sum.  In the case where all weights are 
equal to ‘1’ a threshold function can be characterized 
by two numbers: i) n – number of inputs, and ii) m – 
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Figure 2. Basic NCL circuit with REQ/ACK. 



the threshold value.  This simplified representation is 
called an m-of-n threshold function.  
 
The reset function for an NCL gate follows from 
point (2).  An NCL gate changes its output to NULL 
when all its inputs are NULL.  Bearing in mind that 
DATA values at inputs of a gate are encoded by “01” 
or “10” we arrive at 
 

R( x1,…,xn) = x1 ∨  x2 ∨  …∨  xn 
  
A refined view on the implementation of a 2NCL 
gate is shown in figure 4(b).  In this paper, we refer 
to this implementation as a threshold gate with 
hysteresis.  Actual CMOS implementations of these 
kinds of gates are described in [Sobelman98]. 
 
 
 
 
 
 
 
 

 

 

 

3.0    RTL design for NCL 
RTL descriptions of asynchronous designs should 
closely match common synchronous description 
styles, with minor adjustments to account for the 
asynchronous behavior.  For NCL this means the 
RTL description style has to account for: 
 

• NULL/DATA behavior 
• Hysteresis 
• Asynchronous registers with REQ/ACK 

signals 
 
In addition, to stay at an acceptable level of 
abstraction, designs should be described in 3NCL 
(multi-value abstraction) rather than 2NCL (dual-rail 
implementation).  
 
These requirements are met with the following HDL 
coding rules: 
 

• Introduce a 3-valued logic type with values 
{‘N’, ‘1’, ‘0’}. 

 

• Use a simulation-only assignment inside 
processes to describe the NULL/DATA and 
hysteresis behavior. 

 
• Rely on logic synthesis to expand signals 

into their dual-rail equivalents. 
 

• Use a pre-defined and pre-mapped  function 
call for the req/ack circuit generation used 
with asynchronous registers. 

 
These rules allow the designer to use a familiar style 
of VHDL (if-then-else, case, arithmetic and relational 
operators, process as well as dataflow assignments, 
register inferencing, etc.). An example of a 3NCL 
circuit described in VHDL is shown in figure 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following three sub-sections discuss the 
simulation and synthesis implications of this 
approach. 
 

3.1 Simulation 

During simulation, NULL/DATA behavior and 
hysteresis are modeled with an NCL-specific 
simulation package ‘ncl_logic’. 
 
The package defines a type NCL_LOGIC, 
completely analogous to the IEEE 1076/1164 
STD_LOGIC type, with the addition of a new value 
‘N’ for NULL:  
 

type ncl_logic IS (  
  'U','X','0','1','N','Z','-'); 

type ncl_logic_vector is array ( 
natural range <>) OF ncl_logic; 

 

library ncl; 
use ncl.ncl_logic.all; 
entity example is 
   port (a,b,s : in  ncl_logic; 
         z     : out ncl_logic ); 
end example; 
architecture ncl of example is begin 
   process (a,b,s) begin 
      if s = '1' then  
         z <= a; 
      else 
         z <= b; 
      end if; 
      hysteresis(a,b,s,z); 
   end process; 
end ncl; 
 
 Figure 5.  Example of a 3NCL description in VHDL. 

Figure 4.  Implementation of an NCL gate in CMOS. 
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Based on this type, all basic Boolean functions (and, 
nand, or, nor, etc.) as well as conversion functions 
defined in the IEEE 1076/1164 ‘std_logic’ package 
are overloaded for NCL_LOGIC and 
NCL_LOGIC_VECTOR. 
Hysteresis functionality is provided through a pre-
defined procedure, which is included in the 
‘ncl_logic’ package.  This procedure is called at the 
end of every process or dataflow statement with all 
input and output process signals as parameters.  
Because hysteresis is an inherent characteristic of 
NCL’s threshold gates, it should not be synthesized.  
Therefore, the hysteresis procedure is surrounded by 
‘synthesis on/off’ pragmas.  In pseudo-VHDL code, 
this looks as follows: 
 
hysteresis (input_signals, output_signal) 
-- synthesis_off 
   if (all input_signals = 'N') then 
      output_signal <= 'N'; 
   elsif (any input_signals = 'N') then  
      output_signal <= output_signal; 
   end if; 
-- synthesis_on 
 
The function causes the output signal to be modified 
only when the inputs are either all NULL or all 
DATA.  The hysteresis function is invoked as the last 
statement in a process as shown in figure 5, or on 
concurrent signal assignments as follows : 
 

z <= a and b when hysteresis(a&b) 
else unaffected; 

 
Analogous to STD_LOGIC, NCL_LOGIC also has 
support for arithmetic packages 

 
• NCL_ARITH 
• NCL_SIGNED 
• NCL_UNSIGNED 
 

with full support for all arithmetic and relational 
operators.   

 
With this functionality, we can now describe 3NCL 
circuits in VHDL and simulate them with any IEEE 
1076/1164 compliant simulator. For improved  
performance, NCL packages can be pre-compiled and 
linked with the simulator just like STD packages. 

3.2 Synthesis 

In order to use conventional logic synthesis tools for 
NCL, the flow has to handle: 
 

• The ‘N’ value in NCL_LOGIC 
• Hysteresis 

• Asynchronous registers with ACK/REQ 
signals 

 
The first issue can be handled by treating the ‘N’ 
value in NCL_LOGIC as a ‘-’ (don’t care) value.  
This enables tools such as Design Compiler to treat a 
3NCL variable as a single wire.  Hence, the same 
3NCL description used for simulation purposes can 
now be used as input for logic synthesis.  
 
Hysteresis is completely ignored during logic 
optimization and technology mapping.  Because 
every node in the network has hysteresis, the 
combination of two nodes with hysteresis results in a 
new node with hysteresis.  Likewise, if a node with 
hysteresis is split into two nodes, the two nodes will 
both have hysteresis.  Hysteresis is also ignored 
during technology mapping, because every library 
cell has hysteresis.  If a node in a network is mapped 
onto one or more cells from a library, each mapped 
cell will have hysteresis.  Therefore, the functionality 
of the cells in the library is described without 
hysteresis as well.   
 
Asynchronous registers can be inferenced with an 
incompletely specified  ‘if (condition) 
then (assignment)’ statement, which 
synchronous synthesis tools map to a D-LATCH 
primitive. For NCL purposes, the primitive is 
overloaded with an asynchronous register with pins 
IN, OUT, and REQ (RST is optional). Completion 
detection, which produces Request and Acknowledge 
signals, is provided through a pre-defined function 
call CMPD() as illustrated in figure 6. 
 
 process (req, a, b, z) begin 
    if (req = ‘1’) then 
       z <= a + b; 
    end if; 
    zack <= cmpd(z); 
    hysteresis (req, a, b, z); 
 end process; 
 
 
 
 
 
 
 
 
 
 
 
 
By ignoring the ‘N’ value and hysteresis, logic 
synthesis for NCL is reduced to a standard synthesis 

Figure 6. HDL code and synthesized circuit 
of inferred asynchronous register. 



problem that can use commercial synthesis tools.  
The logic synthesis for NCL is implemented in two 
steps (see also figure 7): 
 
1) Translate 3NCL RTL into a 3NCL netlist 

 
The circuit description in 3NCL, using the multi-
valued NCL_LOGIC type, is input to a commercial 
synthesis tool, e.g., Design Compiler.  The synthesis 
tool optimizes the HDL and maps it to a generic 
Boolean library. Dataflow components, such as 
adders, incrementors, and comparators are mapped 
on built-in DesignWare components.  The resulting 
netlist is referred to as a 3NCL netlist.  Note that the 
signals in this 3NCL netlist are still of the type 
NCL_LOGIC, i.e., can carry values ‘0’, ‘1’, and ‘N’. 
 
2) Translate 3NCL into a 2NCL netlist 
 
In the second step, the intermediate 3NCL netlist is 
expanded into a fully dual-rail 2NCL netlist by 
redefining all signals as dual-rail signals, and 
overloading all generic Boolean components (AND, 
OR, XOR, INV, MUX etc.) with  dual-rail 
equivalents.  The actual expansion is described in a 
VHDL package that is read before the 3NCL code 
from step 1 is read.  Like step 1, the 2NCL 
transformation in step 2 is done with a commercial 
synthesis tool. At this point, the original 3NCL 
behavioral description has been transformed into a 
fully dual-rail gate level representation, with 
preservation of arithmetic functions.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 2 subsequently reads in a standard synthesis 
library with threshold gates and performs ASIC-type 
optimization and technology mapping. 
 
The dual rail definition is provided in a package 
which is read in together with the intermediate 3NCL 
netlist.  This package describes a dual rail signal as a 
record and overloads the basic components  for dual 
rail implementations: 
 
type dual_rail_logic is record 
   rail1 : std_logic ; 
   rail0 : std_logic ;   
end record; 
 
function "and" (a,b: dual_rail_logic)  

return r: dual_rail_logic; 
   r.rail1 <= a.rail1 and b.rail1; 
   r.rail0 <= (a.rail0 and b.rail0) or  
              (a.rail0 and b.rail1) or  
              (a.rail1 and b.rail0); 
end and;  
 
3.3 Design Compiler scripts and libraries 
 
The flow described above has been implemented in 
Design Compiler (DC) scripts and libraries that are 
transparent to the designer.  An NCL library is 
identical to any other .db library compiled for DC 
and contains gate functionality, timing parameters, 
and wire load models.  
 
Setting up DC to run with NCL and perform the 
actual dual rail expansion is implemented in two 
scripts ‘ncl_init’ and ‘ncl_compile’.  Figure 8 shows 
how a VHDL description is mapped and optimized 
for NCL in DC.  NCL commands are in italic 
typeface. 
 

> ncl_init 
> read –f vhdl ifthen.vhd 
> ncl_compile 
> read –f db ncl_25.db 
> target_library = ncl_25.db 
> link_library = ncl_25.db 
> symbol_library = generic.sbd 
> compile 

Figure 8.  Design Compiler script for NCL circuit 
synthesis. 

4.0  Results 
Table 1 compares manual NCL design using 
schematic capture with synthesized NCL designs.  
The synthesized designs were written in VHDL and 
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excellent results compared with manual design.  Area 
results are in number of transistors. 
 

design manual synthesis ratio 
if-then-else 40 40 100 % 
and4 66 68 103 % 
test7 140 122 87 % 
clipper 339 208 61 % 
set_cnt 238 202 85 % 
and16 352 336 95 % 
shift 506 284 56 % 
case 594 482 81 % 
sync_state 1008 814 81 % 
bit_cnt 1059 1072 101 % 

Table 1: Comparison of manual and synthesized 
asynchronous designs (area is in transistors). 

 
Table 2 compares synthesized NCL circuits with 
synthesized clocked circuits, mapped on an 
equivalent LCB500k library [Lsi95].  'X2vhd' is a 16-
bit arithmetic limit/round operation that is purely 
combinational and hence the synchronous and 
asynchronous VHDL descriptions are identical.  The 
‘decoder’ example is a Viterbi decoder where the 
asynchronous VHDL description is a straight 
translation from the synchronous VHDL.  The, 
‘hostfird’ example is a thirty-two by 16-bit 
unidirectional FIFO buffer which was redesigned for 
NCL.  The gate count is the number of actual library 
gates.  Notice that the gate count of ‘hostfird’, which 
was redesigned for NCL, is comparable to the gate 
count of the synchronous design, whereas straight re-
implementations done for ‘X2vhd’ and ‘decoder’ 
generate much larger designs. 
 

                  number of gates 
module synchr NCL ratio 

addrconv 41 62 1.5 
X2vhd 395 826 2.1 
decoder 1010 1804 1.8 
hostfird 1691 1123 0.7 

Table 2.  Comparison of synthesized synchronous 
and NCL designs. 

 

5.0   Summary 
In this paper, we have introduced a flow to simulate 
and synthesize asynchronous, delay-insensitive 
circuits with commercial EDA tools identical to the 
flow used for synchronous circuits.  An RTL 
description of an asynchronous circuit in VHDL can 
be simulated with any IEEE 1076/1164 compliant 
simulator and synthesized with a commercial 

synthesis tool such as Design Compiler.  The 
resulting netlist, mapped on a standard cell library of 
threshold gates, is ready for automatic place and 
route.  The availability of this flow will make 
asynchronous circuit design easier to adopt.  
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